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To achieve performance optimization in opportunistic Delay Tolerant Networks (DTNs), most 

flooding based routing algorithms like Epidemic and Probabilistic Routing Protocol using History of 

Encounters and Transitivity (PRoPHET) transmit multiple copies of a message to several custodians. 

This results in quick depletion of valuable network resources. On the other hand quota based 

protocols, such as Spray and Wait, reduce routing overhead by limiting the number of redundant 

transmission of a message but achieve lesser throughput. This makes both these types of approaches 

directly inapplicable in a post disaster response network where maximum delivery ratio with 

minimum routing overhead is expected. 

Abstract 

Recent research suggests that with proper buffer management policies implemented at nodes, we can 

intentionally optimize any one or a number of routing metrics like message delivery ratio or delay etc. 

Similarly we can increase the message delivery ratios of flooding based schemes in resource 

constrained environments without increasing routing overhead. This makes them comparable to quota 

based protocols in terms of routing overhead while maintaining higher delivery ratios. In this thesis 

we assess the performance of flooding based protocols (e.g. Epidemic and PRoPHET) with several 

existing buffer management schemes in order to determine their impact.  We also propose a novel 

buffer management scheme appropriate for a resource constrained environment like the post disaster 

response network, where communication is enabled through small hand held devices with limited 

buffer sizes and transmission capabilities.  

We further prove that to curtail the negative impact of buffer overflow in such congested and 

constrained environments, buffer management policies should carefully select the messages to be 

discarded. For this purpose we have proposed a dynamic threshold size based selection mechanism 

where the difference between the arriving message size and the available buffer space is calculated to 



determine the size of the message to be dropped, incase of buffer overflow. Due to the adaptive nature 

of our proposed scheme, it adds randomness to the message selection process. This gives each 

message equal chance of being successfully delivered. Simulations show that our proposed scheme 

named as Size Aware Drop (SA-Drop), significantly improves the performance of the basic flooding 

based DTN routing protocols by increasing their message delivery probability and by controlling 

routing overhead.  

When used with PRoPHET, our proposed policy outperforms Encounter Based Routing (EBR) a 

quota based protocol, specifically designed for post disaster response networks. This makes it suitable 

for enabling communication in a post disaster scenario. 
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ABSTRACT 

To achieve performance optimization in opportunistic Delay Tolerant Networks (DTNs), 

most flooding based routing algorithms like Epidemic and Probabilistic Routing Protocol 

using History of Encounters and Transitivity (PRoPHET) transmit multiple copies of a 

message to several custodians. This results in quick depletion of valuable network resources. 

On the other hand quota based protocols, such as Spray and Wait, reduce routing overhead by 

limiting the number of redundant transmission of a message but achieve lesser throughput. 

This makes both these types of approaches directly inapplicable in a post disaster response 

network where maximum delivery ratio with minimum routing overhead is expected. 

Recent research suggests that with proper buffer management policies implemented at nodes, 

we can intentionally optimize any one or a number of routing metrics like message delivery 

ratio or delay etc. Similarly we can increase the message delivery ratios of flooding based 

schemes in resource constrained environments without increasing routing overhead. This 

makes them comparable to quota based protocols in terms of routing overhead while 

maintaining higher delivery ratios. In this thesis we assess the performance of flooding based 

protocols (e.g. Epidemic and PRoPHET) with several existing buffer management schemes in 

order to determine their impact.  We also propose a novel buffer management scheme 

appropriate for a resource constrained environment like the post disaster response network, 

where communication is enabled through small hand held devices with limited buffer sizes 

and transmission capabilities.  

We further prove that to curtail the negative impact of buffer overflow in such congested and 

constrained environments, buffer management policies should carefully select the messages to 

be discarded. For this purpose we have proposed a dynamic threshold size based selection 

mechanism where the difference between the arriving message size and the available buffer 

space is calculated to determine the size of the message to be dropped, incase of buffer 

overflow. Due to the adaptive nature of our proposed scheme, it adds randomness to the 

message selection process. This gives each message equal chance of being successfully 

delivered. Simulations show that our proposed scheme named as Size Aware Drop (SA-

Drop), significantly improves the performance of the basic flooding based DTN routing 

protocols by increasing their message delivery probability and by controlling routing 

overhead.  

When used with PRoPHET, our proposed policy outperforms Encounter Based Routing 

(EBR) a quota based protocol, specifically designed for post disaster response networks. This 

makes it suitable for enabling communication in a post disaster scenario.  
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Chapter 1  

INTRODUCTION  

The promise of pervasive communication has greatly influenced the infusion of wireless 

technology into our lives. Over the years the basic assumptions about network connectivity 

and applications have changed all together. In networks, where nodes are subject to frequent 

mobility and power outages, traditional postulations like end-to-end connectivity, short 

transmission delays or low data transfer error rates no longer hold. Such networks are termed 

as challenged networks and include a wide range of application scenarios. A Post Disaster 

Response Network (PDRN) is one such scenario where communication is critical for saving 

lives. However, enabling communication in the absence infrastructure is quite a challenge [1].  

In 2003 K. Fall et al [2] presented a Delay Tolerant Networking (DTN) architecture to ensure 

reliable message delivery in such challenged networks. The architecture works by applying a 

store-carry-and-forward paradigm for message dissemination. A node may store and carry the 

message for quite a long period of time until an appropriate forwarding opportunity arises. 

Although effective in successful message delivery in harsh environments, these networks 

have introduced a new set of challenges not common in the traditional TCP/IP networks.  

1.1. OVERVIEW OF DELAY TOLERANT NETWORKING (DTN) 

As mentioned earlier, the introduction of Delay tolerant Networking (DTN) [3] in our 

communications gives rise to many challenges not present in traditional IP networks. Some 

key issues that need to be addressed for Delay Tolerant Networks (DTNs) include: 

• Intermittent Connectivity- Nodes is such networks are subject to frequent failures due to 

their deployment in adverse surroundings. This causes the network to be frequently 

disconnected leaving the communications interrupted. Furthermore heterogeneous 

structures comprising of different underlying protocols and applications also contribute to 

this intermittent connectivity which is not so common in an IP network. 

• Network Partitioning- Geographical displacement, weak signal strength or other such 

limiting factors, eventually lead to non existence of end-to-end connectivity between the 

source and the destination. These are referred to as network partitions which are quite 

common in DTNs. 
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• High Error Rates-As mentioned previously, elevated mobility and weak signal strength 

produce aggravating circumstances like short connectivity that lead to a high link-error 

rate in such networks. In such a scenario end-to-end reliability is quite difficult to 

achieve. 

• Long & Variable Delays-The intermittent connectivity causes long and unpredictable 

delays. Data usually has to be stored for a long time if no path directly exits between the 

source and the destination node. That is why these networks are termed as “Delay 

Tolerant”. Depending on the mobility of the nodes and their consequent connectivity 

within the network, these delays can last for hours or even days. 

• Asymmetric Data Rates- Elapse time between request and response in DTNs may be 

hours rather than milliseconds due to its intermittent nature. Furthermore heterogeneous 

device capabilities make communication between two nodes mainly asymmetric in such 

networks.  

The DTN architecture solves most of these problems by introducing an abstraction layer in 

between the transport layer and the application layer, called the bundle layer [4] as shown in 

Figure 1.1. The objective of this overlay architecture is to route data from the source to the 

destination reliably without making any assumptions about the underlying networks. The 

bundle layer achieves this end-to-end delivery of messages through custodian transfer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.1: DTN Network Layer Architecture 

DTN architecture recommends the use of a minimal conversational model due to 

unpredictable and short contact duration.  To achieve message delivery with minimum end-to-

end transactions the bundle layer uses large self-contained messages called bundles. Bundles 
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are message aggregates and can contain anything from a message fragments to several 

messages. DTN architecture does not define any particular length of these bundles neither 

does it put any upper or lower limits on their size. However the bundles are often 

considerably large. The reason being that due to unpredictable contact duration, a single 

message exchange is preferred to enable complete application interactions. As mentioned 

earlier, large bundle size is favorable in a store-carry-and-forward paradigm, however this 

adds new challenges for communication in resource constrained environments.  

The bundles are propagated through the network via custody transfer which provides per hop 

reliability. The transfer of a bundle over a single hop is carried out by using a suitable 

convergence layer (such as TCP or UDP). In order to limit the distribution of bundles in a 

network, an attribute called Time-To-Live (TTL) is used. It is the lifetime of a bundle after 

which it expires and is removed from the network. Bundles can be retransmitted either at the 

source node or at an intermediate node provided it has the custodian rights for that bundle.  

The destination node may generate an acknowledgment for the source, upon receiving a 

bundle. These acknowledgments can also be used as anti packets for deleting the bundles 

already transferred to their destinations. This helps in removing unnecessary traffic from the 

network, thus relieving occupied valuable resources.   

1.2. APPLICATIONS 

Delay Tolerant Networking is gaining popularity perhaps due to the nature of applications 

that it addresses. Although a few real-world DTN applications have been deployed so far, yet 

there are some promising environments which can benefit from it. Some examples are as 

follows: 

1.2.1. Remote Area Networks 

Many remote regions in underdeveloped countries suffer from unavailability of Internet and 

other communication connectivity, even in this day and age. Present day technologies like 

wireless or satellite communications are often too expensive to install and maintain. In such 

environments, the notion of using human or vehicle mobility to offer intermittent connectivity 

is an interesting approach. DakNet [5] project is one such example. Such a network is 

characterized by intermittent connectivity, sparse deployment of nodes, node mobility, high 

propagation delay, heterogeneous and asymmetric data rates, making it a perfect DTN 

environment. 

1.2.2. Military Battlefield Networks 
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Military communication networks [6] are essential to modern warfare; however these 

networks are also under constant stress due to enemy interference, destruction of critical 

nodes, or even something as simple as lack of line of sight to the receiving station. All these 

factors cause low transmission reliability. Data rates in such environments are relatively low. 

In such a setting, DTNs can deliver data services where standard radio frequency 

communications fail.  

1.2.3. Energy Constrained/Sparse Wireless Sensor Networks (WSNs) 

Wireless Sensor Networks (WSNs) is an emerging field in present day communication 

technologies.  It is usually applied in areas without basic communication infrastructure by 

deploying nodes equipped with sensors. These participatory nodes usually have limited 

power, memory, and processing capabilities. The networks themselves are of a large scale, 

with hundreds of nodes per network. In most cases mobile nodes are used to collect and 

exchange sensor data which is then sent to a sink node within range. ZebraNet [7] is one such 

example. The key characteristics of these networks are power conservation, sparse 

deployment, low and asymmetric data rates. 

1.2.4. Inter Planetary Networks (IPNs) 

Inter Planetary Networks (IPNs) [8] are subject to high latencies due to predictable 

interruptions caused by planetary dynamics, or due to low earth orbiting satellites that 

periodically orbit each day. Limited visibility causes low transmission reliability and data 

rates are low and asymmetric.  Planetary-routes can be calculated and satellite encounters are 

scheduled or predictable. DTNs enable data transmission and delivery while the planet or 

receiving object is within range or line of sight.  

1.2.5. Post Disaster Response Networks (PDRNs) 

Disasters take place and dissolve quickly, but their consequences are usually difficult to 

overcome. There may be a difference between developed and undeveloped countries, but in 

both cases preinstalled infrastructure can become unusable under similar influences. Rapid 

and coordinated first responses after disasters are essential to limit the number of casualties.   

In the wake of recent catastrophic events over the past decade, where earthquakes, tsunamis 

and terrorist attacks have marked the world with their impacts, the need for resilient 

communication paradigms became vivid. Post Disaster Response Networks (PDRNs) [9] are 

usually set up when customary communication infrastructure is suddenly unavailable. In such 

a scenario communication usually relies on wireless ad hoc networks. People carrying 
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wireless hand held devices and moving on foot or in vehicles actively participate in 

facilitating communications. The basic aim of these networks is to provide rapid and easily 

deployable communication infrastructure for police and paramedics, as well as other first 

responders and civilians in the areas. 

Besides the general challenges outlined earlier, most real life deployments like post disaster 

response networks are characterized by some particular challenges of their own. These 

include: 

• Dynamic Topology- Network topology is highly dynamic as changes in node position are 

fast. Civilians are moving towards safety while responders are oscillating between 

disaster area and medical camps. Node population is also varying. At points of interest 

like disaster area or refugee camps, nodes tend to form clusters. Although node speeds are 

usually fast in wake of a disaster however obstacles and damaged infrastructure may 

cause unexpected stops or detours. Due to limited connectivity, topology information 

between nodes cannot be updated in due time. This means that the majority of routing 

decisions must be determined locally or based on historic information. 

• Heterogeneity of Devices- Nodes participating in a post disaster response network differ 

in terms of their levels of storage and energy resources as well as communication 

capabilities. Most civilians use hand held devices like smart phones. While responders 

may be equipped with other devices. Different interfaces like Bluetooth or Wi-Fi with 

asymmetric data rates and transmission ranges participate during communication. A DTN 

routing algorithm must be tuned in order to provide required level of communication in 

such environments. 

• Congestion – In a particular scenario of a disaster there exist chances of traffic congestion 

and bottlenecks in the network due to excessive message generation. This contention is 

mostly unavoidable as panic stricken victims are generating redundant messages while 

responders are trying to coordinate the rescue and relief operations. Another vital reason 

for this excessive message generation is the volunteer activities contributing to situational 

awareness. This gives rise to the need of message differentiation and congestion control 

mechanisms.  

• Resource Constraints – When hand held wireless devices are at play then conserving 

resources is a challenge. Due to the intermittent connectivity and node mobility contact 

window or link duration varies across a wide range of values. Usually it is short lived. 

Similarly buffer sizes are limited as well. Energy is a very valuable resource in wake of 

power outages. While designing DTN routing protocols, it is important to keep these 

constraints in mind so that efficient use of these resources is made possible.  
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1.3. TAXONOMY OF DTN ROUTING PROTOCOLS 

With all the challenges outlined in the previous section it appears that routing is the most 

demanding issue within a DTN [10]. Many limitations have to be taken into consideration for 

successful message dissemination in such networks. Traditional network routing protocols fail 

in these environments mostly due to the absence of instantaneous end-to-end paths. Instead 

DTN routing protocols carry messages in their buffers and propagate them to other nodes 

until they finally reach their destination. Based on their routing strategies DTN routing 

protocols can be divided into two main classes i.e. Forwarding-based protocols and 

Replication-based protocols.  

1.3.1. Forwarding Based Protocols 

Forwarding based protocols [11], [12] are single copy protocols which keep only one replica 

of a message in the network and try to forward that towards its destination. Simple forwarding 

means that, instead of copying the message to be transmitted to the new custodian and 

keeping one copy for itself, a node will delete the original copy from its own buffers as soon 

as transmission has been completed correctly. The unique copy of message is forwarded 

along a single path. Hence forwarding based protocols rely on intelligent path selection for 

optimal message delivery.  

1.3.2. Replication Based Protocols 

Replication based protocols are usually multi copy protocols that forward more than one 

copies into the network to increase the probability of successful message delivery. Based on 

the number of replicas created, there exists a trade-off between the resource usage and 

probability of successful message delivery. These protocols can further be divided into two 

classes i.e. Flooding based protocols and Quota based protocols.  

1.3.2.1  Flooding Based Protocols 

In simple terms flooding based protocols try to send a copy of each message to as many nodes 

as possible. Therefore in most routing protocols the number of allowed copies of any given 

message is reliant on the number of nodes in the network. We can further classify flooding 

based schemes broadly into Single copy flooding and Multi copy flooding. 

a) Single Copy Flooding 

Direct Delivery [13] and First Contact [13] are examples of single copy flooding based 

protocols. Both these protocols maintain one copy for each message. Direct Delivery routing 
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operates simply by the source node keeping its messages in its buffer until it encounter the 

destination nodes. In First Contact a message is forwarded along a single path by selecting the 

next hop randomly from available links. If connections do not exist the nodes waits and 

transmit the message to first available contact. Single copy flooding schemes incur the least 

amount of overhead ratio but fail to produce the enhanced message delivery ratios. The reason 

lies in the fact that with only a single copy being routed in a network prone to failures and 

losses, the reliability of successfully of a message is very little. 

b) Multi Copy Flooding 

Single copy flooding schemes minimize the number of transmissions thus consuming lesser 

bandwidth, buffer space and energy. However these schemes fail to achieve considerable 

delivery ratio especially in a congested environment. Moreover a single failure increases the 

probability of permanent message loss. Keeping these limitations in view researchers suggest 

multi copy flooding schemes where chances of message delivery are enhanced by flooding 

more than one copies of a message into the network. As the DTN protocols evolved and 

realistic assumptions about the resources and mobility started being taken into consideration, 

flooding strategies started seeing a transition from greedy flooding to controlled flooding. 

• Greedy Flooding-The simplest version of flooding is performed in a “greedy” manner. 

Messages are flooded through the network. Each host stores a list of messages that it is 

sending or has received. This list of messages is then sent to all nodes that come in 

contact with this node, any previously unseen messages are then transmitted. Epidemic 

Routing [14] represents this extreme end of the flooding family. It attempts to send 

multiple copies of each message over multiple paths in the network. This approach is 

highly robust due to the fact that in case of a single node failure other nodes are sure to 

have a copy of the message. Additionally, Epidemic delivers each message with high 

probability in minimum amount of time. The reason is that it propagates message replicas 

over multiple paths instead of one optimal path. However in order to achieve this high 

message delivery ratio, Epidemic is highly resource consuming and incurs high routing 

overhead. 

• Controlled Flooding-Earlier assumptions of a DTN included purely random and 

autonomous movements of the mobile nodes. However soon it was realized that in most 

realistic scenarios there is certain patterned node movement as well i.e. some nodes are 

better in contact to the popular destinations than the others. This gives rise to the idea of 

intelligent carrier selection. Probabilistic Routing Protocol using History of Encounters 

and Transitivity (PRoPHET) [15] is an example of controlled flooding routing protocol 

which forwards the message to a node by utilizing its encounter history and transitivity. A 
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metric called Delivery Predictability (DP) is maintained at each node for a known 

destination. Delivery Predictability is the predicted probability of any node to 

successfully deliver the message to its destination. Whenever a source node sends a 

message PRoPHET selects a subset of nodes in the neighborhood to forward the message 

to based upon their DP ranking. Due to its controlled flooding strategy, PRoPHET has 

higher delivery probability with much lower routing overhead than Epidemic. The idea of 

intelligently forwarding message replicas to only those nodes whose degree of centrality 

is better than the others not only improves delivery ratios but also reduces routing 

overhead. Still being a flooding based protocol, it can be resource consuming in certain 

scenarios.  

1.3.2.2.  Quota Based Protocols 

Replication based routing protocols are termed as quota based protocols when the maximum 

number of copies of a message is independent of the number of nodes in the network. By 

design, quota based protocols bound the number of replicas of a message. This is to reduce 

the routing overhead incurred by flooding based schemes. Initially this limit on the number of 

replicas of a message was non-adaptive giving less room for further optimization. However, 

recently the idea of adaptive upper bound is gaining prominence which is resulting in better 

performance than its non-adaptive counterparts.  

a) Non-Adaptive Limitation 

Spray and Wait [16], a quota based protocol makes use of replication by predetermining the 

number of copies in a static non-adaptive way. This algorithm has two phases: the spray 

phase, which involves the source node distributing the copies to encountered nodes; and the 

wait phase, in which the nodes that are carrying the message copies follow the Direct 

Delivery method of routing on behalf of the source node. 

A variant of Spray and Wait is called Binary Spray and Wait [16] in which a node with a 

number of copies of a message hands over half of its copies to the encountering node which 

has no copies of that particular message. This process is repeated again and again until the 

node is left with only a single message which is then directly delivered to the destination only. 

Another variation of Spray and Wait is Spray and Focus [17] in which similar spray phase as 

that of original Spray and Wait algorithm, is followed by a focus phase. However unlike 

Spray and Wait, in the focus phase a message is forwarded to different intermediate relay 

nodes, in order to help maximize a utility function according to a given forwarding criterion 

based on elapse time between two encounters. 
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b) Adaptive Limitation 

Encounter-Based Routing (EBR) [18] is another example of quota based replication protocol. 

