MONITORING AND ANALYSIS OF EFFLUENT WATER OF EXPLOSIVE FACTORY, PAKISTAN ORDNANCE FACTORY, WAH CANTONMENT

Bisma Zahid Rja Iskandar Ali Hasan Syed

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES BAHRIA UNIVERSITY, ISLAMABAD

Abstract

The study is about the examination and testing of multitudinous physical and chemical parameters in the effluent waters and comparing the results and outcomes to National Environmental Quality Standards. The area selected for the study is Pakistan Ordinance Factory (POF) in Wah Cantonment. Basically factory is divided into many sections and various sub- factories each having its own specifications in terms of services, products and quality certifications. Main area of the study is the Explosive Factory and its effluent waters, collected from different selected sample points. All the testing were carried out in instrumental and water analysis lab of POF. Effluents were tested using conventional methods including volumetric analysis, iodometric analysis, gravimetric analysis, and also using instrumental techniques. Three sample sites were selected (Sample point 1: Surface drain; Sample Point 2: Effluent Water Treated; Sample point 3: Sewage Disposal) with in the Explosive Factory of POF. The samples were collected in three different bottles and temperature was measured at the same time. Numerous experiments and tests were carried out to find and calculate different parameters such as PH, TDS, TSS, sulphides, chlorides, BOD, COD, heavy metals and sulphates. The findings and results of the tests exhibited that most of the parameters were detected in the samples but their values were within the permissible limits and required no further treatment. Effluent water constitutes different chemicals a slightest change in their values, especially heavy metals, can have detrimental effects on different environmental sectors. The effluent samples for May, June and July 2011 shows that all the parameters are lying with in the permissible limits of NEQS. Since all the parameters of effluents are within the limits, therefore; the variations in the result are not of much concerned. Some parameters like sulphide, chlorine, ammonia, chromium, and cadmium didn't show any of their signs in the effluent samples, while oil and grease (3.6 ppm -7.7 ppm), lead (0.1 ppm -0.14 ppm) and temperature 31.1C - 33.9C) are somewhat near to their permissible limits of NEQS i.e. 10ppm, 0.5ppm and 40C respectively. TSS (1 ppm - 42 ppm) showed large variation at the site 3 but still it is far below its permissible limit of NEQS i.e. 200ppm. Thus, it is recommended that proper testing and treatment of the effluents is required before the final disposal, to check if the values of all the parameters are within the threshold limits of the international standards. Dilution of the effluents should be done at every possible step. alternate testing methods with improved technology and higher accuracy should be introduced. Testing should be done in controlled laboratory environment with proper exhaust and ventilation system and optimum room temperature and pressure should be maintained. Even after the treatment, care must be taken that it might not get mixed with the drinking water or other fresh water resources. Testing of effluents is recommended prior to dilution or treatment, in order to determine the efficiency of treatment being done.

Key words: Effluents, POF, Parameters, Testing, Conventional methods, Threshold limit, International standards.

Acknowledgment

We are thankful to Almighty Allah for bestowing us strength and ability to complete our thesis. After Allah we are thankful to our elders especially our parents, without their support and prayers we would not have been able to complete our final semester thesis.

We are thankful to Miss Sumaira, A.M POF explosive factory for granting us the permission to conduct this research in the premises of the chemical laboratories of Explosive Factory. We are also grateful to A.T.O Dildar Khan for assisting us in performing the laboratory tests and supervising and guiding us throughout.

We are also gratified to our beloved Miss Fiza Sarwar and Miss Shamsa Kanwal for guiding and assisting us in scripting our thesis in a more professional and recommended format. We would not have accomplished what we have, without their constant support and back up.

List of Figures

Fig.1.1. Satellite Image of study area	3
Fig.1.2. Google map of study area	4
Fig.2.1. Effluent Discharge Layout	21
Fig.3.1. Comparison of pH with NEQS	38
Fig.3.2. Comparison of temperature with NEQS	39
Fig.3.3. Comparison of TDS with NEQS	40
Fig.3.4. Comparison of TSS with NEQS	41
Fig.3.5. Comparison of BOD with NEQS	42
Fig.3.6. Comparison of COD with NEQS	43
Fig.3.7. Comparison of chloride with NEQS	44
Fig.3.8. Comparison of sulphates with NEQS	45
Fig.3.9. Comparison of chlorine with NEQS	46
Fig.3.10. Comparison of sulphide with NEQS	47
Fig.3.11. Comparison of oil and grease with NEQS	48
Fig.3.12. Comparison of ammonia with NEQS	49
Fig.3.13. Comparison of lead with NEQS	50
Fig.3.14. Comparison of nickel with NEQS	51
Fig.3.15. Comparison of zinc with NEQS	52
Fig.3.16. Comparison of cadmium with NEQS	53
Fig.3.17. Comparison of chromium with NEQS	54

List of Tables

Table 3.1	Effluent water sample results May 2011	35
Table 3.2	Effluent water sample results June 2011	36
Table 3.3	Effluent water sample results July 2011	37

Acronyms

BOD	Biological Oxygen Demand
COD	Chemical Oxygen Demand
EPA	Environmental Protection Agency
ISO	International Standard Organization
NEQS	National Environmental Quality Standards
OHSAS	Occupational Health Safety Assessment System
PEPA	Pakistan Environmental Protection Act
PNEC	Predicted No Effect Concentration
POF	Pakistan Ordnance Factory
QHSE	Quality Health Safety and Environment
TDS	Total Dissolved Solids
TSS	Total Suspended Solids
WHO	World Health Organization

Contents

Abstract	Ι
Acknowledgement	II
List of figures	III
List of tables	IV
Acronyms	V
Chapter1: Introduction	1
1.1. Introduction to the study	2
1.2The study area	3
1.2.1. Quality assurance	5
1.2.2. Mainstream industries	5
1.3. Legal Requirements	6
1.3.1. The Factory Act 1934	6
1.4. PEPA 1997	7
1.5. Effluent parameters for analysis	7
1.5.1. Temperature	7
1.5.2. Chloride	8
1.5.3. Sulphate	8
1.5.4. Chlorine	9
1.5.5. Total Suspended Solids	9
1.5.6. BOD and COD	10
1.5.7. Sulphides	10
1.5.8. Ammonia	10
1.5.9. Oil and Grease	11
1.5.10. Lead	12
1.5.11. Zinc	12
1.5.12. Cadmium	13
1.5.13. Chromium	14
1.5.14. Nickel	15

1.6. Objectives	16
1.7. Literature Review	17
Chapter 2: Materials and methods	20
2.1.Sample collection	20
2.2.Sample analysis	20
2.2.1. Chloride test	22
2.2.2. COD Test	22
2.2.3. BOD Test	24
2.2.4. Oil and grease Test	25
2.2.5. Total Suspended Solids Test	26
2.2.6. Sulphate Test	27
2.2.7. Sulphides Test	28
2.2.8. Chlorine Test	29
2.2.11. Ammonia	30
2.2.12. Atomic Absorption	31
2.2.13. Total Toxic Metal	32
2.2.14. Total Dissolved Solids	32
2.3. National Environmental Quality Standards	33
Chapter 3: Results and Discussion	34
Chapter 4: Conclusion and Recommendation	55
References	56