However it applies an adaptive bound on the number of allowable replications of a message. 

In this protocol a node records its encounter rates with its neighbors. It then intelligently 

decides the number of replicas of a message to transfer during a contact opportunity. The 

objective is to achieve high message delivery ratios with good latency performance, while 

maintaining low overheads. EBR aims to lower the redundant transmissions incurred while 

trying to deliver a message, by reducing the total number of messages exchanged. EBR 

facilitates this by forwarding more copies of a message to nodes that are better connected. 

The connectivity of a node is calculated as an exponentially weighted moving average of a 

node's windowed degree of centrality. 

Unlike static fixed upper bound quota set by Spray and Wait during the message creation 

time, EBR dynamically sets bounds on the basis of node encounter value. This results in 

delivering a better performance. 

 

Figure 1.2: Taxonomy of DTN Routing Protocols 
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1.4. PROTOCOL PERFORMANCE AND RESOURCE CONSUMPTION 

TRADEOFF 

As mentioned earlier real DTNs are often subject to severe resource constraints. Transmission 

bandwidth and contact duration is often limited due to the low data rates and excessive node 

mobility. In addition, applications involving hand held devices often use small battery-

powered nodes which easily run out of energy and memory capacity. Most of all due to store 

carry and forward paradigm, buffer and storage constraints are the worst type.  

Single copy forwarding schemes and single copy flooding schemes both attain delivery with 

minimum expenditure of resources. However these strategies reduce the network throughput 

in terms of message delivery ratio and raise its delivery delay whereas the objective is to 

maximize the network throughput. On the other hand, multi copy flooding based routing 

schemes maximize the network throughput by maximizing the message delivery ratio and 

minimizing message delivery delay but acquire additional network resources.  

Initially designed flooding based schemes such as Epidemic are resource greedy with 

assumptions of unlimited bandwidth and buffer availability. Later on research emphasized the 

fact that in most of the real life applications such assumptions are not reasonable. Sharp 

performance degradation is observed when resource constraints are considered [19].  

In order to achieve performance optimization with less routing overhead, the DTN research 

community came up with the idea of quota based replication. Several methods have been 

proposed in this regard such as in [20] the source makes n copies in the first phase. Each of 

these copies will try for a direct delivery then. Thus this algorithm can be viewed as a multi 

copy, two-hop scheme. The Spray and Wait and its variant Spray and Focus are other 

modifications of the same scheme that bound the number of copies in the network. By using 

fixed numbers of duplicate messages, these schemes effectively limit network resource 

consumption and thus attain better overhead performance than flooding based routing 

schemes. However, tuning the parameters in these schemes is challenging. Moreover, quota 

based protocols still have performance problem due to the fact that each message is delivered 

and transferred in the same and fixed amount of replicas, which would cause unwanted results 

like redundancy or insufficiency.  

Another problem with initial DTN protocols is that these do not take the difference of node 

delivery capability into account, and simply consider that every node has the same capability 

to deliver data to the destination. However, in practice there are obvious differences between 

the delivery capabilities of nodes in a network. This gives rise to the idea of controlled 
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flooding where intelligent selection of relay nodes is done. PRoPHET is one such scheme 

which utilizes a node’s contact history to make this selection. By elaborately adapting the 

number of duplicates for every data message and computing the message delivery probability 

so that data messages are forwarded to nodes with higher delivery capability, these protocols 

can achieve high network performance with low transmission overhead cost. Encounter Based 

Routing (EBR) is another example of such optimization where quota based routing is 

combined with probabilistic routing to increase overall network throughput. However most 

history based protocols have to maintain large tables for these contact histories or have to 

compute complex probabilities.  

Another technique to conserve resources in a flooding approach is to embed additional 

information to the message so that the number of copies can be limited. Network coding [21], 

[22] and erasure coding [23], [24] are two such popular methods. In network coding decoding 

algorithm is embedded into the coded message blocks while erasure coding embeds 

redundancy into the message blocks. These schemes however, have most of the limitations of 

flooding based schemes and are not suitable of scenarios like a post disaster response 

networks. These are beyond the scope of this thesis. 

Recent research considers more realistic resource assumptions while designing protocols e.g. 

resource aware protocols and context aware protocols like RAPID [25] and ORWAR [26] are 

examples of such protocols where optimization with minimum overhead is achieved through 

realistic assumptions of resources available. However most of these utility based protocols are 

in their infancy and have certain implementation issues in realistic environments. For instance 

RAPID requires the estimation of remaining life time of a message whereas in ORWAR, 

replication depends on estimation of contact widow between two nodes, both these 

parameters are difficult to estimate in real life applications.  

Table 1.1 shows the existing replication based DTN routing protocols and their assumption on 

availability of buffer and bandwidth; both being either limited or unlimited. 

Table 1.1: DTN Routing Protocols Resource Assumptions 

DTN ROUTING 
PROTOCOLS 

RESOURCE AVAILABILITY ASSUMPTIONS 
BANDWIDTH BUFFER 

Epidemic [14] Unlimited Unlimited 
Spray and Wait [16] Unlimited Unlimited 

PRoPHET [15] Unlimited Limited 
EBR [18] Unlimited Limited 

RAPID [25] Limited Limited 
ORWAR [26] Limited Limited 
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1.5. THESIS OBJECTIVES 

Each DTN routing protocol has its advantages and disadvantages, it is however the scenario at 

hand that determines its applicability. In order to understand the design issues related to DTN 

routing in a particular scenario, this thesis focuses on a particular application of post disaster 

response networks. For a post disaster response network, high success rate together with 

efficient usage of the network resources is critical to successfully carry out the rescue and 

relief operations. Keeping these objectives in view we aim at determining the most 

appropriate DTN routing approach for providing maximum utilization of communication 

resources in this scenario. 

Forwarding based approaches, as mentioned earlier, although less consuming, are limited in 

their effectiveness for a post disaster response network. When a single copy of a message 

exists in the network, a single route break is sufficient to cause a delivery to fail. Same is the 

case with single copy flooding based protocols. Therefore these approaches are not suitable 

for providing desirable results in a post disaster response network.  

Greedy flooding (e.g. Epidemic) may be able to achieve high message delivery probability 

and minimum latency; however such schemes incur a great overhead which is not suitable for 

resource constrained environments like post disaster response networks. Similarly a non-

adaptive quota based protocol like Spray and Wait might incur less overhead but its 

performance in terms of delivery might not be sufficient for such a scenario. However such 

schemes can be utilized as good baseline for performance evaluation. 

Resource-Aware and Context-Aware routing protocols (e.g. RAPID and ORWAR) can be a 

good choice for routing in a post disaster scenario; however there are certain implementation 

issues which hamper their wide spread deployment. RAPID requires computation of more 

sophisticated and desired metrics such as worst-case delivery delay and packet delivery ratio 

at every transfer opportunity to justify the resources used. On the other hand in ORWAR the 

delivery of number of copies depends upon evaluation of the contact window between two 

nodes, which in a real world scenarios is quite difficult to estimate due to uncertainty of 

node’s transmission range due to obstacles and interference.  

Controlled flooding (e.g. PRoPHET) and adaptive quota-based protocols (e.g. EBR) are good 

choices for routing in such environments, as they achieve good delivery ratio with controlled 

overhead. PRoPHET is known to have delivered better results in most scenarios where 

mobility exhibits certain patterns. EBR has the advantage over others as it was specifically 

designed for a disaster scenario. The important question that arises here is that, can PRoPHET 
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maintain its superior message delivery probability with overhead ratio comparable to that of 

EBR in a constrained environment like a post disaster response network. 

Recent studies suggest the importance of efficient buffer management to achieve these 

desired objectives. As mentioned earlier, in a constrained environment, frequent node buffer 

overflows can degrade performance of flooding based schemes due to excessive message 

loss/drop. In such a scenario buffer management schemes are expected to minimize the 

negative impact of buffer overflow by controlling redundant message drop. Hence the 

objective of this research is to propose, analyze, and evaluate efficient buffer management 

policies for achieving performance optimization of flooding based DTN routing schemes 

without increasing routing overhead.  

The research outcomes include a detailed literature review of existing schemes, their 

classification and performance evaluation. It also includes design and analysis of an 

intelligent and efficient buffer management policy Size Aware Drop (SA-Drop) which is 

proposed specifically for resource constrained DTNs like post disaster response networks. 

The policy as we show, when applied to popular flooding based DTN protocols optimizes 

their performance with overhead comparable to that of quota based protocols.  

1.6. THESIS CONTRIBUTIONS 

The contributions of this thesis are threefold. 

The first contribution of this research is to identify the peculiar characteristics of a post 

disaster response network. To our best knowledge very less work is available in literature that 

outlines the distinct features and requirements of a disaster response network. 

The second contribution is to study the effects of buffer management policies on the 

performance of popular flooding based DTN protocols in terms of message delivery ratio and 

routing overhead in highly constrained environments. We analyze their performance in two 

different scenarios with two different mobility models i.e. Random Waypoint and Event 

Driven, Role Based Disaster Mobility Model and compare them with quota based protocols. 

The most important contribution of this research is to determine that in case of highly 

constrained environments with limited buffer space and excessive message generation, size of 

a message is an appropriate discarding criterion. Based on this we propose an efficient buffer 

management scheme called Size Aware Drop (SA-Drop).  



 
 

CHAPTER 1: INTRODUCTION Page 14 
 

Simulation results determine that our proposed scheme Size Aware Drop (SA-Drop) not only 

increases the message delivery ratio but also improves the routing overhead significantly  

when both bandwidth and buffer space are constrained as in case of a disaster scenario. 

1.7. THESIS ORGANIZATION 

The thesis has been distributed as follows; Chapter 1 gives an introduction of DTN and its 

applications alongwith the taxonomy of its routing protocols. It highlights the delivery 

probability and resource consumption tradeoff of these schemes and their applicability in a 

particular scenario of a disaster. It also gives a brief introduction to the objectives of this 

study. Chapter 2 explains the importance of buffer management in achieving performance 

optimization of DTN protocols. It also gives the taxonomy of already existing buffer 

management policies and their limitations based on which we have derived our research 

problem statement. Chapter 3 describes our proposed solution, the methodology used and the 

algorithm designed. It also explains the simulation setup and implementations. Chapter 4 

outlines the results of our simulations and their analysis. Finally Chapter 5 presents the 

conclusion and future research directions. 
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Chapter 2  

LITERATURE REVIEW 

In order to optimize the performance of resource consuming DTN protocols we must fully 

understand these resource constraints and their impact. The DTN environment suffers from 

scarcity of resources, for instance limited bandwidth, buffer space and energy. Due to these 

limitations the routing procedures turn out to be even more of a challenge. In a DTN 

framework, message transmissions occur only when nodes come in contact of each other. The 

node mobility limits the duration of contacts between nodes. The contact duration of the 

nodes in turn limits the amount of messages that can be transmitted. In basic flooding based 

protocols (e.g. Epidemic and PRoPHET etc., the contact duration is assumed to be long 

enough to transmit all messages a node has. But this is not always true because of limited 

bandwidth. It implies that it may not be possible for a node to transmit all messages it has 

during the short available period of contact. Therefore it becomes necessary for the node to 

choose the messages to be transmitted during the period of contact. 

Similar is the impact of buffer size on the performance of DTN protocols. In DTNs, to cope 

up with long disconnections, messages are usually buffered for a long period of time. This 

implies that at certain point the buffer capacity of a node will be reached. Therefore decision 

has to be made by the nodes to choose the messages to be dropped in favour of new ones. 

Again most protocols like Epidemic work with the assumption of availability of infinite 

buffer. But this is not the case in reality as the buffer size available at each node is considered 

to be limited. Redundant message drop incase of buffer overflow significantly degrades 

performance of most protocols.  

Recent advances in application based routing designs and realistic resource assumptions have 

shifted the interest of the research community towards designing efficient resource 

management schemes besides efficient routing ones. This gives a whole new perspective to 

the concept of protocol performance optimization. This diverts latest research interest towards 

buffer management. Buffer management is a fundamental technology which controls the 

assignment of buffer resources. It allows message differentiation according to certain 

priorities or criterions. An efficient and intelligent buffer management policy is required at 

each contact, to decide which messages should be dropped when buffer reaches its full 

capacity and which messages should be transmitted first when bandwidth is limited, 

independent of the routing strategy being used.  
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2.1. BUFFER MANAGEMENT IN DTNs 

The combination of long-term storage and message replication imposes a high storage and 

bandwidth overhead. This gives rise to scheduling and buffer management problems in a 

resource constrained DTN. Figure 2.1 describes basic buffer management architecture at a 

DTN router. Upon arrival an incoming message is classified according to the criterion 

implemented by that router and then stored in its buffer. At a contact opportunity, the 

scheduler decides the order by which messages should be transmitted as contact durations are 

limited. Incase of buffer overflow, which messages should be discarded is decided by the 

drop module which uses buffer status and incoming message size. In other words scheduling 

strategies govern the order in which the messages are passed incase of bandwidth and contact 

constraints. On the other hand, buffer management policies decide which messages are 

deleted first in case of congestion. 

 

 

 

 

 

 

 

 

 

Figure 2.1: DTN Buffer Management Architecture 
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In normal conditions the drop occurs when message finds destination or its Time-To-Live 

(TTL) expires. However when buffers frequently become full, messages can be dropped 

before their lifetime expires. In our thesis we also consider the scenarios when a node needs 

to store new messages and it runs out of buffer space thus causing a state of congestion in the 

network. 

The main causes of congestion in opportunistic networks are: 

• Retransmission of messages that are either travelling in the network or have already been 

successfully delivered.  

• Retransmission of messages that have been dropped before arriving at their destination 

resulting in bandwidth wastage.  

• Discarding fragments of messages while they are on the way to the destination. Such 

messages are then discarded by the receiver as they will not reassemble. 

• Increased overhead due to control traffic injected into the network to increase chances of 

successful message delivery. 

In addition, such networks suffer from contention under a high traffic load. The resulting 

redundant and blind message drops significantly degrade performance throughput of such 

networks. In such scenarios carefully designed buffer management policies significantly 

affect the performance of routing protocols. An efficient buffer management policy aims at 

minimizing the negative impact of this drop. 

2.2. TAXONOMY OF EXISTING BUFFER MANAGEMENT POLICIES 

For increasing the delivery probability in a DTN, it is critical to drop such messages upon a 

full buffer which are the least likely to be delivered to the final destination. However due to 

the random topology of a DTN, it might be impossible to determine that. As alternatives, 

several buffer management schemes have been proposed which consider various message 

attributes in order to select the appropriate messages to drop. These existing buffer 

management policies can be broadly divided into two categories: Policies without network 

wide knowledge and Policies with network wide knowledge.  

Recently there is a shift of interest towards designing efficient buffer management schemes. 

New attributes are being exploited for making the most appropriate selection. Hybrid schemes 

are also being tested where more than one attribute are being considered. However most of 

these new schemes are variants of the schemes mentioned below. Therefore we focus our 

research to the basic criterions involved in message selection. 
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2.2.1. Policies without Network Wide Knowledge 

Some buffer management polices only depend on local information about messages (e.g. 

message arrival time, Time-To-Live (TTL), and size etc), to decide how to manage the 

messages in the buffer. These policies do not take network wide information into account. 

The main advantage of these schemes is that they are mostly independent of the routing 

strategy being applied underneath and hence can be used with a variety of protocols. Some 

popular examples are as follows: 

2.2.1.1.  Drop Front (DF) 

Drop Front (DF) policy drops messages from the head of the queue. It handles the message 

queue in a FIFO (First In, First Out) order based on the message receive time. The message 

that is first to get into the queue is the first message to be discarded when the buffer 

overflows. This policy can result in satisfactory performance as it allows maximum stay time 

of messages in the buffer however it requires maximum end to end connectivity which is not 

much common in DTNs. 

2.2.1.2.  Drop Last (DL) 

Like Drop Front (DF), Drop Last (DL) also uses message arriving order as criteria to drop 

messages. The newly received message is simply removed first from the tail of the queue. In 

other words the message with the minimum arrival time in the queue will be selected to drop. 

In this scheme the probability of dropping the source messages is extremely high. Whereas 

according to [28] giving priority to source messages achieves better delivery probability. 

2.2.1.3.  Drop Random (DR) 

In this strategy, when node buffer overflows the router randomly drops the messages from the 

queue. It simply drops the messages by chance which means that messages would be 

arbitrarily deleted when the buffer overflows. Hence all messages have equal deletion 

priority. Such a scheme is simple but it performs poorly in a highly congested and 

disconnected network. Furthermore it increases redundant message drop which is not a 

desirable outcome in DTNs. 

2.2.1.4.  Drop Youngest (DY) 

It drops the recently received message that is the message with the longest remaining life time 

is deleted first. The basic idea is that such messages have consumed the least amount of 

network resources at that time and dropping such messages will cause the least overhead 
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ratio. However source messages are more likely to be dropped in this scheme which 

significantly effects delivery probability. 

2.2.1.5.  Drop Oldest (DOA) 

According to this scheme [30] the message with the longest stay time in buffer will be 

dropped. The basic idea is that the message with the longest time in the buffer has less 

probability to be forwarded to other nodes or it has already been delivered. 

2.2.1.6.  Evict Shortest Life Time First (SHLI) 

As mentioned earlier each message has a lifetime which specifies the time till it is meaningful 

to its application. After this time period is over, the message is no longer useful and should be 

deleted from the network. According to [28], this policy drops messages with short remaining 

life time first since they will soon be dropped anyway. SHLI increases delivery probability of 

the message however it also increases message drop ratio.  

2.2.1.7.  Drop Largest (DLA) 

Drop Largest (DLA) [31] is a recently proposed popular drop policy which utilizes the size of 

the message as an attribute to select messages to drop upon a full buffer. This scheme selects 

only the large sized messages residing in the buffer to be dropped incase of buffer overflow. 

This gives small sized messages more chance to be forwarded. The mentioned scheme aims at 

controlling unnecessary message drops thus it significantly reduce overhead and raise 

delivery probability thus consequently increasing network throughput to a much greater 

extent. Another advantage of this scheme is its ability to accommodate a large number of 

incoming messages with only fewer drops.  

2.2.2. Policies with Network Wide Knowledge 

These buffer management polices require some or complete knowledge about the network 

(e.g. number of nodes in the network, number of copies of message, meeting rate between two 

nodes etc.), to make their message discarding decision. Such policies can be further divided 

into two types based on the extent of their network information requirements. These are: 

Policies with complete network knowledge and Policies with partial network knowledge.  

2.2.2.1.  Policies with Complete Network Knowledge  

Based on the network-wide information several buffer management methods have been 

proposed to enhance the network performance. Some of them are utility-based schemes, 
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which use the complete information related to the whole network to derive a per-utility value 

of a message for a certain routing metric (e.g., end-to-end delay, delivery rate) and manage 

messages based on that utility.  

These schemes mostly produce optimal results; however acquiring timely and reliable 

network information is a challenge. This limits the applicability of these schemes. Some 

popular schemes that fall into this category are mentioned below. 

a) RAPID’s Utility Based Drop  

RAPID or Resource Allocation Protocol for Incidental DTN routing [25] implements a buffer 

management scheme that considers network wide information. RAPID applies a heuristic 

approach which locally optimizes the marginal utility (i.e., the expected delay per message). 

Per message utility is the expected input of a message to the given routing metric. For 

example, the metric for minimizing delay is measured by adding the delay of all messages. As 

a result, this utility is the expected delay of the message.  

In order to derive the respective message utilities, RAPID floods information about all of its 

copies, into the network. However this propagated information may be obsolete because of 

the intermittent nature of DTNs. RAPID is only a sub-optimal policy in a number of ways and 

can not provide the optimal network performance. 

b) Global Knowledge Based Drop (GBD) 

An optimal buffer management strategy is presented in [27] that manages messages in the 

node’s buffer based on global knowledge about the network. It uses statistical learning to 

derive per-message utility based on node’s contact history. It can be adjusted to achieve either 

of the two goals i.e. to minimize the average delivery delay or to maximize the average 

delivery rate. Nevertheless, it runs efficiently only when the mobility patterns of the nodes are 

deterministic, the transfer bandwidth is infinite and the message size is identical. These 

conditions are impractical in realistic network. Furthermore GBD is based on global 

knowledge about the state of the network which is difficult to acquire, hence GBD is difficult 

to implement. 

c) History Based Drop (HBD) 

As mentioned earlier acquiring global knowledge is difficult making GBD difficult to 

implement, thus, a deployable variant of GBD was suggested in [27] called the History Based 

Drop (HBD). It uses local knowledge to estimate global values. The new utilities are based on 

estimates of the number of nodes that have seen the message and those whom have a copy of 
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it. Being a variant of GBD, it too has unrealistic assumptions about the state of the network 

like deterministic node mobility, unlimited bandwidth and same message size. This limits the 

practical implementation of this approach severely. 

2.2.2.2.  Policies with Partial Network Knowledge 

As mentioned in the previous section policies using complete network knowledge may 

produce optimal results but are difficult to implement. Therefore many buffer management 

policies are designed to improve certain metrics of message delivery based on partial network 

information (e.g., the number of hops, the meeting frequency between pair nodes etc), that is 

correlated with the messages.  

a) Evict Most Forwarded First (MOFO) 

Evict Most Forwarded First (MOFO) [28] as the name suggests attempts to enhance the 

successful dissemination of messages through the network by discarding the message that has 

been forwarded the maximum number of times. This enables messages with a lower hop 

count to travel further within the network. 

In order to maximize the delivery ratio of messages, each node keeps track of the number of 

times each message has been forwarded to some other node. The message that has been 

forwarded the largest number of times is the first to be dropped. It is considered that such a 

message is liable to have the largest number of copies in the network. Dropping such 

messages gives messages with fewer copies more chances of being forwarded at a contact 

opportunity. MOFO increases delivery probability but it usually incurs a large overhead. 

b) Evict Most Probable First (MOPR) 

In this scheme [28] each message is assigned a Forwarding Predictability (FP) value, initially 

assigned to 0. After each forward the FP value is modified. In case of buffer overflow, the 

message that is dropped first is the one with the maximum FP value. It performs well but 

requires complex knowledge to estimate the predictability value. 

c) Evict Least Probable First (LEPR) 

On contrary to MOPR, Evict Least Probable First (LEPR) [28] policy drops the messages for 

which it has the lowest FP value. The idea is that a node is less liable to successfully deliver 

such a message which has a low Forwarding Predictability (FP) value. It performs well in 

terms of hop count, buffer time average and message drop ratio but like MOPR requires 

complex knowledge to calculate the FP value.  
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Figure 2.2: Taxonomy of Existing Buffer Management Schemes   
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Based on its application environment, a buffer management scheme is designed to achieve 

either of the two key objectives that is maximizing message delivery ratio or minimizing 

message delivery delay. Some of the schemes designed, focus on achieving the desired goals 

but incur a greater overhead. Such schemes are often not desirable in a resource constrained 

environment. In order to avoid such a case, a secondary objective is gaining popularity that is 

to control this overhead by reducing redundant message drops. N-Drop [32] and Message 

Drop Control (MDC) [33] are examples of such schemes. Another scheme [34] suggests that 

to reduce the negative effect of message drop, the message with the largest number of copies 

should be dropped. Both N-Drop and MDC, emphasize on the use of a threshold value to 

control redundant message drop. However both these schemes do not explain how to establish 

this threshold. Similarly determining the actual number of replicas of any message in a 

network is rather difficult unless predefined. This shows that there is still a lot of room for 

improvement and research in this field. 

2.3. LIMITATIONS OF EXISTING BUFFER MANAGEMENT 

POLICIES 

Till recently an essential issue mostly disregarded by the DTN researchers was the influence 

of message drop incase of buffer overflow. This is the reason why traditional buffer 

management schemes like Drop Front (DF), Drop Last (DL) and Drop Random (DR), do not 

consider any particular message attribute to make the message drop selection. Instead these 

schemes rely on the order in which messages arrived or are residing in the buffer. As simple 

as they may be, such schemes according to [28] are not suitable for DTNs. This may be due to 

their transition from fully connected networks to intermittently connected ones. That is why 

their performance is better in frequently connected networks rather than frequently 

disconnected ones. 

Buffer management schemes like GBD and HBD utilize complete network-wide information 

which enables them to outperform the ones based on local information. By deriving the per 

message utility, these schemes can either increase the average delivery rate or decrease the 

delivery delay. However, most of these utility-based policies are heuristic and are not 

designed to provide optimal results in the opportunistic networks. Moreover topology of the 

opportunistic networks usually changes frequently. This makes acquiring complete network-

wide information in time quite difficult. Moreover some schemes [35] use in-band control 

channels to exchange large metadata between nodes which incurs both delay and network 

overhead. 
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Other schemes merely take partial network-wide information into account instead of relying 

on deriving utility function to decide the drop policies in order to improve the performance of 

networks. Most of these schemes like Evict Most Forwarded First (MOFO) use distance in 

terms of hop count or number of forwards to determine appropriate messages to drop. 

Allowing messages to cover maximum distance before discarding them incurs much 

overhead. Other policies like [36] use acknowledgment or ACK messages or anti packets to 

discard copies of messages already delivered. Again flooding ACKs in the network not only 

incurs congestion but routing overhead as well. 

Policies with local information or no network-wide information may not perform as well as 

those with partial or complete network wide information but they are easy to implement and 

incur less routing overhead. However selecting the most appropriate attribute for dropping 

messages is a challenging issue. Time based drop policies is a popular choice in this group. 

Policies like Drop Oldest (DOA), Drop Youngest (DY) and Evict shortest Life Time First 

(SHLI), are all examples of time based schemes. However a common problem with these 

schemes is the requirement for some sort of time synchronization between nodes in the 

network in order to determine the exact life times of the messages. However, this is a much 

common DTN problem.  

Some policies use message priority as a criterion for selection of messages to be dropped. 

These are examples of policies with no network-wide knowledge as the message 

classification is limited to a node’s vicinity. Messages have a high or low priority only at the 

source or transmitting node. Priority is not considered amongst inter node messages. 

Prioritized Epidemic (PREP) [37] is an example of such a scheme. However setting priorities 

amongst messages is still ambiguous. 

Recently size is being considered as a selection criterion for message discard [38], [39], [40]. 

It does not require extra information transfer or complex computation. The key advantage of a 

size based schemes is the control on redundant message drop. Such schemes not only increase 

message delivery probability but reduce overhead making them best suited for constrained 

environments. Drop Largest (DLA) is a recently proposed popular size based drop policy 

which discards the message with the largest size. Effective as it may be this scheme is a bit 

naive especially when an arbitrarily large bundle size is favored in DTNs. Till now very little 

work has been done in this area making it interesting to observe its effects in various 

scenarios. 

2.4. PROBLEM STATEMENT 
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Problems addressed in this thesis are two fold.  

• As mentioned earlier, the performance of flooding based protocols severely degrades 

under congestion and buffer constraints due to frequent buffer overflows. It is however 

believed that with proper buffer management, the adverse effects of buffer overflow on 

message delivery probability can be alleviated. However little work has been done to 

substantiate this claim. In this thesis we aim to study the positive effects of buffer 

management on the performance of flooding based schemes both in terms of delivery 

probability and overhead ratio. For this purpose we have set up two scenarios using two 

different mobility models and two different flooding based schemes (i.e. Epidemic and 

PRoPHET). The resultant performance is evaluated and compared with that of two 

popular quota based schemes (i.e. Spray and Wait and EBR) to exhibit that with proper 

buffer management, flooding based schemes can outperform quota based protocols in 

terms of message delivery probability with comparable routing overhead. This makes 

them suitable for application in most resource constrained and challenging environments 

like a post disaster response network.  

• It is also mentioned earlier that policies with complete or partial network-wide 

information tend to outperform those with local or no network-wide knowledge. However 

we believe that this may not be the case in every scenario. The key is to identify the 

appropriate criterion for message selection according to the requirements of the scenario. 

We believe that message size is a suitable criterion in case of a bandwidth and storage 

constrained environment, like a post disaster response network. We intend to evaluate and 

compare its performance with its counterparts in two different constrained environments 

including a disaster scenario. For this purpose we propose an effective and efficient 

scheme called Size Aware Drop (SA-Drop) which aims at performance optimization 

without incurring undue overhead. The objective is to intelligently select messages and to 

control redundant message drop as random or naive message drop causes excessive 

retransmissions and increases communication overhead. Simulation results confirm our 

hypothesis and thus we conclude that with adequate buffer management schemes, smaller 

buffers can be used without negative impact on the message delivery ratio and routing 

overhead, resulting in significant performance optimization of otherwise resource 

consuming flooding based protocols. 
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Chapter 3  

SIZE AWARE DROP (SA-DROP) 

As discussed in the previous sections, whenever the size of the arriving message is greater 

than the available space in the buffer, some messages are discarded to make room for it. 

However, each message drop is accompanied by wastage of valuable resources that the 

message has already consumed and further resource consumption due to unnecessary 

retransmissions. To minimize this negative impact of buffer overflow, it is important to 

control redundant message drop. For achieving this purpose, various schemes apply various 

criteria to determine which messages should be dropped. Time based schemes use message 

Time-To-Live (TTL) to make this decision, assuming that a message with short TTL will 

soon be removed from the network so dropping such a message is the most logical choice. 

Other schemes consider distance travelled by the message in the network. Such schemes 

assume that a message passed through a larger number of hops is either likely to have any one 

of its copies already delivered or is less to likely to reach to destination at all. 

Recently J.Whitbeck et al in [41] determine that given a certain maximum delay and node 

mobility, bundle size has a major impact on the delivery probability. We believe that size can 

be a useful attribute for message drop selection especially in resource constrained 

environments. Dropping messages based on their size can avoid unnecessary drops and 

consequently reduce excessive retransmissions which contribute to small delivery probability 

and greater overhead due to increased resource consumption. 

Size based drop policies are a recent development [40], [38], [39]. Q. Ayub et al in [42] 

suggest that smaller messages cover maximum distance in one time slot than larger ones. Due 

to bandwidth constraints, large sized messages may not be completely transferred during a 

single contact. This may lead to partial transmissions and fragmentation, both leading to 

increased resource consumption and overhead ratio. S. Rashid et al in [43] suggest 

optimization of Epidemic by proposing a scheduling and dropping scheme based on this idea. 

Smaller messages are selected first for transmission while larger messages are dropped first 

incase of buffer overflow. As mentioned in the previous chapters, due to frequent 

disconnections and excessive node mobility in DTN architecture, the bundles are often 

significantly large to enable complete application interactions with a single message 

exchange. Therefore always selecting larger messages to drop is not favorable for their 

chances of successful delivery.  
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3.1. PROPOSED BUFFER MANAGEMENT POLICY 

In this thesis we propose a size based policy which determines a threshold size in order to 

select a message to be discarded in case of buffer overflow. The basic rationale behind this 

scheme is that by determining the exact buffer space requirement we can easily select a 

message of appropriate size to be discarded. By doing so, we can control excessive message 

drop and avoid biasness towards any particular sized message.  

Our proposed scheme Size Aware Drop (SA-Drop) implies a simple but effective mechanism 

to determine this threshold size. If the size of the incoming message is greater than the 

available buffer space, our scheme follows few simple steps. It first calculates the difference 

between the incoming message size and the available buffer space. By doing so it estimates a 

threshold value which it considers as the threshold size. Now any message residing in the 

buffer of the receiving node, which is equal to or greater than this threshold size is selected 

for the drop. Figure 3.1 shows the model for estimation of threshold size for message 

selection. 

 

 
 

 

 

 

 
 

 

 

 

 

Figure 3.1: Proposed Model for Estimation of Threshold Size for Message Drop  
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3.1.1. METHODOLOGY 

The purpose of any buffer management policy is to drop a message when a new message 

arrives at the node and existing storage is unable to carry it. We consider a snapshot of two 

intermittently connected mobile nodes A, B having M buffered messages; BSA represents the 

size of node A’s buffer while BSB represents that of Node B’s buffer size. For ease of 

comparison we assume both buffer sizes to be equal to 2 MB. According to [4] each bundle 

carries information like the Message Identity (Mid), Message Size (MS), Message Time-To-

Live (TTL) and Destination (D). Additional information can also be augmented in the header 

like the Number of Forwards (NoF). Nodes usually maintain information like Message 

Arrival Time (AT) of the messages in their buffers. Nodes exchange messages according to 

some scheduling policy whenever they are with in transmission range of each other. For ease 

of understanding we will consider First In First Out (FIFO) as our scheduling policy. 

In order to explain the methodology of our scheme, we assume a network model where the 

two nodes encounter each other with the rate following a Poisson distribution. This rate λ is 

defined as the average number of encounters in time T. Mathematically this rate of encounter 

can be described as λ = 1/E [U] where E [U] is the average meeting time. Similar assumption 

has been made in [27].  

Table 3.1: Message Summary Table at Node A and B 

Node Mid MS NoF AT RTTL 
 
 

A 

  20 15s 60min 
  12 18s 32min 
  16 30s 120min 
  1 12s 40min 
  10 25s 220min 
  18 23s 240min 

 
 

B 

  27 20s 32min 
  23 10s 24min 
  12 24s 120min 
  11 19s 360min 
  14 13s 150min 
  21 32s 110min 

We now consider some popular dropping mechanisms in order to understand their working in 

comparison to our own. Let us assume that both nodes A and B maintain the Table 3.1. We 

selected Drop Oldest (DOA), Drop Largest (DLA), Evict Shortest Life Time First (SHLI) and 

Evict Most Forwarded First (MOFO) schemes to explain their behavior in case of buffer 

overflow. As mentioned earlier when Node A comes in contact with Node B, Node A starts 

transferring messages to Node B in FIFO order. This assumption is subject to already known 
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assumptions like source messages and the messages destined for B will be delivered first and 

messages already present in B will not be again transferred to it. However we have assumed 

unique messages to simplify our scenario. So the first message to be transferred to B will be 

the one that arrived first (AT = 12s) at A which is M4 of size 800 KB. Buffer space available 

at Node B is 100 KB which is insufficient to accommodate the incoming message M4. Node 

B has to discard some messages to make room for it. 

Incase of Drop Oldest (DOA), the message that Node B will discard first will be the one that 

arrived the earliest that is M8 of size 100 KB (AT = 10s). The message drop sequence at Node 

B will be {M8 (AT=10s), M11 (AT=13s), M10 (AT=19s)}.  

 

Next we will observe the mechanism of Evict Most Forwarded First (MOFO). According to 

MOFO, the message that Node B will discard first will be the one that is forwarded for the 

most number of times that is M7 as it was forwarded 27 times.  At Node B, the drop sequence 

of messages will be {M7 (NoF=27), M8 (NoF=23), M12 (NoF=21), M11 (NoF=14), M9 

(NoF=12)}.  

 

Evict Shortest Life Time First (SHLI) discards messages with shortest remaining Time-To-

Live (TTL). TTL is updated each time a message is forwarded by subtracting the time it spent 

at the node. Hop count is increased with every forward while TTL is decreased. A message 

with TTL equal or less than zero is removed from the network automatically. Hence SHLI 

makes use of the fact that a message nearing its TTL should not affect the network throughput 

much. The message drop sequence at Node B with SHLI will be {M8 (RTTL=24min), M7 

(RTTL=32min), M12 (RTTL=110min), M9 (RTTL=120min)}. 

 

Accordingly we observe the dropping sequence of Drop Largest (DLA). With DLA Node B 

will drop the largest message in its buffer. The message dropped at Node B with DLA will be 

{M10 (Ms=750 KB)}. It is clearly evident that number of drops is less than the rest. However 

dropping the largest messages every time the buffer overflows, results in their costly 

retransmission with chances of being dropped again soon enough.  
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Finally we consider the working of our proposed scheme Size Aware Drop (SA-Drop) which 

considers already available buffer size alongwith the size of the incoming message. The 

available buffer space at Node B is 100 KB and the size of the incoming message is 800 KB. 

SA-Drop first computes the threshold size by calculating the difference between the arriving 

message size and the free buffer space.  

 = (2 MB – 1.9 MB) = 100 KB 

 = (800 KB – 100 KB) = 700 KB 

Afterwards, our proposed algorithm scans the Node B’s buffer and drops all those messages 

which are equal to or greater than the Threshold Size (Ts) that is 700KB. Hence the message 

selected for drop at Node B will be {M9 (Ms = 700 KB)} and not the largest that is M10 (Ms 

= 750).  

 

Although the message drop in our scheme appears to be equivalent to that of DLA policy. 

However it does not hold the same biasness towards the larger sized messages in every case. 

Provided the difference between the free buffer space and the incoming message size is lesser 

like 300 KB then the message threshold value will be 300 KB. This gives fair chance to all 

sized messages to reach to destination. As an additional optimization, if all buffered messages 

are not lying within the Threshold Size (Ts) then message with the largest size will be 

dropped. 

3.1.2. ALGORITHM 

In this section we will present the basic algorithms constituting our entire drop policy SA-

Drop. Two main functions called the makeRoomForMessage() and getThresholdMessage() 

are used in order to implement our proposed drop policy. makeRoomForMessage() is already 

included in the ActiveRouter() class in the ONE simulator which calls upon the function for 

the implemented drop policy. However we have made certain modifications in this function 

which include the estimation of Threshold Size (Ts) whose value is then passed on to the 

getThresholdMessage() function. Hence first we present the algorithm for modified 

makeRoomForMessage() function followed by the algorithm of our contributed 
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getThresholdMessage() function. The notations used and their respective descriptions are 

given in the Table 3.2. 

Table 3.2: Table of Notations and Their Description 

NOTATIONS DESCRIPTION 
MS Message Size 
Mid Message Identity 
Mai 
MBi 
i =(1,2,3,……………n) 

Messages in Node A’s Buffer  
Messages in Node B’s Buffer 
Message Number 

FBs 
Ts 
TM 

Free Buffer Size 
Threshold Size 
Threshold Message 

DMs Dropped Message Size 
LM Largest Message 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.2: Algorithm 1 for makeRoomForMessage() Function 

The key benefit of using our proposed method is that each node can use local information to 

decide which message to discard without appending any extra information to the header like 

Number of Forwards (NoF). Moreover it helps to avoid ambiguities as in time based drop 

policies due to non synchronization of clocks at all the nodes in the network. Our scheme can 

be used with any of the known DTN routing protocols thus making it suitable for a number of 

applications. Our proposed mechanism operates by using only local information and thus is 

easy to implement. Simulations confirm that it is effective across the network. 

Algorithm 1 makeRoomForMessage( ) 
 
Let A and B be nodes 
Let MAi and MBi be messages held by nodes A and B where (i=1,2,3,……..,n) 
On contact node A sends MAi to node B in FIFO order 
At node B: 
Begin 
 Ms ← MAi.Size() 
 if ( Ms > FBs) then 
  Ts ← Ms – FBs 
  while ( Ms > FBs) 
  do 
   TM ← getThresholdMessage(Ts) 
   deleteMessage(TM.id) 
   DMs ← TM.Size() 
   FBs ← FBs+DMs 
  end while  
 end if 
end 
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Figure 3.3: Algorithm 2 for getThresholdMessage() Function 

3.1.3. SIMULATION SETUP 

In order to confirm the effectiveness of our proposed scheme SA-Drop, we carry out a 

number of simulations.  

3.1.3.1.  Simulation Tool 

Studies confirm that the performance of DTN routing protocols is highly dependent on the 

characteristics and mobility of the nodes involved. Relatively a new paradigm, performance 

evaluation of DTN protocols requires apt simulation tools. The Opportunistic Networking 

Environment (ONE) [44] simulator is exclusively designed for this purpose. It is a discrete, 

Java based, event simulator which offers a wide set of capabilities in a single framework for 

simulating DTN protocols in numerous scenarios. For installation and system requirements 

refer to [44]. The key features of the ONE simulator that make it suitable for DTN evaluation 

and analysis are as follows: 

• It already includes some popular DTN protocols and offers a rather simple framework for 

users to implement their own protocols by extending the ActiveRouter()class. There are 

six popular DTN routing protocols included in this simulator i.e. 1) Direct Delivery, 2) 

First Contact, 3) Epidemic, 4) Spray-And-Wait, 5) PRoPHET and 6) MaxProp [45].  

• It allows users to easily create different scenarios based upon different movement models. 

The simulator has several popularly used movement models varying from synthetic 

Algorithm 2 getThresholdMessage( ) 
 
Let A and B be nodes 
Let MAi and MBi be messages held by nodes A and B where (i=1,2,3,……..,n) 
On contact node A sends MAi to node B in FIFO order 
Incase of buffer congestion at node B: 
Find messages to drop: 
Begin 
 for( i →1 to n) do 
  if( MBi.Size()>=Ts) then 
   return MBi.id 
  else 
   return LMBi.id 
  end if 
 end for 
end 
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models to real movement traces, integrated in it. Three synthetic movement models are 

included in the movement module which are 1) Random movement, 2) Map-constrained 

random movement, and 3) Human behavior based movement. Movement data can be also 

be imported from an external source.  

• The ONE simulator utilizes the concept of location, communication range and connection 

throughput. The movement models provide the node position data that is used for 

determining whether any two nodes can communicate or exchange messages. This 

information can also be exported to external simulators (e.g. NS-2 and DTNSim-2) or it 

can be imported from them too. 

• The ONE simulator provides interactive visualization (both in batch and GUI mode) and 

post-processing tools support for the protocol performance evaluation. This makes the 

ONE simulator an integral part of a real-world DTN test bed. The basic idea is that 

protocols can be evaluated under different settings which can be tuned to match the 

projected scenario as realistically as possible. A configuration file enables the users to 

design their own specific scenario settings. The ONE simulator reads the configuration 

file and generates an output trace file or report file. A number of report file options give 

users the ease to analyze various performance effects of parameter variations. 

• The ONE simulator is designed in a modular structure to allow easy extension of various 

functionalities with the help of well-defined interfaces. 

• Functionalities of other simulators such as NS-2 [46] or DTNSim-2 [47] can also be used 

in combination with the ONE simulator. Mobility and connectivity data can be exported 

to other programs by the report module. Similarly, the results of routing simulations can 

be imported back into the ONE by using the external scripts. Real-world traces can be 

incorporated into the ONE simulator from other mobility generators with ease. The 

reason for this is that it has flexible input and output interfaces. It can also generate 

mobility traces for other simulators to process.  

At the present, the ONE simulator is able to create numerous simulation scenarios for DTN 

performance analyses. However it is a relatively young tool and is constantly evolving. The 

present versions of the ONE simulator have certain limitations as well.  

• The simulation time is increased in finite steps. If a transfer is complete or there is a 

disconnection due to node mobility, the simulator assumes that the event has happened 

either before or after one complete time step. 

• The size of the network and some specific mobility models can affect the processing 

capabilities of the system and influence simulation speed indirectly. This limits the size of 

the scenarios that can be simulated by using the ONE simulator. However we can still 
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simulate a scenario with one thousand nodes at a speed of over 10 simulated seconds per 

second on a regular machine. 

• At the moment the ONE simulator does not take into consideration the lower layer (e.g. 

physical and MAC) support. Due of this, in many scenarios, the ONE can generate 

contact times which can be too optimistic. 

Despite these certain limitations this simulator is still widely being used by the DTN research 

community for the design and evaluation of DTN routing protocols. Therefore we will also be 

opting for this simulator for our thesis. Figure 3.4 gives a schematic overview of the ONE 

simulation environment. 

 

 

Figure 3.4: Schematic Overview of the ONE Simulation Environment [48]  

3.1.3.2.  Mobility Models 

To evaluate the performance of our proposed scheme SA-Drop we carried out our simulations 

in two different scenarios. One with a synthetic mobility model called Random Waypoint 

Mobility Model [49] and the other is a circumstantial model which simulates the nodes 

movement patterns in a disaster scenario, called the Event Driven, Role Based Disaster 

Mobility Model [50].  

a) Random Waypoint Mobility Model (RWP) 
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Our first scenario uses Random Waypoint (RWP) Mobility Model. It is a popular synthetic 

model used to mimic pedestrian movements. Scenarios with different network densities or 

velocities can easily be generated in it. Initially a node stays for a certain period of time at a 

single location and afterwards chooses a random destination with a uniform speed. After 

arriving at the destination, the node pauses for a specific time period before starting the 

process again. Figure 3.5 shows the placement of nodes in Random Waypoint at the start and 

the end of the simulation. Like most synthetic models Random Waypoint Mobility Model 

assumes independent and identically random movements of the mobile nodes. This results in 

a memory less property. We use this model to establish base line results. 

  

Figure 3.5: RWP: Snapshot of Node Placement at 0 and 3600 seconds  

b) Event Driven, Role Based Disaster Mobility Model 

The drawback of using a traditional synthetic mobility model like RWP is that such models 

do not capture the actual node movement as in real life applications. The independent and 

identical movement assumption of such models is too simple and straightforward. Their 

performance predictions may react differently in actual deployments. Real mobility traces like 

CRAWDAD [51] are also available however these do not fit for our specific scenario of a 

disaster. For this purpose we required a near realistic synthetic model that simulated 

movement of nodes in a disaster. Very little work has been done in this area and not many 

known disaster mobility models exist. We came across three well designed mobility models 

namely the Bonnmotion Disaster Mobility Model [52], Post Disaster Mobility Model [53] and 

Event Driven, Role Based Disaster Mobility Model [50]. After evaluating the strengths and 

weaknesses of all three of them, we decided to use the Event Driven, Role Based Disaster 

Mobility Model for our disaster scenario simulation. 
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One of the advantages of this model is that it captures the distinct movement patterns of roles 

in real life disaster scenario (i.e. civilians, ambulances and police cars). Each role reacts 

differently to an external event as is the usual case in a realistic scenario. The civilians are 

moving away from the disaster event area while ambulances and police cars approach it. 

Ambulances oscillate between the event area and the hospitals or relief centers while police 

cars stay at or patrol the disaster event area. Four hospitals are setup at the four corners of the 

simulation area. Their placement effects the movement of the mobile nodes. The basic 

advantage of this model is that it allows users to tune the disaster area as per desire. Users can 

adjust the number of civilians, the ambulances and the police cars. A snapshot of the node 

placement at the start and the end of the simulation in this model is shown in Figure 3.6. Four 

events of intensity 10000 to 20000 occur throughout the simulation which can be seen by the 

clustering of nodes. The damage radius is kept at 0.1 % of the intensity of the event while 

event horizon is 2% of its intensity as per the original model parameters.  

  

Figure 3.6: Disaster: Snapshot of Node Placement at 0 and 3600 seconds 

3.1.3.3.  Simulation Parameters  

As mentioned in the previous section we carry out simulations in two distinct scenarios. One 

represents a pure opportunistic environment where nodes move randomly, without any prior 

knowledge of the network. We use Random Waypoint Mobility Model to simulate such an 

environment. The second scenario mimics the movement of nodes in a disaster. We use Event 

Driven, Role Based Disaster Mobility Model for this scenario. As mentioned in the previous 

sections the ONE simulator allows users to tune a scenario by means of configuration files. 

Two configuration files were created, one for Random Waypoint scenario and the other for 

the disaster scenario. Some common parameters in both these configuration files are 

explained here. Three groups of nodes are deployed. The total number of nodes that are 

 
Event 

 
Hospital 
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considered for communication is 100. Since we are simulating a constrained environment 

hence buffer sizes are randomly chosen to be 3MB, 4MB and 5MB for each corresponding 

group in the RWP scenario while 2MB, 3MB and 4MB respectively for the disaster scenario. 

Message size is uniformly distributed between 100 KB and 1MB while message generation 

interval is kept at [15s, 25s] to simulate congestion. Message Time-To-Live (TTL) is kept 60 

minutes in both scenarios, which is equal to simulation run time. This is to ensure that all 

messages get equal priority to reach to destination. The simulation is run for 3600 seconds in 

both scenarios. 

a) Scenario 1: Random Waypoint Scenario 

In our first scenario we implement Random Waypoint Mobility Model. The network 

considered here has random behavior and no knowledge about the network is known a priori. 

Epidemic is the better choice of routing in such kind of networks. We compare performance 

of optimized Epidemic with Spray and Wait. This mobility model is already integrated in the 

ONE simulator as part of its synthetic mobility models. Table 3.3 gives simulation parameter 

for this scenario. 

Table 3.3: RWP: Table of Simulation Parameters 

PARAMETERS VALUES 
GROUP 1 GROUP 2 GROUP 3 

Number of nodes 10 40 50 
Movement Model Random Waypoint 
Buffer Sizes (MB) 3MB 4MB 5MB 
Group Interface Bluetooth 
Transmission Speed  250 kbps 
Transmission Range(m) 10m 
Nodes Speed(m/s) 0.5-1.5(m/s) 
Message Time-To-Live (TTL) 60 min 
Message Creation interval 15s-25s 
Message Sizes 100kB-1MB 
Area of simulation 1500mx1500m 

As mentioned earlier nodes are divided into three groups. However all groups simulate 

pedestrian movement where nodes are moving with speed of 0.5 m/s to 1.5 m/s. Number of 

nodes and buffer sizes are varying in each group. Group 1 comprises of 10 nodes with buffer 

size equal to 3MB. The remaining two groups comprise of 40 and 50 nodes respectively with 

buffer sizes equal to 4MB and 5MB respectively. The interface chosen for all groups is the 

Bluetooth interface with bandwidth equal to 250 kbps and transmission range of 10 m. Group 

wait time is 0 to 120 seconds. The simulation area is 1500 m x 1500 m. 

b) Scenario 2: Disaster Scenario 
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Our second scenario mimics that of a disaster one. As mentioned earlier we implemented a 

disaster mobility model called the Event Driven, Role Based Disaster Mobility Model. Table 

3.4 gives the simulation parameters for this scenario.  

Table 3.4: Disaster: Table of Simulation Parameters 

As mentioned earlier nodes are divided into three groups to simulate role based movement. 

Group 1 represents civilian movement and consists of 75 nodes. These nodes move with the 

speed of 1 m/s to 2 m/s are node movement in disaster is slightly faster. The interface chosen 

for this group is the Bluetooth interface with bandwidth equal to 250 kbps and transmission 

range of 10 m. Buffer size of Group 1 is kept small that is 2 MB. The movement of these 

nodes is slightly clustered around the event area and the hospitals as civilian mobility is 

somewhat restricted in a disaster scenario. These nodes are fleeing from the disaster area and 

moving towards the hospitals. 60% of civilians are randomly chosen as curious civilians. 

They stop at event horizons to look at the event. The remaining two groups simulate 

responders’ movements. One group represents ambulances and has 10 nodes. These nodes 

oscillate between hospitals and the event area. The other group consists of 15 nodes and 

represents police car movement. They visit the event area and the hospitals and even stay 

there for sometimes. The minimum speed of nodes in these groups is kept at 7 m/s while 

maximum speed is 10 m/s. The interface for these nodes is chosen to be Wi-Fi interface with 

bandwidth equal to 10 Mbps and transmission range is kept at 100 m. One of these groups is 

assigned an arbitrary buffer size of 3 MB while the other is assigned 4 MB to simulate a 

constrained environment. 

In this model, four events randomly occur. The first event occurs between 100 and 200 

seconds while the second event occurs between 125 and 225 seconds. Similarly the third 

event occurs between 150 and 250 seconds while the fourth and the final event occurs 

PARAMETERS VALUES 
GROUP 1 
(Civilians) 

GROUP 2 
(Ambulances) 

GROUP 3 
(Police) 

Number of nodes 75 10 15 
Movement Model Event Based, Role Driven Disaster Mobility 
Buffer Sizes (MB) 2MB 3MB 4MB 
Group Interface Bluetooth Wi-Fi Wi-Fi 
Transmission Speed  250 kbps 10 Mbps 10 Mbps 
Transmission Range(m) 10m 100m 100m 
Nodes Speed(m/s) 1-2(m/s) 7-10(m/s) 7-10(m/s) 
Message Time-To-Live (TTL) 60 mins 
Message Creation interval 15s-25s 
Message Sizes 100kB-1MB 
Area of simulation 3000mx3000m 
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between 175 and 275 seconds. After each event, a radio contact randomly occurs between 40 

to 80 seconds. This is simulated by four message generation events. The first event occurs at 

240s till 280s, the second event occurs at 265s till 305s, the third event occurs at 290s till 

330s and the final event occurs at 315s till 355s. This ensures uniform distribution of message 

generation throughout the simulations. The simulation area is kept at 3000 m x 3000 m. 

Since PRoPHet utilizes node’s contact history to determine a better relay, traces generated by 

this mobility model are better suited to fully evaluate this protocol’s capabilities. Therefore 

we map plain PRoPHET, Encounter Based Routing (EBR) and optimized PRoPHET with 

existing and our proposed buffer management policies in this mobility model.  

3.1.4. IMPLEMENTATIONS 

As mentioned earlier the ONE simulator comes with the implementation of six popular DTN 

protocols by default. Therefore we are utilizing Epidemic, PRoPHET and Spray and Wait 

implementations already incorporated in the ONE simulator. For class file source code of 

each refer to Appendix (ii). Moreover the default drop policy already implemented in the 

ActiveRouter() class is the Drop Oldest (DOA), hence we use it per se (Appendix (ii)). We 

However in order to complete our analysis we need to incorporate the following modules: 

• Encounter Based Routing (EBR) protocol. 

• Event Driven, Role Based Disaster Mobility Model. 

• Drop policies: 

o Drop Largest (DLA) 

o Drop Front (DF) 

o Evict Most Forwarded First (MOFO) 

o Evict Shortest Life Time First (SHLI) 

o Our proposed policy Size Aware Drop (SA-Drop) 

As mentioned earlier, Encounter Based Routing (EBR) protocol is developed by Sam Nelson 

et al in [18]. Its class file is available as user contributions at the ONE simulator home page. 

We downloaded it from there and added it to the routing module of the ONE simulator. Class 

file source code for EBR is available in Appendix (ii).  

Next we need to implement the Event Driven, Role Based Disaster Mobility Model again 

presented by Sam Nelson et al in [50]. The implementation of Event Driven, Role Based 

Disaster Mobility Model is a bit more complex. This model cannot be directly implemented in 

the ONE simulator; however its traces can be imported as part of ExternalMovement() class. 

The designers of this model have implemented it in Network Simulator-2 (NS-2). Two tools 
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are required as an extension to NS-2 in order to generate movement traces of this model. Both 

these tools are available at the home page of their developer.  

The first tool is a parameters file generator paramGen.cc that creates a properly formatted 

parameters file. This tool allows the user to customize settings by defining following 

parameters:  

• Size of the network,  

• Simulation runtime,  

• Number of civilians, ambulances and police.   

Following information is contained in the output parameters file: 

• Simulation area size and runtime 

• Objects and events coordinates 

• Speeds for the objects 

• Number of curious civilians 

• Parameters for Random Walk  

• Trigger and radio contact times for the events 

• Intensities of events to determine the event horizons and their damage zones 

Detailed usage for this tool is given in Appendix (i): 

Usage: ./paramGen > paramFile 

The second tool is the mobility trace generator disasterSimONE.cc. This tool accepts the 

parameters file generated by the first tool as input and runs the complete simulation.  

Detailed usage for this tool is also given in Appendix (i): 

Usage: disasterSimONE [-d] < paramFile > oneMobilityTrace 

A ONE simulator compatible mobility trace file called oneMobilityTrace is the output of this 

tool. This trace file is imported in the ONE Simulator by using the External Movement Model 

(refer to Appendix (i)). 

Usage:  

ExternalEvents.class= ExternalMovement 

ExternalMovement.file = oneMobilityTrace 

Group.movementModel=ExternalMovement 
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Finally we implement all the drop policies required for the comparison purposes including our 

own proposed policy SA-Drop. We implement the rest of the policies by overriding the 

original function for Drop Oldest (DOA) called getOldestMessage() in the ActiveRouter() 

class file. As the name suggests it uses getReceiveTime() function to return the oldest message 

with in the buffer.  

for (Message m : messages)  

{ 

 if (oldest.getReceiveTime() > m.getReceiveTime())  

 { 

  oldest = m; 

 } 

} 

return oldest; 

Following the same pattern we implement getLargestMessage() by using getSize() function 

for Drop Largest (DLA) policy. We implement getMaxForwardedMessage() by using 

getHopCount() for Evict Most Forwarded First (MOFO) policy. In original MOFO policy an 

extra bit is appended to the header which contains a variable called the Number of Forwards 

(NoF) of each message. At each hop the NoF is incremented. In our implementation we call 

upon the number of hops for which the message has been forwarded. The numbers of hops 

indicate the number of forwards. In Drop Front (DF) we do not make any comparisons and 

simply drop the first message returned from the buffer.  

Implementations for Evict Shortest Life Time First (SHLI) and our own policy SA-Drop are 

slightly more complicated. A function called getTtl() returns the Time-To-Live (TTL) of a 

message in the buffer. It is decremented at every forward. However to determine the 

remaining Time-To-Live (RTTL) of a message residing in a buffer at any instance, we have 

to subtract the time it spends in the buffer before it is dropped from its updated TTL. Since 

TTL value is given in minutes and simulation clock time values are given in seconds so we 

convert TTL value into seconds. We can convert receive time value into minutes as well to 

achieve similar results. Afterwards we can easily compare the RTTL values of all the 

messages in the buffer to determine which message to discard. 

RTTL = (getTtl()*60)-getReceiveTime() 

Finally we implement our own policy SA-Drop. In order to do so we override two functions 

that are makeRoomForMessage() which calls the dropping function when buffer at the 

receiving node is full and the function for selecting the message to drop. In 



 
 

CHAPTER 3: SIZE AWARE DROP (SA-DROP) Page 42 
 

makeRoomForMessage() function we determine the threshold value as described earlier in the 

algorithm section. This value is then passed as an extra parameter to the message selection 

function which is in our case called the getThresholdMessage(). In this function the sizes of 

buffered messages are compared with the threshold size and any message equal to or greater 

than that value is returned to be discarded.  

for (Message m : messages)  

{ 

if (m.getSize() >= thresholdsize) 

{  

 threshold = m; 

}  

} 

return threshold; 

For detailed source codes of all these drop policies refer to Appendix (ii). 
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Chapter 4  

RESULTS AND ANALYSIS 

In this chapter we discuss and analyze the results of our simulations described in the previous 

chapter. The primary goal of our evaluation is to demonstrate that with an appropriate buffer 

management scheme a flooding based routing protocol can maintain its high message delivery 

ratio, while incurring considerably low overhead. To demonstrate this, we first present the 

metrics used in our evaluation. In the next section we carry out comparative analysis of our 

proposed buffer management scheme i.e. Size Aware Drop (SA-Drop) with existing schemes. 

To demonstrate its effectiveness on the performance of flooding based protocols (e.g. 

Epidemic and PRoPHET), we simultaneously compare the results with that of popular 

existing quota based protocols (e.g. Spray and Wait and EBR) in similar scenarios. Finally we 

demonstrate the impact of congestion and buffer constraints on delivery probability and 

overhead ratio achieved by implementing various buffer management schemes including our 

own SA-Drop.  

4.1. EVALUATION METRICS 

In order to evaluate the performance of various buffer management strategies, six metrics 

have been chosen. Among these delivery probability and overhead ratio are our primary 

concerns. The rest are used to explain the optimization phenomenon of these two parameters. 

4.1.1. Delivery Probability 

Message delivery probability is one of the most important metrics for evaluation of DTNs 

because, in such networks, inability to deliver messages within an acceptable amount of time 

is fairly common. In other words, messages are subject to long delays and can easily be lost. 

Delivery probability can be defined as the percentage of the total number of messages 

generated within a given time period that are successfully delivered to the final destination. 

Basically it is the ratio of number of messages delivered over number of messages created. 

High probability means that more messages are successfully delivered to the destination. 

Once created, a message travels through the network trying to reach its destination. In order to 

do so it consumes valuable resources. Any failure or message loss can cause all these 

resources to go to waste, hence incurring more overhead. As successful delivery justifies 

resource consumption, the objective is to increase delivery probability. 
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4.1.2. Overhead Ratio 

One of the design goals of a DTN is to reduce the number of transmissions per message. The 

number of transmissions mainly depends on the routing strategy employed by the protocol. 

As a result some protocols transmit more messages than others. This excessive message 

transmission requires more computational and storage resources resulting in excessive energy 

and resource consumption. In other words overhead ratio determines the percentage of 

resources consumed to process the transmission and storage of a message. In case of buffer 

management policies, some target at achieving high delivery probability at the cost of 

producing high overhead. Such schemes are not efficient for most resource constrained 

practical DTN implementations. Objective of an efficient buffer management scheme is to 

minimize the value of this overhead ratio. Mathematically, it can be represented as: 

 

4.1.3. Buffer Time Average 

Delay Tolerant Networks (DTNs) are commonly characterized by long and variable delays. 

As a result these networks adopt a store-carry-and-forward paradigm to enable message 

dissemination and to ensure their successful delivery to their destinations. Consequently the 

delivery probability of a message highly depends upon the time it spends in the buffer of the 

intermediate node. Studies suggest that increase in the buffer time average guarantees the 

message transmission towards next hop which might be able to make progress towards 

destination. Hence the longer a message stays in the buffer, the greater its chances of being 

successfully delivered to the destination. The schemes that allow the messages to reside 

longer in the buffers result in better delivery probability. Buffer time average is basically the 

average time that messages stay in the buffer at each node and can be calculated as follows: 

 

4.1.4. Hop Count Average 

In opportunistic networks like DTNs, the delivery of a message is accomplished via multiple 

hops. On each hop the message consumes network resources such as bandwidth, buffer space 

and energy. Again the number of hops is mostly dependant on the routing strategy used yet 
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the objective of a buffer management scheme in a resource constrained environment is to 

maintain a smaller hop count average. The successful transmission of messages to their 

destination with minimum number of hops is considered an efficient use of network 

resources. Hop count is a variable carried in the header of the message and is incremented at 

every hop  

4.1.5. Messages Dropped 

Another key objective of any buffer management scheme is to control the number of 

messages dropped. Controlling message drop has two fold advantages; first the messages get 

more residing time in the buffer which enhances their delivery probability. Secondly, when a 

message is dropped, it is a waste of resources (i.e. bandwidth, buffer, and energy) which it has 

consumed during its mobility hence less drops avoids unnecessary resource wastage. 

4.1.6. Messages Relayed 

Messages relayed are the number of messages successfully forwarded by a node. On one hind 

successful message transmission is a sign of better bandwidth utilization as partial 

transmissions cause bandwidth wastage. However too many transmissions can exhaust 

resources as well. In this study messages relayed are considered as the replication required for 

successfully delivering a message to its destination. Therefore, we can say that number of 

transmissions gives the apparent consumption of resources in terms of buffer space, 

bandwidth and power. So lesser number of messages relayed is an objective. 

Another metric usually considered in DTNs is latency which refers to the various kinds of 

delays that are usually incurred in processing of network data. In DTNs latency represents the 

interval between the time a message is generated and the time it is received. Many DTN 

applications like Inter-Planetary Internets (IPNs) tolerate long waits. In a post disaster 

scenario, the element of emergency is important; however successful message delivery is 

more critical than quick dissemination. Further more in a disaster scenario network is 

comparatively small and localized and mobile agents are usually repetitive in their 

movements in and out of the network. Therefore the objective of our study is not to minimize 

latency but to maximize delivery. However we will demonstrate the effects of our scheme on 

latency as well.  

4.2. PROTOCOLS UNDER EVALUATION 

We have selected four protocols for the purpose of our evaluation. Two of these protocols are 

flooding based (i.e. Epidemic and PRoPHET). These protocols are known to achieve high 
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delivery ratios but incur relatively high overhead as well. Epidemic is usually used in a highly 

opportunistic environment where nodes are blind and autonomous (e.g. like Random 

WayPoint). As mentioned earlier its resource assumption is unlimited and therefore its 

performance degrades considerably in a resource constrained environment. With similar 

resource assumptions, Spray and Wait (SnW), a quota based protocol reduces this resource 

consumption by limiting the number of replicas. The objective is to optimize the performance 

of Epidemic protocol by employing efficient buffer management, so that it maintains its high 

delivery probability with overhead comparable to Spray and Wait. Epidemic routing protocol 

is repeatedly used as a baseline for evaluation in numerous studies.  

The second flooding based protocol used for performance evaluation is the Probabilistic 

Routing Protocol using History of Encounters and Transitivity (PRoPHET). As mentioned in 

earlier sections, PRoPHET is a controlled flooding based protocol where optimizing is 

achieved through intelligent selection of relay nodes. However due to its resource assumption, 

its performance also significantly degrades in a resource constrained environment. Unlike 

Epidemic it is usually used in scenarios where node movement is not entirely random neither 

completely deterministic but rather exhibit certain patterns like a more realistic disaster 

scenario. Again due to its resource consumption it incurs greater overhead to achieve high 

delivery probability. Encounter Based Routing (EBR), another quota based protocol is 

specifically designed for a disaster scenario. For fairness, we evaluate PRoPHET’s 

performance with buffer management in comparison to that of EBR’s performance in a 

disaster scenario.  

4.3. BUFFER MANAGEMENT SCHEMES UNDER EVALUATION 

As mentioned earlier studies suggest that drop policies have much greater effect on a 

protocol’s performance than forwarding policies. Therefore careful analysis of message 

discarding schemes is our primary research goal. To isolate the effect of drop policies, we use 

same forwarding schemes for all comparisons.  

In case of Epidemic, we implement its existing and proposed buffer management policies 

with First In First Out (FIFO) forwarding strategy to establish a fair comparison. In this 

scheme messages that arrived first are transmitted first. The buffer management schemes that 

are being evaluated for Epidemic are Drop Oldest (DOA) which drops message residing for 

the longest period of time in the buffer and Drop Largest (DLA) which discards message with 

the largest size, until enough space is available. Finally we implement our proposed drop 

policy i.e. Size Aware Drop (SA-Drop) which considers both the arriving message’s size and 

available buffer space to determine a threshold size for selecting a message to be dropped.  
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We implement PRoPHET with GRTR_Max forwarding scheme, where messages are 

transmitted in the decreasing order of remote node’s predictability. Two popular queuing 

policies of PRoPHET are selected for comparison. These include Evict Most Forwarded First 

(MOFO) which considers maximum number of forwards to discard a message from a node’s 

buffer. The second policy is the Evict Shortest Life Time First (SHLI) policy which discards a 

message with the minimum remaining Time-To-Live (TTL). Finally we implement our drop 

policy i.e. Size Aware Drop (SA-Drop).  

4.4. RESULTS AND ANALYSIS 

To demonstrate the effectiveness of our proposed drop policy Size Aware Drop (SA-Drop), 

we perform two groups of simulations on each of the two mobility models scenarios. First to 

illustrate its effectiveness against existing policies, we vary the message dropping strategies 

used with either type of flooding based protocol. Meanwhile their performance is 

simultaneously compared with that of a quota based protocol without any buffer management, 

in similar conditions. Following this comparative evaluation, we evaluate how existing 

policies and our proposed scheme SA-Drop react to two significant constraints that are 

bandwidth constraints due to varying message generation rate and buffer constraints due to 

varying buffer sizes.  Finally to show the impact of message size on each policy, we generate 

traffic of varying message sizes. The varying performance of each policy under similar 

conditions but varying message sizes justifies the use of message size as an important drop 

criteria. 

4.4.1. Scenario 1: Performance Evaluation in Random Waypoint Mobility Model 

We first evaluate the performance of our scheme SA-Drop against its popular existing 

counterparts (i.e. DOA and DLA) in the traditional Random Waypoint Mobility Model by 

using Epidemic as baseline. As mentioned earlier two groups of simulations are carried out; 

the first for comparative analysis with other policies and with quota based protocols and the 

second for performance analysis under constraints. 

4.4.1.1. Comparative Analysis 

In the first group of simulations, we compare the performance of Epidemic with our proposed 

SA-Drop policy and that of Epidemic with other popular buffer management policies and 

Spray and Wait. We determine the extent of optimization achieved in terms of both our 

primary performance metrics that are delivery probability and overhead ratio as well as others 

(e.g. buffer time average, hop count average, messages dropped etc). Similar metrics are used 

for the performance comparison with a quota based protocol (i.e. Spray and Wait). 
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As previously mentioned, two existing buffer management policies for Epidemic namely 

Drop Oldest (DOA) and Drop Largest (DLA) are used for comparison with our proposed Size 

Aware Drop (SA-Drop) policy. Figure 4.1 shows the affect of these schemes on the delivery 

probability. To demonstrate the effect of optimization achieved by intelligent buffer 

management, we have considered the performance of Epidemic with naive Drop Front (DF) 

also. It is seen that original Epidemic protocol (i.e. with DF) performs slightly better than 

Spray and Wait due to its flooding nature. It is however observed that by applying intelligent 

buffer management schemes (e.g. DOA, DLA and SA-Drop) the delivery probability is 

further enhanced. With DOA and DLA, Epidemic achieves 20% and 27% delivery probability 

enhancement respectfully than Spray and Wait. However Epidemic with SA-Drop achieves 

maximum performance optimization in a similar environment. Approximately 33% 

improvement in delivery probability is achieved. 

Another important optimization metric of this research is overhead ratio. As mentioned earlier 

the objective is to achieve maximum delivery probability with minimum overhead ratio. 

Quota based protocols like Spray and Wait reduce overhead by limiting the number of copies 

being flooded into the network. However we observe in Figure 4.2 that by applying suitable 

buffer management policies to a highly resource consuming flooding based protocol like 

Epidemic, its overhead can be significantly reduced. Epidemic with naive DF incurs 

maximum overhead. The main reason is its redundant and iterative message drop. It is clearly 

seen that by applying carefully designed buffer management schemes that intelligently select 

messages to be discarded reduce overhead ratio as well. DOA reduces this overhead by 18% 

however it is still significant when compared with Spray and Wait. DLA further reduces this 

overhead by 23%. However maximum reduction in overhead ratio incurred by Epidemic is 

achieved when SA-Drop is applied. The overhead ratio of Epidemic with DF is reduced by 

approximately 30% when it is implemented with SA-Drop making it comparable to that of 

Spray and Wait. 

In Figure 4.3, we observe the effect of existing policies and proposed Size Aware Drop (SA-

Drop) for Epidemic alongwith the effect of Spray and Wait on buffer time average. Spray and 

Wait protocol, as the name suggests stores messages for a slightly longer period of time after 

the spray phase, before further replication. This is to allow the first copies to reach destination 

and avoid unnecessary replication. Due to this reason the buffer time average of messages at 

each node is more than that of Epidemic. Epidemic with DOA policy also allows messages to 

reside for a longer period of time in the buffer thus achieving greater buffer time averages. 

Epidemic with DF, DLA and our proposed scheme SA-Drop, achieves relatively smaller 

buffer stay time averages. The reason for this is that DF iteratively drops messages while both 



 
 

CHAPTER 4: RESULTS AND ANALYSIS  Page 49 
 

size based schemes drop messages based on the requirements of buffer space. None of these 

schemes take time into consideration due to which relatively newer messages can be dropped 

as well. Thus as a result the overall buffer time average of messages is relatively smaller as 

compared to Spray and Wait and Epidemic with DOA. However in this scenario, against 

popular belief, buffer time average does not seem to have much effect on the delivery 

probability. 

In Figure 4.4 we analyze the influence of hop count average on the optimization of Epidemic 

protocol. As mentioned earlier it is believed that minimum value of hop count ensures less 

overhead. Although this claim holds true in the case of Spray and Wait which has the least 

hop count average and minimum overhead. However in case of Epidemic with buffer 

management schemes we observe varying results. Epidemic with DOA has the maximum hop 

count average and comparatively more overhead as well. However Epidemic with DF which 

incurred maximum overhead ratio appears to have comparatively less hop count average. 

Epidemic with DLA has the least hop count average amongst all buffer management schemes 

being analyzed including our proposed SA-Drop. Although Epidemic with SA-Drop produced 

least overhead ratio amongst all schemes its hop count average is slightly more than that of 

DF and DLA. Hence we can carefully state that although hop count average does influence 

the overhead ratio its impact is not that significant in some cases.  

As mentioned earlier, redundant message drop is another cause of increased overhead and 

prime objective of any buffer management scheme is to control the number of messages 

dropped. Figure 4.5 shows that message drop due to various buffer management schemes. It is 

seen that DF causes maximum number of messages to be dropped thus increasing overhead.  

The rest of the schemes (i.e. DOA, DLA and SA-Drop) reduce this message drop significantly 

consequently leading to reduced overhead ratio. This is due to selective behavior rather than 

blind drop of messages. However message drop due to our scheme SA-Drop is slightly 

greater than the other policies. This behavior is due to smaller simulation time, as the 

performance surely enhances after some time span. Overall Spray and Wait has least number 

of messages dropped which is again due to lesser number of initial copies of the message. 

Drop Largest (DLA) has the least message drop ratio among the other buffer management 

schemes. This could be due to the fact that it has a tendency to accommodate sudden increase 

in buffer requirement. A single drop can accommodate a number of consecutive new arrivals 

but again it is a bit unfair for the large sized messages.  

Figure 4.6 shows the effect of each scheme on number of messages relayed in order to 

achieve successful delivery. Spray and Wait again has the least amount of messages relayed 

while Epidemic alongwith its buffer management policies has a higher amount of relay. These 
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results are due to the nature of these protocols. It is however interesting to see that in our case 

even though message relay slightly increases yet it resulted in better delivery probability and 

lower overhead. The reason could be that excessive message relaying degrades performance 

in terms of overhead when message delivery is unsuccessful. Then all the resources consumed 

by the message are wasted. However if the message is successfully delivered to its destination 

then the resource consumption can be justified. Epidemic with DF has the lowest delivery 

probability with highest overhead ratio which may have resulted from its maximum number 

of message relaying. DOA has the least amount of messages relayed due to longer buffer time 

average of messages. DLA and SA-Drop closely follow behind. 

Figure 4.7 shows the delivery delay experienced by messages in each case. Spray and Wait 

exhibits the least delay followed by Epidemic with DOA policy while rest of the schemes 

focus on improving delivery probability rather than minimizing delay hence they show almost 

equal delay.  
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Figure 4.1: RWP: Comparison of Optimized Epidemic and SnW w.r.t Delivery Probability  

 

 

Figure 4.2: RWP: Comparison of Optimized Epidemic and SnW w.r.t Overhead Ratio 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

DF DOA DLA SA-Drop 

D
el

iv
er

y 
Pr

ob
ab

ili
ty

 

Drop Policies 

Impact of Drop Policies on Delivery Probability 

Epidemic 

SnW 

0 

10 

20 

30 

40 

50 

60 

70 

DF DOA DLA SA-Drop 

O
ve

rh
ea

d 
Ra

ti
o 

Drop Policies 

Impact of Drop Policies on Overhead Ratio 

Epidemic 

SnW 



 
 

CHAPTER 4: RESULTS AND ANALYSIS  Page 52 
 

  

Figure 4.3: RWP: Comparison of Optimized Epidemic and SnW w.r.t Buffer Time Average 

 

 

Figure 4.4: RWP: Comparison of Optimized Epidemic and SnW w.r.t Hop Count Average  
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Figure 4.5: RWP: Comparison of Optimized Epidemic and SnW w.r.t Messages Dropped  

 

 

Figure 4.6: RWP: Comparison of Optimized Epidemic and SnW w.r.t Messages Relayed 
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Figure 4.7: RWP: Comparison of Optimized Epidemic and SnW w.r.t Delivery Delay  

4.4.1.2. Performance Analysis  

In the second group of simulations, we evaluate the performance of our proposed scheme Size 

Aware Drop (SA-Drop) and the existing buffer management schemes by varying the rate of 

message generation and the size of buffers available. By varying these parameters, we 

determine their impact on delivery probability and overhead ratio incurred by these schemes. 

The results clearly show that our proposed scheme SA-Drop outperforms the rest of the 

popular buffer management schemes in terms of delivery probability and overhead ratio, in a 

highly constrained environment. Thus it proves the effectiveness of its appropriate selection 

mechanism and its efficient impact on the scarce network resources. We first present the 

impact of message generation rate on delivery probability and overhead ratio. The second is 

the impact of buffer sizes on both these performance parameters. The schemes chosen for 

comparison are Drop Oldest (DOA), Drop Largest (DLA) and our proposed scheme Size 

Aware Drop (SA-Drop) implemented with Epidemic protocol. 

Figure 4.8 demonstrates the impact of message generation rate on the delivery probability of 

various buffer management schemes for Epidemic in a Random Waypoint Mobility Model. It 

is clearly evident that delivery probability in all cases decreases with the increase in the 

number of messages that is in congestion. 
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Figure 4.8: RWP: Impact of Varying Message Generation Rate on Delivery Probability  

 

 

Figure 4.9: RWP: Impact of Varying Message Generation Rate on Overhead Ratio  
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Figure 4.10: RWP: Impact of Varying Buffer Sizes on Delivery Probability  

 

 

Figure 4.11: RWP: Impact of Varying Buffer Sizes on Overhead Ratio 
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Figure 4.12: RWP: Impact of Varying Message Sizes on Delivery Probability  

  

 

Figure 4.13: RWP: Impact of Varying Message Sizes on Overhead Ratio 
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Three message generation intervals are used to regulate the number of messages created. In 

the first interval that is [5s, 10s] a new message is created after every 5 to 10 seconds which 

simulates a highly congested environment with more number of messages being created in a 

shorter time span. 

Similarly a message is created in 10 to 15 seconds and 15 to 25 seconds in [10s, 15s] and 

[15s, 25s] intervals correspondingly. It is observed that both size based schemes (i.e. DLA 

and SA-Drop) outperform the time based scheme DOA in all three message generation rates 

supporting the fact that size is an appropriate message attribute for message discard in case of 

highly congested and constrained environments. Furthermore our scheme SA-Drop 

outperforms DLA in [10s, 15s] and [15s, 25s] scenarios while in extremely congested 

environment of [5s, 10s] DLA slightly improves delivery probability. The reason being its 

tendency to accommodate sudden fluctuations in buffer requirement since the maximum sized 

message drop may accommodate several incoming messages.  

Similarly in Figure 4.9, the impact of message generation rate on the resource consumption 

that is the overhead ratio is demonstrated. It is interesting to see that against our common 

expectation the overhead ratio in this scenario decreases in a more congested environment 

whereas popular belief suggests that it should have been increasing. A logical explanation for 

this behavior may lie in the scenario at hand. Due to highly opportunistic nature of the 

Random Waypoint mobility model successful message delivery is highly dependant on the 

number of messages traveling in the network. Increasing message generation rate ensures 

greater number of successful deliveries which consequently lead to justified resource 

consumption thus lesser overhead. In a less congested environment message loss reduces 

delivery ratio and consequently increases resource wastage leading to more overhead. 

However in any case less overhead is an objective which is clearly achieved by our proposed 

policy SA-Drop. Resource consumption incase of DOA is maximum in all the cases while 

SA-Drop outperforms DLA in all scenarios except the highly congested one where it is 

approximately equivalent to that of DLA. This again confirms the authenticity of our claim 

that size is the appropriate attribute for use in any congested environment.  

In Figure 4.10, we observe the impact of varying buffer sizes of the three groups of nodes 

participating in the communication. In the original scenario one group has buffer size equal to 

3M while the other two groups have buffer sizes equal to 4M and 5M. We observe that by 

increasing each group’s buffer sizes the delivery probability of messages increases for each 

buffer management scheme. However an interesting effect is that our proposed scheme Size 

Aware Drop (SA-Drop) maintains its message delivery probability in all three environments 

whereas the performance of both DOA and DLA degrade with increased buffer constraints. 
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Our scheme outperforms others in more constrained scenarios while the rest catch up to it in a 

less congested one. This effect supports our claim that our scheme is more suitable for 

constrained environments which in most real life applications is a more appropriate 

assumption. 

Similarly in Figure 4.11 we observe that in a less constrained environment that is with greater 

buffer sizes all schemes impose almost comparable overhead. However as the environment 

becomes more constrained the other schemes start incurring more overhead due to excessive 

resource consumption whereas Size Aware Drop (SA-Drop) maintains minimum overhead 

ratio. This further confirms the utility of our proposed scheme in such scenarios. 

Figure 4.12 and 4.13 show the impact of various sized messages on the two metrics that are 

being evaluated. We observe that message delivery probability is increased when message 

sizes are small. However with smaller messages number of transmissions also increases thus 

increasing the routing overhead. When message sizes are increased routing overhead 

decreases due lesser transmissions however message delivery probability decreases as 

expected. Hence it shows that policies that favor either extreme of the message sizes only 

focus on optimizing any one of the two metrics. Our scheme allows all messages equal 

opportunities to be delivered. This randomness results in better overall optimization of 

message delivery probability and routing overhead ratio. 

We extracted some general observations regarding the performance of these buffer 

management schemes from our experimentation. It is observed that naive schemes like DF 

and time based schemes like DOA do not perform well in constrained environments. This is 

due to the fact that smaller sized buffers are subject to overflow sooner than larger sized ones. 

On the other hand both size based schemes i.e. DLA and SA-Drop significantly increase the 

delivery likelihood of messages while incurring only minimum amount of overhead. This 

makes them an appropriate choice for employment in most realistic DTNs. However, since it 

is relatively a novel supposition, only a little amount of work has been done in this area. This 

area has much potential for future research work. 

4.4.2. Scenario 2: Performance Evaluation in Disaster  

The behavior of Epidemic protocol with and without buffer management is observed in 

Random Waypoint Mobility Model which is commonly used to determine the performance 

base line. However realistic assumptions, regarding the mobility of nodes gives more realistic 

behavioral insights about the performance of any scheme. For this purpose we have created 

another scenario using a synthetic mobility model with more realistic mobility patterns called 

the Event Driven, Role Based Disaster Mobility Model [50]. In this scenario we observe the 



 
 

CHAPTER 4: RESULTS AND ANALYSIS  Page 60 
 

effect of buffer management policies on the performance of flooding based protocol (i.e. 

PRoPHET) and compare it with that of an adaptive quota based protocol Encounter Based 

Routing (EBR). Encounter Based Routing (EBR) is specifically designed for enabling 

efficient communication in post disaster response networks and its designers have utilized 

same disaster mobility model mentioned above. As previously stated two groups of 

simulations are carried out, one for the purpose of comparison between optimized PRoPHET 

and EBR while the second for the performance evaluation of existing buffer management 

schemes and our proposed Size Aware Drop (SA-Drop) under congestion and storage 

constraints. For comparison two popular existing buffer management schemes already 

implemented with PRoPHET are used namely the Evict Most Forwarded First (MOFO) and 

Evict Shortest Life Time First (SHLI).  

4.4.2.1.  Comparative Analysis 

In the first group of simulations, PRoPHET is evaluated under the same criteria as Epidemic 

that is to improve delivery probability with the least overhead ratio. The results show similar 

overall optimization with slight behavioral variations.  Figure 4.14 demonstrates that 

PRoPHET with buffer management outperforms EBR in terms of delivery probability. 

PRoPHET with DF and our proposed SA-Drop achieves approximately 32 % performance 

enhancement than EBR while PRoPHET with MOFO and SHLI achieves 20% and 29% 

performance enhancement respectively. Although DF has delivery ratio equivalent to our 

scheme yet the important question is whether it improves overhead ratio to similar extent as 

well. 

Figure 4.15 shows that all buffer management policies except our proposed policy SA-Drop 

incur overhead greater than EBR. MOFO incurs maximum overhead which is 53% greater 

than that of EBR. Closely following is the overhead incurred by SHLI which is almost 39% 

greater than that of EBR. Finally DF also produces considerable overhead ratio that is almost 

38% more than EBR. With this much overhead, its enhanced delivery probability comes at 

quite a cost of resources making it inappropriate for resource constrained environments. With 

same delivery probability our proposed scheme SA-Drop reduces the overhead ratio by 

approximately 40% than EBR. An interesting observation is that both SHLI and MOFO 

produce the highest overhead ratio which signifies that time and hop count may be an 

inefficient attribute to consider while discarding a message from the buffer in such a scenario.  

In order to understand the impact of each scheme on our two prime performance evaluation 

parameters, we next study their impact on our secondary parameters (i.e. buffer time average, 

hop count average, number of messages dropped and number of messages relayed). In Figure 
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4.16 we observe the buffer time average of messages with all these schemes. As expected 

with EBR, messages spend a longer time in the node’s buffer. This is again due to the 

forwarding paradigm of this protocol. On the other hand in PRoPHET with all buffer 

management policies, message buffer time average is less than that of EBR. Both DF and 

MOFO demonstrate a very small message buffer time average while with SHLI policy 

message buffer time average is slightly increased. However with our proposed policy SA-

Drop, messages stay in the buffer for much longer period of time. SA-Drop policy increases 

message buffer time average by 60% than DF, 52% than SHLI and almost 66% than MOFO. 

It is however 38% less than that of EBR but still produce greater delivery probability than it. 

As observed the message buffer time average is the smallest with MOFO which contributes to 

its reduced delivery probability. 

Figure 4.17 shows the impact of all these schemes on the hop count average. Both EBR and 

PRoPHET with our proposed policy SA-Drop have minimum hop count averages resulting in 

minimum overhead ratios. However an interesting observation is that PRoPHET with MOFO 

has the least hop count average yet incurs maximum overhead which supports our baseline 

assumptions that perhaps against popular belief hop count average may have little impact on 

resource consumption. Both SHLI and DF have considerably higher hop count averages and 

consequently more overhead ratios as well.  

Figure 4.18 shows the comparison between the numbers of messages dropped with each 

scheme. We observe that our proposed scheme SA-Drop significantly reduces the number of 

messages dropped as compared to other existing buffer management schemes. It successfully 

reduces message drop by 59% than DF, 57% than SHLI and 64% than MOFO. This is 

primarily due to the fact that instead of blind drop it specifies a threshold value as a selection 

criterion. This significantly reduces overhead and contributes to more successful deliveries. 

Closely following in performance is EBR which also has a lesser number of messages 

dropped. However this is more due to controlled replication than intelligent buffer 

management.  

Figure 4.19 demonstrates the effect of each scheme on the number of messages relayed. It is 

again observed than PRoPHET with our proposed buffer management scheme SA-Drop 

greatly reduces number of transmissions required for successful delivery of messages. This 

consequently results in the least amount of overhead incurred. SA-Drop reduces unnecessary 

replication by 62% as compared to DF, 60% as compared to SHLI and 67% as compared to 

MOFO. It even has 11% less message relay than EBR. This results in better utilization of 

bandwidth which is also a valuable resource in such environments.  
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Finally we observe the latency induced by each scheme. As mentioned earlier the key 

objective of our proposed scheme is to maximize delivery probability with least amount of 

overhead. It does not focus on minimizing delivery delay. We observe a slight increase in the 

delivery delay of messages in case of our proposed scheme, SA-Drop. However it is 

comparable with delay occuring due to other schemes.  
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Figure 4.14: Disaster: Comparison of Optimized PRoPHET and EBR w.r.t Delivery Probability 

 

  

Figure 4.15: Disaster: Comparison of Optimized PRoPHET and EBR w.r.t Overhead Ratio 
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Figure 4.16: Disaster: Comparison of Optimized PRoPHET and EBR w.r.t Buffer Time Average 

 

 

Figure 4.17: Disaster: Comparison of Optimized PRoPHET and EBR w.r.t Hop Count Average 
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Figure 4.18: Disaster: Comparison of Optimized PRoPHET and EBR w.r.t Messages Dropped 

 

 

Figure 4.19: Disaster: Comparison of Optimized PRoPHET and EBR w.r.t Messages Relayed
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Figure 4.20: Disaster: Comparison of Optimized PRoPHET and EBR w.r.t Delivery Delay 

4.4.2.2.  Performance Analysis 

In the second group of simulations, we compare the performance of our proposed scheme 

Size Aware Drop (SA-Drop) and the existing buffer management schemes under varying 

conditions. For this purpose we vary the rate of message generation and the size of buffers 

available. We first present the impact of message generation rate on delivery probability and 

overhead ratio. In the second set of simulations we determine the impact of buffer sizes on 

both these performance parameters. The schemes chosen for comparison are Evict Shortest 
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Aware Drop (SA-Drop). All are implemented with PRoPHET protocol. 

Figure 4.21 shows the impact of message generation rate on delivery probability. Three 
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Figure 4.21: Disaster: Impact of Varying Message Generation Rate on Delivery Probability 

 

 

Figure 4.22: Disaster: Impact of Varying Message Generation Rate on Overhead Ratio  
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Figure 4.23: Disaster: Impact of Varying Buffer Sizes on Delivery Probability  

 

 

Figure 4.24: Disaster: Impact of Varying Buffer Sizes on Overhead Ratio 
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Figure 4.25: Disaster: Impact of Varying Message Sizes on Delivery Probability 

 

 

Figure 4.26: Disaster: Impact of Varying Message Sizes on Overhead Ratio 
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Figure 4.22 shows the impact of increased message generation rate on the overhead incurred 

by the three buffer management schemes. As expected the overhead ratio of all these schemes 

increases with the increase in the number of messages injected into the network. However our 

proposed scheme SA-Drop not only maintains its low overhead ratio but also outperforms 

SHLI and MOFO by 57% and 68% respectively in a highly congested scenario.  

Figure 4.23 demonstrates the impact of buffer constraints on the delivery probability. For this 

purpose the groups’ buffer sizes are varied from 2M/3M/4M to 5M/6M/7M to finally 

8M/9M/10M to simulate a highly constrained, slightly constrained and not as constrained 

environment. As expected the delivery probability of messages increases with the increase in 

buffer sizes and decreases with more constrained buffer sizes. However the delivery 

probability resultant by our scheme SA-Drop in all cases is more than that due to rest of the 

schemes. 

Figure 4.24 shows the impact of buffer constraints on the overhead ratio incurred by the three 

schemes under evaluation. Overhead significantly increases with the decrease in buffer size in 

both SHLI and MOFO. However due to less resource consumption resultant from our 

proposed policy Size Aware Drop (SA-Drop), the overhead ratio of our scheme not only is 

maintained but is the least in all three cases.  

Finally Figure 4.25 and 4.26 show the impact of message size on the given metrics. As seen 

in the first scenario as the traffic of large sized messages increases, the message delivery 

probability decreases due to short contact durations and bandwidth restrictions. On the other 

hand routing overhead also decreases with the increase of message size. In this particular 

scenario, unlike other schemes the overhead ratio of our scheme increases with the increase in 

the message sizes. However, it is still a lot less than that incurred by the other schemes. 

These performance evaluations support our assumption that size is a more appropriate 

message discarding criteria in a highly congested and constrained environment like a disaster 

scenario where popular time based and hop based schemes fail to produce the desired results.  

The reported results emphasize on the authenticity of our claim that in both Random 

Waypoint and Disaster scenarios, if there is scarcity of resources both in terms of bandwidth 

and buffer, our proposed scheme Size Aware Drop (SA-Drop) produces the most desirable 

results. It also alleviates the effects of congestion greatly resulting in better performance 

optimization of basic flooding based protocols as compared to quota based protocols. 
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Chapter 5  

CONCLUSION AND FUTURE 

WORK 

So far much attention has been given to improving routing strategies in Delay Tolerant 

Networks (DTNs), while research on buffer management is still in its infancy. Using 

simulations based on both random and near realistic movements, we demonstrate that an 

efficient buffer management policy can optimize the performance of flooding based DTN 

routing protocols in terms of delivery probability and overhead ratio. The objective is to 

reduce the over head incurred by flooding based protocols while maintaining or enhancing 

their superior delivery ratios. We compare the performance of two popular flooding based 

protocols (i.e. Epidemic and PRoPHET) with various buffer management schemes under two 

different scenarios. The results demonstrate an improvement in delivery probabilities with 

significant reduction of overhead ratios. For comparison, two popular quota based protocols 

(e.g. Spray and Wait and Encounter Based Routing (EBR)) are used. It is clearly observed 

that efficient buffer management can reduce the overhead incurred by these popular flooding 

based protocols to values comparable with their quota based counter parts while still 

maintaining higher delivery ratios.  

Existing buffer management policies are classified on the basis of their network information 

requirements. While policies requiring complete network information perform better than 

those that utilize partial or no network knowledge, they are not favorably adopted due to their 

implementation difficulties. On the other hand policies requiring local information are more 

popular. These policies use certain attributes to make selection of messages to be discarded. 

The aim of this research is to determine which attribute produces the most desirable results in 

congested and constrained environments. While comparing the performance of various buffer 

management schemes we conclude that size is an appropriate criterion when the node’s buffer 

overflows. It is especially advantageous in a highly congested and constrained environment. 

Schemes that use other criterions like Time-To-Live (TTL) or Hop Count do not produce the 

desirable effects to alleviate congestion. Furthermore their high resource consumption makes 

them inappropriate for application in resource constrained environments like a disaster 

scenario.  
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We also propose an efficient buffer management policy Size Aware Drop (SA-Drop) which 

estimates the difference of the available buffer size and the size of the incoming message and 

then determine a threshold size for message discard. We evaluate its performance with both 

Epidemic and PRoPHET in two different scenarios. In Random Waypoint scenario, our 

proposed policy SA-Drop outperforms existing Drop Oldest (DOA) and Drop Largest (DLA) 

policies by 17% and 8% respectively in terms of delivery probability while it reduces the 

overhead ratio by 14% and 8% respectively. In the second scenario where near realistic 

movements of nodes in a disaster are simulated SA-Drop when implemented with PRoPHET 

outperforms both Evict Shortest Life Time First (SHLI) and Evict Most Forwarded First 

(MOFO) by 7% and 14% respectively in terms of delivery probability. In this scenario SA-

Drop significantly reduces overhead ratios by 64% and 72% respectively as compared to 

SHLI and MOFO. 

We also determine the impact of congestion and buffer constraints on the performance of our 

proposed scheme. The results conclude that in a more congested and constrained environment 

our scheme maintains its enhanced performance while others exhibit serious degradation both 

in terms of delivery probability and overhead ratio. 

5.1. FUTURE DIRECTIONS 

As mentioned earlier it is a rather fresh area of research with little work done. In this study we 

isolate the impact of drop policies on the performance of flooding based routing protocols by 

implementing same message scheduling/forwarding (i.e. FIFO and GRTR_Max) policies with 

each buffer management scheme. An interesting future direction is to evaluate the 

performance of our proposed scheme with other scheduling/forwarding policies. Designing a 

new scheduling scheme based on size, for further optimization is an interesting extension to 

our work. 

In this thesis we only compare the performance of optimized flooding based protocols with 

that of existing quota based protocols. We have not compared their performance with 

resource aware and context aware protocols like RAPID and ORWAR. It is interesting to see 

how our scheme performs when compared with these protocols.  

As mentioned earlier Delay Tolerant Networking (DTN) is expected to become an 

increasingly important paradigm in future communication. An important future research issue 

in DTN will be buffer management. In this study, we propose a buffer management policy 

and provide a comparative review of existing buffer management schemes. Due to 

encouraging results we believe that great potential lies in the inspection and exploration of 
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this area further. More attributes can be identified and new policies can be proposed with 

local or partial network knowledge that can effortlessly be implemented in other real life 

DTN applications.  
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A) APPENDICES 

APPENDIX I: 

i) TOOLS FOR MOBILITY TRACE GENERATION IN NS-2 

a) Parameter File Generation Tool for NS-2 

Usage:  

g++ paramGen.cc –o paramGen 

chmod u+x paramGen 

./paramGen > paramFile 

 
 

Figure A.1: Appendix i: Snapshot of Usage of Parameter File Generation Tool for NS-2 

b) ONE Compatible Mobility Trace Generation Tool 

Usage: 

g++ disasterSimONE.cc –o disasterSimONE 

chmod u+x disasterSimONE 

./disasterSimONE [-d] < paramFile > oneMobilityTrace 
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Figure A.2: Appendix i: Snapshot of Usage of ONE Compatible Mobility Trace File Generation 

Tool for NS-2 

 
 

Figure A.3: Appendix i: Snapshot of oneMobilityTrace File   
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APPENDIX II: 

i) PROTOCOLS CLASS FILES IN ONE SIMULATOR 

a) ActiveRouter.java 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

import java.util.ArrayList; 
import java.util.Collection; 
import java.util.Collections; 
import java.util.List; 
import java.util.Random; 
import core.Connection; 
import core.DTNHost; 
import core.Message; 
import core.MessageListener; 
import core.Settings; 
import core.SimClock; 
import core.Tuple; 
 
public abstract class ActiveRouter extends MessageRouter{ 
 public static final String DELETE_DELIVERED_S = "deleteDelivered"; 
 protected boolean deleteDelivered; 
 public static final String RESPONSE_PREFIX = "R_"; 
 public static int TTL_CHECK_INTERVAL = 60; 
 protected ArrayList<Connection> sendingConnections; 
 private double lastTtlCheck; 
  
 public ActiveRouter(Settings s){ 
  super(s); 
  if (s.contains(DELETE_DELIVERED_S)){ 
   this.deleteDelivered = s.getBoolean(DELETE_DELIVERED_S); 
  } 
  else { 
   this.deleteDelivered = false; 
  } 
 } 
  
 protected ActiveRouter(ActiveRouter r) { 
  super(r); 
  this.deleteDelivered = r.deleteDelivered; 
 }  
  
 @Override 
 public void init(DTNHost host, List<MessageListener> mListeners) { 
  super.init(host, mListeners); 
  this.sendingConnections = new ArrayList<Connection>(1); 
  this.lastTtlCheck = 0; 
 } 
  
 @Override 
 public void changedConnection(Connection con) { } 
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 @Override 
 public boolean requestDeliverableMessages(Connection con) { 
  if (isTransferring()) { 
   return false; 
  } 
  DTNHost other = con.getOtherNode(getHost()); 
  ArrayList<Message> temp = new 
ArrayList<Message>(this.getMessageCollection()); 
  for (Message m : temp) 
   { 
   if (other == m.getTo()){ 
    if (startTransfer(m, con) == RCV_OK){ 
     return true; 
    } 
   } 
  } 
  return false; 
 } 
  
 @Override  
 public boolean createNewMessage(Message m){ 
  makeRoomForNewMessage(m.getSize()); 
  return super.createNewMessage(m);  
 } 
 @Override 
 public int receiveMessage(Message m, DTNHost from){ 
  int recvCheck = checkReceiving(m);  
  if (recvCheck != RCV_OK){ 
   return recvCheck; 
  } 
  return super.receiveMessage(m, from); 
 }  
 @Override 
 public Message messageTransferred(String id, DTNHost from){ 
  Message m = super.messageTransferred(id, from); 
  if (m.getTo() == getHost() && m.getResponseSize() > 0) { 
   Message res = new Message(this.getHost(),m.getFrom(),  
   RESPONSE_PREFIX+m.getId(), m.getResponseSize()); 
   this.createNewMessage(res); 
   this.getMessage(RESPONSE_PREFIX+m.getId()).setRequest(m); 
  } 
  return m; 
 } 
 protected List<Connection> getConnections() { 
  return getHost().getConnections(); 
 } 
 protected int startTransfer(Message m, Connection con) { 
  int retVal; 
  if (!con.isReadyForTransfer()) { 
   return TRY_LATER_BUSY; 
  } 
  retVal = con.startTransfer(getHost(), m); 
  if (retVal == RCV_OK) {     // started transfer 
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   addToSendingConnections(con); 
  } 
  else if (deleteDelivered && retVal == DENIED_OLD &&  
  m.getTo() == con.getOtherNode(this.getHost())){ 
   this.deleteMessage(m.getId(), false); 
  } 
  return retVal; 
 } 
 protected boolean canStartTransfer(){ 
  if (this.getNrofMessages() == 0){ 
   return false; 
  } 
  if (this.getConnections().size() == 0){ 
   return false; 
  } 
  return true; 
 } 
 protected int checkReceiving(Message m){ 
  if (isTransferring()) { 
   return TRY_LATER_BUSY; 
  } 
  if ( hasMessage(m.getId()) || isDeliveredMessage(m) ){ 
   return DENIED_OLD;   // already seen this message -> 
reject it 
  } 
  if (m.getTtl() <= 0 && m.getTo() != getHost()){ 
   return DENIED_TTL;  
  } 
   if (!makeRoomForMessage(m.getSize())){ 
   return DENIED_NO_SPACE;  // couldn't fit into buffer -> reject 
  } 
  return RCV_OK; 
 } 

  
/* For other drop policies these two functions are overridden*/ 

 
  
 protected boolean makeRoomForMessage(int size){ 
  if (size > this.getBufferSize()){ 
   return false;    // message too big for the buffer 
  } 
  int freeBuffer = this.getFreeBufferSize(); 
  while (freeBuffer < size)  
  { 
   Message m = getOldestMessage(true);  
  // don't remove msgs being sent 
   if (m == null) { 
    return false;  // couldn't remove any more messages 
   }    
   deleteMessage(m.getId(), true); 
   freeBuffer += m.getSize(); 
  }   
  return true; 
 } 
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 protected void dropExpiredMessages() { 
  Message[] messages = getMessageCollection().toArray(new Message[0]); 
  for (int i=0; i<messages.length; i++)  
  { 
   int ttl = messages[i].getTtl();  
   if (ttl <= 0) { 
    deleteMessage(messages[i].getId(), true); 
   } 
  } 
 } 
  
 protected void makeRoomForNewMessage(int size){ 
  makeRoomForMessage(size); 
 } 
 protected Message getOldestMessage(boolean excludeMsgBeingSent) { 
  Collection<Message> messages = this.getMessageCollection(); 
  Message oldest = null; 
  for (Message m : messages) { 
   if (excludeMsgBeingSent && isSending(m.getId())) { 
    continue;  
   } 
   if (oldest == null ) { 
    oldest = m; 
   } 
   else if (oldest.getReceiveTime() > m.getReceiveTime()) { 
    oldest = m; 
   } 
  } 
  return oldest; 
 } 
 
 protected List<Tuple<Message, Connection>> getMessagesForConnected() { 
  if (getNrofMessages() == 0 || getConnections().size() == 0) { 
   return new ArrayList<Tuple<Message, Connection>>(0);  
  } 
  List<Tuple<Message, Connection>> forTuples =  
   new ArrayList<Tuple<Message, Connection>>(); 
  for (Message m : getMessageCollection()) { 
   for (Connection con : getConnections()) { 
    DTNHost to = con.getOtherNode(getHost()); 
    if (m.getTo() == to) { 
     forTuples.add(new Tuple<Message, 
Connection>(m,con)); 
    } 
   } 
  } 
  return forTuples; 
 } 
 protected Message tryAllMessages(Connection con, List<Message> messages) { 
  for (Message m : messages) { 
   int retVal = startTransfer(m, con);  
   if (retVal == RCV_OK) { 
    return m;  
   } 
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   else if (retVal > 0) {  
    return null;  
   } 
  } 
  return null;   
 } 
 protected Connection tryMessagesToConnections(List<Message> messages, 
 List<Connection> connections) { 
  for (int i=0, n=connections.size(); i<n; i++)  
  { 
   Connection con = connections.get(i); 
   Message started = tryAllMessages(con, messages);  
   if (started != null){  
    return con; 
   } 
  } 
  return null; 
 } 
 protected Connection tryAllMessagesToAllConnections(){ 
  List<Connection> connections = getConnections(); 
  if (connections.size() == 0 || this.getNrofMessages() == 0) { 
   return null; 
  } 
  List<Message> messages = new ArrayList<Message>(this.getMessageCollection()); 
  this.sortByQueueMode(messages); 
  return tryMessagesToConnections(messages, connections); 
 } 
 protected Connection exchangeDeliverableMessages() { 
  List<Connection> connections = getConnections(); 
  if (connections.size() == 0) { 
   return null; 
  } 
  @SuppressWarnings(value = "unchecked") 
  Tuple<Message, Connection> t = 
  tryMessagesForConnected(sortByQueueMode(getMessagesForConnected())); 
  if (t != null) { 
   return t.getValue(); // started transfer 
  } 
  for (Connection con : connections)  
  { 
   if (con.getOtherNode(getHost()).requestDeliverableMessages(con)){ 
    return con; 
   } 
  } 
  return null; 
 } 
 protected void shuffleMessages(List<Message> messages){ 
  if (messages.size() <= 1){ 
   return;  
  } 
    
 protected void shuffleMessages(List<Message> messages) { 
  if (messages.size() <= 1) { 
   return; // nothing to shuffle 
  } 
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  Random rng = new Random(SimClock.getIntTime()); 
  Collections.shuffle(messages, rng);  
 } 
 protected void addToSendingConnections(Connection con) { 
  this.sendingConnections.add(con); 
 } 
 public boolean isTransferring() { 
  if (this.sendingConnections.size() > 0) { 
   return true;     // sending something 
  } 
  if (this.getHost().getConnections().size() == 0) { 
   return false;     // not connected 
  } 
  List<Connection> connections = getConnections(); 
  for (int i=0, n=connections.size(); i<n; i++){ 
   Connection con = connections.get(i); 
   if (!con.isReadyForTransfer()) { 
    return true;  
   } 
  } 
  return false;   
 } 
 public boolean isSending(String msgId){ 
  for (Connection con : this.sendingConnections)  
  { 
   if (con.getMessage() == null) { 
    continue;   // transmission is finalized 
   } 
   if (con.getMessage().getId().equals(msgId)){ 
    return true; 
   } 
  } 
  return false; 
 } 
 @Override 
 public void update(){ 
  super.update(); 
  for (int i=0; i<this.sendingConnections.size();)  
  { 
   boolean removeCurrent = false; 
   Connection con = sendingConnections.get(i); 
   if (con.isMessageTransferred()){ 
    if (con.getMessage() != null) { 
     transferDone(con); 
     con.finalizeTransfer(); 
    removeCurrent = true; 
   } 
   else if (!con.isUp()){ 
    if (con.getMessage() != null){ 
     transferAborted(con); 
     con.abortTransfer(); 
    } 
    removeCurrent = true; 
   }  
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Figure A.4: Appendix ii: Java Class File for Active Router 

 

b) EpidemicRouter.java with Size Aware Drop (SA-Drop) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   if (removeCurrent) { 
    if (this.getFreeBufferSize() < 0) { 
     this.makeRoomForMessage(0); 
    } 
   sendingConnections.remove(i); 
   } 
   else { 
    i++; 
   } 
  } 
  if (SimClock.getTime() - lastTtlCheck >= TTL_CHECK_INTERVAL &&  
  sendingConnections.size() == 0) { 
   dropExpiredMessages(); 
   lastTtlCheck = SimClock.getTime(); 
  } 
 } 
 protected void transferAborted(Connection con) { } 
 protected void transferDone(Connection con) { } 
} 
 

package routing; 
import core.Settings; 
import core.Message; 
import core.SimClock; 
import java.util.Collection; 
import java.util.Collections; 
 
public class EpidemicRouter extends ActiveRouter { 
 public EpidemicRouter(Settings s){ 
  super(s); 
 } 
 protected EpidemicRouter(EpidemicRouter r) { 
  super(r); 
 } 
 @Override 
 public void update(){ 
  super.update(); 
  if (isTransferring() || !canStartTransfer()) { 
   return;  
  } 
  if (exchangeDeliverableMessages() != null) { 
   return;  
  }   
  this.tryAllMessagesToAllConnections(); 
 } 
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Figure A.5: Appendix ii: Java Class File for Epidemic Router with Size Aware Drop 

(SA-Drop) 

/* SA-Drop Implemented as Drop Policy*/ 
 @Override 
 protected boolean makeRoomForMessage(int size){ 
  if (size > this.getBufferSize()){ 
   return false;   // message too big for the buffer 
  } 
  int freeBuffer = this.getFreeBufferSize(); 
  int thresholdsize = 0; 
  if (size > freeBuffer){ 
    thresholdsize = (size - freeBuffer); 
  } 
  else if (size==freeBuffer){ 
    thresholdsize = size; 
  } 
  while (size>=freeBuffer){ 
   Message m = getThresholdMessage(thresholdsize,true);  
   if (m == null){ 
    return false;  // couldn't remove any more messages 
   }      
   /* delete message from the buffer as "drop" */ 
   deleteMessage(m.getId(), true); 
   freeBuffer += m.getSize(); 
  }  
  return true; 
 }  
 protected Message getThresholdMessage(int ts, boolean excludeMsgBeingSent)  
 { 
  Collection<Message> messages = this.getMessageCollection(); 
  Message threshold = null; 
  for (Message m : messages)  
  { 
   if (excludeMsgBeingSent && isSending(m.getId())){ 
    continue; // skip the message(s) that router is sending 
   } 
   if (threshold == null ){ 
    threshold = m; 
   } 
   if (m.getSize()>=ts){ 
    threshold = m; 
   } 
   else if(threshold.getSize() < m.getSize()){ 
    threshold = m; 
   } 
  } 
  return threshold; 
 } 
 @Override 
 public MessageRouter replicate() { 
   EpidemicRouter r = new EpidemicRouter(this); 
  return r; 
 } 
} 
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c) ProphetRouter.java with Size Aware Drop (SA-Drop) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

import java.util.ArrayList; 
import java.util.Collection; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.HashMap; 
import java.util.List; 
import java.util.Map; 
import core.Connection; 
import core.DTNHost; 
import core.Message; 
import core.Settings; 
import core.SimClock; 
import core.Tuple; 
 
public class ProphetRouter extends ActiveRouter { 
 public static final double P_INIT = 0.75; 
 public static final double DEFAULT_BETA = 0.25; 
 public static final double GAMMA = 0.98; 
 public static final String PROPHET_NS = "ProphetRouter"; 
 public static final String SECONDS_IN_UNIT_S ="secondsInTimeUnit"; 
 public static final String BETA_S = "beta"; 
 private int secondsInTimeUnit; 
 private double beta; 
 private Map<DTNHost, Double> preds; 
 private double lastAgeUpdate; 
 public ProphetRouter(Settings s) { 
  super(s); 
  Settings prophetSettings = new Settings(PROPHET_NS); 
  secondsInTimeUnit = prophetSettings.getInt(SECONDS_IN_UNIT_S); 
  if (prophetSettings.contains(BETA_S)) { 
   beta = prophetSettings.getDouble(BETA_S); 
  } 
  else { 
   beta = DEFAULT_BETA; 
  } 
  initPreds(); 
 } 
 protected ProphetRouter(ProphetRouter r) { 
  super(r); 
  this.secondsInTimeUnit = r.secondsInTimeUnit; 
  this.beta = r.beta; 
  initPreds(); 
 } 
 private void initPreds() { 
  this.preds = new HashMap<DTNHost, Double>(); 
 } 
 @Override 
 public void changedConnection(Connection con) { 
  if (con.isUp()) { 
   DTNHost otherHost = con.getOtherNode(getHost()); 
   updateDeliveryPredFor(otherHost); 
   updateTransitivePreds(otherHost); 
  } 
 } 
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 private void updateDeliveryPredFor(DTNHost host) { 
  double oldValue = getPredFor(host); 
  double newValue = oldValue + (1 - oldValue) * P_INIT; 
  preds.put(host, newValue); 
 } 
 public double getPredFor(DTNHost host) { 
  ageDeliveryPreds();   // make sure preds are updated before getting 
  if (preds.containsKey(host)) { 
   return preds.get(host); 
  } 
  else { 
   return 0; 
  } 
 } 
 private void updateTransitivePreds(DTNHost host) { 
  MessageRouter otherRouter = host.getRouter(); 
  assert otherRouter instanceof ProphetRouter : "PRoPHET only works " +  
  " with other routers of same type"; 
  double pForHost = getPredFor(host);   // P(a,b) 
  Map<DTNHost, Double> othersPreds =  
  ((ProphetRouter)otherRouter).getDeliveryPreds(); 
  for (Map.Entry<DTNHost, Double> e : othersPreds.entrySet()) { 
   if (e.getKey() == getHost()) { 
    continue;  
   } 
   double pOld = getPredFor(e.getKey());  // P(a,c)_old 
   double pNew = pOld + ( 1 - pOld) * pForHost * e.getValue() * beta; 
   preds.put(e.getKey(), pNew); 
  } 
 } 
 private void ageDeliveryPreds() { 
  double timeDiff = (SimClock.getTime() - this.lastAgeUpdate) / secondsInTimeUnit; 
  if (timeDiff == 0) { 
   return; 
  } 
  double mult = Math.pow(GAMMA, timeDiff); 
  for (Map.Entry<DTNHost, Double> e : preds.entrySet()) { 
   e.setValue(e.getValue()*mult); 
  } 
  this.lastAgeUpdate = SimClock.getTime(); 
 } 
 private Map<DTNHost, Double> getDeliveryPreds() { 
  ageDeliveryPreds();   // make sure the aging is done 
  return this.preds; 
 } 
 @Override 
 public void update() { 
  super.update(); 
  if (!canStartTransfer() ||isTransferring()) { 
   return;   // nothing to transfer or is currently transferring  
  } 
  if (exchangeDeliverableMessages() != null) { 
   return; 
  } 
  tryOtherMessages();   
 } 
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 private Tuple<Message, Connection> tryOtherMessages() { 
  List<Tuple<Message, Connection>> messages =  
   new ArrayList<Tuple<Message, Connection>>();  
   Collection<Message> msgCollection = getMessageCollection(); 
   for (Connection con : getConnections()) { 
   DTNHost other = con.getOtherNode(getHost()); 
   ProphetRouter othRouter = (ProphetRouter)other.getRouter(); 
   if (othRouter.isTransferring()) { 
    continue;  
   } 
   for (Message m : msgCollection)  
   { 
    if (othRouter.hasMessage(m.getId())) { 
     continue;  
    } 
    if (othRouter.getPredFor(m.getTo()) > getPredFor(m.getTo())) { 
     messages.add(new Tuple<Message, 
Connection>(m,con)); 
    } 
   }    
  } 
  if (messages.size() == 0) { 
   return null; 
  } 
  Collections.sort(messages, new TupleComparator()); 
  return tryMessagesForConnected(messages);  
 } 
 private class TupleComparator implements Comparator <Tuple<Message, Connection>> { 
  public int compare(Tuple<Message, Connection> tuple1, 
  Tuple<Message, Connection> tuple2) { 
   double p1 = ((ProphetRouter)tuple1.getValue(). 
   getOtherNode(getHost()).getRouter()).getPredFor( 
   tuple1.getKey().getTo()); 
   double p2 = ((ProphetRouter)tuple2.getValue(). 
   getOtherNode(getHost()).getRouter()).getPredFor( 
   tuple2.getKey().getTo()); 
   if (p2-p1 == 0) { 
    return compareByQueueMode(tuple1.getKey(), 
tuple2.getKey()); 
   } 
   else if (p2-p1 < 0) { 
    return -1; 
   } 
   else { 
    return 1; 
   } 
  } 
 } 
 @Override 
 public RoutingInfo getRoutingInfo() { 
  ageDeliveryPreds(); 
  RoutingInfo top = super.getRoutingInfo(); 
  RoutingInfo ri = new RoutingInfo(preds.size() + “delivery prediction(s)"); 
  for (Map.Entry<DTNHost, Double> e : preds.entrySet()) 
   { 
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   DTNHost host = e.getKey(); 
   Double value = e.getValue(); 
   ri.addMoreInfo(new RoutingInfo(String.format("%s : %.6f", host, 
value))); 
  } 
  top.addMoreInfo(ri); 
  return top; 
 } 
 

/* SA-Drop Implemented as Drop Policy*/ 
 
 @Override 
 protected boolean makeRoomForMessage(int size){ 
  if (size > this.getBufferSize()){ 
   return false;   // message too big for the buffer 
  } 
  int freeBuffer = this.getFreeBufferSize(); 
  int thresholdsize = 0; 
  if (size > freeBuffer){ 
    thresholdsize = (size - freeBuffer); 
  } 
  else if (size==freeBuffer){ 
    thresholdsize = size; 
  }   
  while (size>=freeBuffer) 
  { 
   Message m = getThresholdMessage(thresholdsize,true);  
   if (m == null){ 
    return false;  
   } 
   deleteMessage(m.getId(), true); 
   freeBuffer += m.getSize(); 
  }  
  return true; 
 } 
 protected Message getThresholdMessage(int ts, boolean excludeMsgBeingSent)  
 { 
  Collection<Message> messages = this.getMessageCollection(); 
  Message threshold = null; 
  for (Message m : messages)  
  { 
   if (excludeMsgBeingSent && isSending(m.getId())){ 
    continue;  // skip the message(s) that router is sending 
   } 
   if (threshold == null ){ 
    threshold = m; 
   } 
   if (m.getSize()>=ts){ 
    threshold = m; 
   } 
   else if(threshold.getSize() < m.getSize()){ 
    threshold = m; 
   } 
  } 
  return threshold; 
 } 
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Figure A.6: Appendix ii: Java Class File for Prophet Router with Proposed policy (SA-Drop) 

d) SprayAndWaitRouter.java 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 @Override 
 public MessageRouter replicate() { 
  ProphetRouter r = new ProphetRouter(this); 
  return r; 
 } 
} 

import java.util.ArrayList; 
import java.util.List; 
import core.Connection; 
import core.DTNHost; 
import core.Message; 
import core.Settings; 
import java.util.Collection; 
import java.util.Collections; 
 
public class SprayAndWaitRouter extends ActiveRouter { 
 public static final String NROF_COPIES = "nrofCopies"; 
 public static final String BINARY_MODE = "binaryMode"; 
 public static final String SPRAYANDWAIT_NS = "SprayAndWaitRouter"; 
 public static final String MSG_COUNT_PROPERTY = SPRAYANDWAIT_NS + "." + "copies"; 
 protected int initialNrofCopies; 
 protected boolean isBinary; 
 public SprayAndWaitRouter(Settings s) { 
  super(s); 
  Settings snwSettings = new Settings(SPRAYANDWAIT_NS); 
  initialNrofCopies = snwSettings.getInt(NROF_COPIES); 
  isBinary = snwSettings.getBoolean( BINARY_MODE); 
 } 
 protected SprayAndWaitRouter(SprayAndWaitRouter r) { 
  super(r); 
  this.initialNrofCopies = r.initialNrofCopies; 
  this.isBinary = r.isBinary; 
 } 
 @Override 
 public int receiveMessage(Message m, DTNHost from) { 
  return super.receiveMessage(m, from); 
 } 
 @Override 
 public Message messageTransferred(String id, DTNHost from) { 
  Message msg = super.messageTransferred(id, from); 
  Integer nrofCopies = (Integer)msg.getProperty(MSG_COUNT_PROPERTY); 
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  assert nrofCopies != null : "Not a SnW message: " + msg; 
  if (isBinary) { 
   /* in binary S'n'W the receiving node gets ceil(n/2) copies */ 
   nrofCopies = (int)Math.ceil(nrofCopies/2.0); 
  } 
  else { 
   /* in standard S'n'W the receiving node gets only single copy */ 
   nrofCopies = 1; 
  } 
  msg.updateProperty(MSG_COUNT_PROPERTY, nrofCopies); 
  return msg; 
 }  
 
 @Override  
 public boolean createNewMessage(Message msg) { 
  makeRoomForNewMessage(msg.getSize()); 
  msg.setTtl(this.msgTtl); 
  msg.addProperty(MSG_COUNT_PROPERTY, new Integer(initialNrofCopies)); 
  addToMessages(msg, true); 
  return true; 
 } 
 
 @Override 
 public void update() { 
  super.update(); 
  if (!canStartTransfer() || isTransferring()) { 
   return;    // nothing to transfer or is currently 
transferring  
  } 
  /* try messages that could be delivered to final recipient */ 
  if (exchangeDeliverableMessages() != null) { 
   return; 
  }  
  /* create a list of SAWMessages that have copies left to distribute */ 
  @SuppressWarnings(value = "unchecked") 
  List<Message> copiesLeft = sortByQueueMode(getMessagesWithCopiesLeft 
  
  if (copiesLeft.size() > 0) { 
   /* try to send those messages */ 
   this.tryMessagesToConnections(copiesLeft, getConnections()); 
  } 
 }  
 protected List<Message> getMessagesWithCopiesLeft() { 
  List<Message> list = new ArrayList<Message>(); 
  for (Message m : getMessageCollection())  
  { 
   Integer nrofCopies = (Integer)m.getProperty(MSG_COUNT_PROPERTY); 
   assert nrofCopies != null : "SnW message " + m + " didn't have " +  
   "nrof copies property!"; 
   if (nrofCopies > 1) { 
    list.add(m); 
   } 
  } 
  return list; 
 } 
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Figure A.7: Appendix ii: Java Class File for Spray and Wait Router 

e) EBRRouter.java 

 

 

 

 

 

 

 

 

 

 

 

 

 

package routing; 
import java.util.ArrayList; 
import java.util.Collection; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.List; 
import java.util.Set; 
import java.util.HashSet; 
import core.Connection; 
import core.DTNHost; 
import core.Message; 
import core.Settings; 
import core.SimClock; 
import core.Tuple; 
 
/ * Route based on encounter value */ 
 
public class EBRRouter extends ActiveRouter { 
 /** identifier for the intial number of copies setting ({@value})*/  
 public static final String NROF_COPIES = "nrofCopies"; 
 public static final String ALPHA = "alpha"; 
 public static final String UPDATE_POPINTERVAL = "updatePOPInterval"; 
 /** Popularity router's settings namespace ({@value})*/  
 

  
 @Override 
 protected void transferDone(Connection con) { 
  Integer nrofCopies; 
  String msgId = con.getMessage().getId(); 
  Message msg = getMessage(msgId); 
  if (msg == null) {  
   return;  
  } 
  nrofCopies = (Integer)msg.getProperty(MSG_COUNT_PROPERTY); 
  if (isBinary) {  
   nrofCopies /= 2; 
  } 
  else { 
   nrofCopies--; 
  } 
  msg.updateProperty(MSG_COUNT_PROPERTY, nrofCopies); 
 } 
 @Override 
 public SprayAndWaitRouter replicate() { 
  return new SprayAndWaitRouter(this); 
 } 
}    
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 public static final String EBR_NS = "EBRRouter";     
 public static final String MSG_COUNT_PROPERTY = EBR_NS + "." + "copies"; 
 /** Popularity counter */ 
 private double EV = 0; 
 /** Current window counter */ 
 private double windowCounter = 0; 
 /** Alpha */ 
 private double alpha; 
 /** Initial number of copies */ 
 private int initialNrofCopies; 
 /** Future time to update EV */ 
 private double updateInterval; 
 private double timeToUpdate = 0; 
 /** IDs of the messages that are known to have reached the final dst */ 
 private Set<String> ackedMessageIds; 
 /** 
 * Constructor. Creates a new message router based on the settings in 
 * the given Settings object. 
 * @param s The settings object 
 */ 
 public EBRRouter(Settings s) { 
  super(s); 
  Settings EBRSettings = new Settings(EBR_NS); 
  initialNrofCopies = EBRSettings.getInt(NROF_COPIES); 
  alpha = EBRSettings.getDouble(ALPHA); 
  updateInterval = EBRSettings.getInt(UPDATE_POPINTERVAL); 
 } 
 /** 
 * Copyconstructor. 
 * @param r The router prototype where setting values are copied from 
 */ 
 protected EBRRouter(EBRRouter r) { 
  super(r); 
  this.initialNrofCopies = r.initialNrofCopies; 
  this.alpha = r.alpha; 
  this.updateInterval = r.updateInterval; 
  this.ackedMessageIds = new HashSet<String>(); 
  this.EV = r.EV; 
  this.windowCounter = r.windowCounter; 
 } 
 @Override 
 public int receiveMessage(Message m, DTNHost from) { 
  return super.receiveMessage(m, from); 
 } 
 @Override 
 public void changedConnection(Connection con) { 
  if (con.isUp()) { 
   DTNHost otherHost = con.getOtherNode(getHost()); 
   MessageRouter mRouter = otherHost.getRouter(); 
   assert mRouter instanceof EBRRouter : "EBRRouter only works "+  
   " with other routers of same type"; 
   EBRRouter otherRouter = (EBRRouter)mRouter; 
 
 
  
  
  
  
 
  
  
  



 
 

APPENDICES  Page 97 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   // exchange ACKed message data 
   this.ackedMessageIds.addAll(otherRouter.ackedMessageIds); 
   otherRouter.ackedMessageIds.addAll(this.ackedMessageIds); 
   deleteAckedMessages(); 
   otherRouter.deleteAckedMessages(); 
   // Update current window counter 
   windowCounter++; 
  } 
 } 
 public double getEV() { 
  return this.EV; 
 } 
 /** 
  * Deletes the messages from the message buffer that are known to be ACKed 
  */ 
 private void deleteAckedMessages() { 
  for (String id : this.ackedMessageIds)  
  { 
   if (this.hasMessage(id)) { 
    this.deleteMessage(id, false); 
   } 
  } 
 } 
 @Override  
 public boolean createNewMessage(Message msg) { 
  makeRoomForNewMessage(msg.getSize());  
  msg.setTtl(this.msgTtl); 
  msg.addProperty(MSG_COUNT_PROPERTY, new Integer(initialNrofCopies)); 
  addToMessages(msg, true);     
  return true; 
 }  
 @Override 
 public void update() { 
  super.update(); 
  if (SimClock.getTime() >= timeToUpdate) { 
   EV = alpha * windowCounter + (1-alpha) * EV; 
   windowCounter = 0; 
   timeToUpdate = SimClock.getTime() + updateInterval; 
  } 
  if (isTransferring() || !canStartTransfer()) { 
   return;  
  } 
  if (exchangeDeliverableMessages() != null) { 
   return;    
  } 
  tryOtherMessages(); 
 } 
 private Tuple<Message, Connection> tryOtherMessages() { 
  List<Tuple<Message, Connection>> messages =  
  new ArrayList<Tuple<Message, Connection>>();  
  Collection<Message> msgCollection = getMessageCollection(); 
  // for all connected hosts collect all msgs that have a higher 
  // prob. of delivery by the other host 
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  for (Connection con : getConnections())  
  { 
   DTNHost other = con.getOtherNode(getHost()); 
   EBRRouter othRouter = (EBRRouter)other.getRouter(); 
   if (othRouter.isTransferring()) { 
    continue;   // skip hosts that are transferring 
   } 
   for (Message m : msgCollection)  
   { 
    if (othRouter.hasMessage(m.getId())) { 
     continue;  // skip msgs that the other one has 
    } 
    /** Assume our popularity is x and the other router's 
    * popularity is y. Let n be the number of copies of 
    * the message we have.  Then we want to transfer 
    * floor( y/x+y  *  n) messages to the other router 
    */ 
    double y = othRouter.getEV(); 
    double x = this.getEV(); 
    int n = 
((Integer)m.getProperty(MSG_COUNT_PROPERTY)).intValue(); 
 /** The other nodes popularity is high enough to send message */ 
    if (Math.floor((y*n)/(x+y)) > 1) { 
     messages.add(new Tuple<Message, 
Connection>(m,con)); 
    } 
   } 
  }  
  if (messages.size() == 0) { 
   return null; 
  }     // sort the message-connection 
tuples 
  Collections.sort(messages, new TupleComparator()); 
  return tryMessagesForConnected(messages); // try to send messages 
 } 
 /** 
 * Comparator for Message-Connection-Tuples that orders the tuples by 
 * their connection's popularity 
 */ 
 private class TupleComparator implements Comparator <Tuple<Message, Connection>> { 
  public int compare(Tuple<Message, Connection> tuple1, 
  Tuple<Message, Connection> tuple2) { 
   // popularity counter for the connection in tuple1 
   double p1 = ((EBRRouter)tuple1.getValue(). 
   getOtherNode(getHost()).getRouter()). 
   getEV();     // tuple2 
   double p2 = ((EBRRouter)tuple2.getValue(). 
   getOtherNode(getHost()).getRouter()). 
   getEV();    // bigger popularity comes first 
   if (p2-p1 == 0) { 
    return 0; 
   }    
   else if (p2-p1 < 0) { 
    return -1; 
   } 
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Figure A.8: Appendix ii: Java Class File for EBR Router  

   else { 
    return 1; 
   } 
  } 
 } 
 /** 
 * Reduces the number of copies we have left for a message. 
 * This is the SENDER's copy 
 */ 
 @Override 
 protected void transferDone(Connection con) { 
  String msgId = con.getMessage().getId();// Get this router's copy of the message 
  Message msg = getMessage(msgId); 
  /** If destination was reached, delete all copies from sender */ 
  if (con.getMessage().getTo().equals(con.getOtherNode(getHost()))){ 
   this.ackedMessageIds.add(msgId); 
   this.deleteMessage(msgId,false); 
   return; 
  } 
  if (msg == null) {  // message has been dropped from the buffer after.. 
   return;  // start of transferno need to reduce amount of copies 
  } 
  double x = this.getEV();   // Get nodes' EVs 
  double y = ((EBRRouter)con.getOtherNode(getHost()).getRouter()).getEV(); 
  int n = ((Integer)msg.getProperty(MSG_COUNT_PROPERTY)).intValue(); 
  // Transfered floor( y/(x+y) * n), and kept rest for self 
  int newCount = n - (int)Math.floor((y*n)/(x+y)); 
  msg.updateProperty(MSG_COUNT_PROPERTY, new Integer(newCount)); 
 } 
 /** This is the RECEIVER'S copy */ 
 @Override 
 public Message messageTransferred(String id, DTNHost from) { 
  Message msg = super.messageTransferred(id, from); 
     // If this is final dest, simply set num of copies to 1 
  if (msg.getTo().equals(this.getHost())) { 
   msg.updateProperty(MSG_COUNT_PROPERTY, new Integer(1)); 
   this.ackedMessageIds.add(id); 
   return msg; 
  } 
  double y = this.getEV(); 
  double x = ((EBRRouter)from.getRouter()).getEV(); 
  int n = ((Integer)msg.getProperty(MSG_COUNT_PROPERTY)).intValue(); 
     // "from" transfered floor( y/(x+y) * n) to self 
  int newCount = (int)Math.floor((y*n)/(x+y)); 
  msg.updateProperty(MSG_COUNT_PROPERTY, new Integer(newCount)); 
  return msg; 
 } 
 @Override 
 public EBRRouter replicate() { 
  return new EBRRouter(this); 
 } 
} 
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ii) DROP POLICY FUNCTIONS IMPLEMENTED 

a) Drop Oldest (DOA) 

 

 

 

 

 

 

 

 

 

Figure A.9: Appendix ii: getOldestMessage() Function  to Implement DOA 

b) Drop Largest (DLA) 

 

 
 

 

 

 

 

 

 

 

 

Figure A.10: Appendix ii: getLargestMessage() Function to Implement DLA  

 

 
protected Message getOldestMessage(boolean excludeMsgBeingSent){ 
 Collection<Message> messages = this.getMessageCollection(); 
 Message oldest = null; 
 for (Message m : messages)  
 { 
  if (excludeMsgBeingSent && isSending(m.getId())){ 
   continue;  
  } 
  if (oldest == null ){ 
   oldest = m; 
  } 
  else if (oldest.getReceiveTime() > m.getReceiveTime()){ 
   oldest = m; 
  } 
 } 
 return oldest; 
} 

 
protected Message getLargestMessage(boolean excludeMsgBeingSent){ 
 Collection<Message> messages = this.getMessageCollection(); 
 Message largest = null; 
 for (Message m : messages)  
 { 
  if (excludeMsgBeingSent && isSending(m.getId())){ 
   continue;  
  } 
  if (largest == null) { 
   largest = m; 
  } 
  else if (largest.getSize() < m.getSize()){ 
   largest = m; 
  } 
 } 
 return largest; 
} 
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c) Evict Shortest Life Time First (SHLI) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.11: Appendix ii: getShortestLifeMessage() Function to Implement SHLI 

d) Evict Most Forwarded First (MOFO) 

 

 

 

 

 

 

 

 

 

 

Figure A.12: Appendix ii: getMaxForwardedMessage() Function to Implement MOFO 

 
protected Message getShortestLifeMessage(boolean excludeMsgBeingSent){ 
 Collection<Message> messages = this.getMessageCollection(); 
 Message shortest = null; 
 for (Message m : messages)  
 { 
  if (excludeMsgBeingSent && isSending(m.getId())){ 
   continue;  
  } 
  if (shortest == null ){ 
   shortest = m; 
  } 
  else {  
   double Rttl1 = ((shortest.getTtl()*60) - shortest.getReceiveTime()); 
   double Rttl2 = ((m.getTtl()*60) - m.getReceiveTime());  
   if (Rttl1>Rttl2){ 
    shortest= m; 
   }     
  } 
 }  
 return shortest; 
} 

 
protected Message getMaxForwardedMessage(boolean excludeMsgBeingSent){ 
 Collection<Message> messages = this.getMessageCollection(); 
 Message maxfor = null; 
 for (Message m : messages)  
 { 
  if (excludeMsgBeingSent && isSending(m.getId())){ 
   continue; 
  } 
  if (maxfor == null){ 
   maxfor = m; 
  } 
  else if(maxfor.getHopCount() < m.getHopCount){ 
   maxfor = m; 
  }     
 }  
 return maxfor; 
} 
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e) Size Aware Drop (SA-Drop) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.13: Appendix ii: getThresholdMessage() and Modified 

makeRoomForMessage() Functions to Implement SA-Drop 

protected boolean makeRoomForMessage(int size){ 
 if (size > this.getBufferSize()){ 
  return false;   // message too big for the buffer 
 } 
 int freeBuffer = this.getFreeBufferSize(); 
 int thresholdsize = 0;   // Threshold size  
 if (size > freeBuffer){ 
   thresholdsize = (size - freeBuffer); 
 } 
 else if (size==freeBuffer){ 
   thresholdsize = size; 
 } 
 /* delete messages from the buffer until there's enough space */ 
 while (size>=freeBuffer){ 
  Message m = getThresholdMessage(thresholdsize,true);   
      // don't remove msgs being sent 
  if (m == null){ 
   return false;   // couldn't remove any more messages 
  } 
  /* delete message from the buffer as "drop" */ 
  deleteMessage(m.getId(), true); 
  freeBuffer += m.getSize(); 
 }  
 return true; 
}   
protected Message getThresholdMessage(int ts, boolean excludeMsgBeingSent){ 
 Collection<Message> messages = this.getMessageCollection(); 
 Message threshold = null; 
 for (Message m : messages)  
 { 
  if (excludeMsgBeingSent && isSending(m.getId())){ 
   continue;   // skip the message(s) that router is sending 
  } 
  if (threshold == null){ 
   threshold = m; 
  } 
  if (m.getSize()>=ts){ 
   threshold = m; // drop msgs equal to or greater than threshold size 
  } 
  else if(threshold.getSize() < m.getSize()){ 
   threshold = m; // drop largest sized message incase threshold size 
      // message is not present 
  } 
 } 
 return threshold; 
}    
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iii) SCENARIO CONFIGURATION FILES 

a) Scenario 1: Random Waypoint with Epidemic Router 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# 
# Default settings for the simulation of Disaster Scenario 
# 
## Scenario settings: 
# endTime is in seconds 
 
Scenario.name = RandomWayPoint 
Scenario.simulateConnections = true 
Scenario.updateInterval = 1.0 
Scenario.nrofHostGroups = 3 
Scenario.endTime = 3600 
 
## Interface-specific settings: 
# type: which interface class the interface belongs to 
# transmitRange: range of the hosts' radio devices (meters) 
# transmitSpeed: transmit speed of the radio devices (bytes per second) 
 
Group.nrofInterfaces=1 
 
# "Bluetooth" interface  
 
btInterface.type = SimpleBroadcastInterface 
btInterface.transmitSpeed = 250k 
btInterface.transmitRange = 10 
 
# Common settings for all groups: 
# movementModel: movement model of the hosts (valid class name from movement package) 
# router: router used to route messages (valid class name from routing package) 
# msgTtl : TTL (minutes) of the messages created by this host group, default=infinite 
 
Group.movementModel=RandomWaypoint 
Group.router = EpidemicRouter 
Group.msgTtl=60 
 
## Group-specific settings: 
# groupID : Group's identifier. Used as the prefix of host names 
# nrofHosts: number of hosts in the group 
# bufferSize: size of the message buffer (bytes) 
# interface : Type of interface used by the hosts for transmission (Bluetooth interface) 
# speed : speed of hosts in a group given in (m/s) 
# waitTime : How long a host stays at a position after reaching it 
 
# Group # 1 of pedestrians 
 
Group1.groupID = p 
Group1.nrofHosts=10 
Group1.bufferSize = 3M 
Group1.interface1 = btInterface 
Group1.speed=0.5, 1.5 
Group1.waitTime = 0, 120 
 



 
 

APPENDICES  Page 104 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
# Group # 2 of pedestrians 
 
Group2.groupID = o 
Group2.nrofHosts= 40 
Group2.bufferSize = 4M 
Group2.interface1 = btInterface 
Group2.speed=0.5, 1.5 
Group2.waitTime = 0, 120 
 
# Group # 3 
 
Group3.groupID = s 
Group3.nrofHosts= 50 
Group3.bufferSize = 5M 
Group3.interface1 = btInterface 
Group3.speed=0.5, 1.5 
Group3.waitTime = 0, 120 
 
## Message creation parameters  
# How many event generators 
 
# Class of the event generator 
# Events.class = MessageEventGenerator 
# Specific settings for the MessageEventGenerator class 
# Creation interval in seconds (one new message every 15 to 25 seconds) 
# Message sizes (100kB - 1MB) 
# range of message source/destination addresses 
# Message ID prefix 
 
Events.nrof = 1 
 
Events1.class = MessageEventGenerator 
Events1.interval = 15, 25 
Events1.sizeRange = 100k, 1M 
Events1.hosts=0, 99 
Events1.prefix=M 
 
# World's size for Movement Models without implicit size (width, height; meters) 
 
# How long time to move hosts in the world before real simulation 
 
# Seed for movement models' pseudo random number generator (default = 0) 
 
MovementModel.worldSize = 1500, 1500 
MovementModel.warmup = 500 
MovementModel.rngseed = 1 
 
## Reports - all report names have to be valid report classes 
 
# how many reports to load 
# default directory of reports (can be overridden per Report with output setting) 
 
# Report classes to load 
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Figure A.14: Appendix ii: Configuration File for Scenario 1: Random Waypoint 

 

 

Figure A.15: Appendix ii: Snapshot of Scenario 1 Configuration File 

  

 
Report.nrofReports = 1  
Report.reportDir = reports/Thesis/RWP 
Report.report1 = MessageStatsReport 
 
## Default settings for some routers settings 
# Spray and Wait Router settings 
 
SprayAndWaitRouter.nrofCopies = 10 
SprayAndWaitRouter.binaryMode = false 
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b) Scenario 2: Disaster with PRoPHET Router 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# 
# Default settings for the simulation of Disaster Scenario 
# 
## Scenario settings: 
# endTime is in seconds 
 
Scenario.name = Disaster 
Scenario.simulateConnections = true 
Scenario.updateInterval = 1.0 
Scenario.nrofHostGroups = 3 
Scenario.endTime = 3600 
 
## Interface-specific settings: 
 
# type : which interface class the interface belongs to 
# transmitRange: range of the hosts' radio devices (meters) 
# transmitSpeed: transmit speed of the radio devices (bytes per second) 
 
Group.nrofInterfaces=2 
 
# "Bluetooth" interface  
 
btInterface.type = SimpleBroadcastInterface 
btInterface.transmitSpeed = 250k 
btInterface.transmitRange = 10 
 
# High speed, long range, interface  
 
highspeedInterface.type = SimpleBroadcastInterface 
highspeedInterface.transmitSpeed = 10M 
highspeedInterface.transmitRange = 100 
 
# Common settings for all groups: 
# movementModel: movement model of the hosts (valid class name from movement package) 
# router: router used to route messages (valid class name from routing package) 
# msgTtl : TTL (minutes) of the messages created by this host group, default=infinite 
 
Group.movementModel=ExternalMovement 
Group.router = ProphetRouter 
Group.msgTtl= 60 
 
## Group-specific settings: 
# groupID : Group's identifier. Used as the prefix of host names 
# nrofHosts: number of hosts in the group 
# bufferSize: size of the message buffer (bytes) 
 
# Group of civilians 
 
Group1.nrofInterfaces = 1 
Group1.interface1 = btInterface 
Group1.nrofHosts=75 
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Group1.bufferSize = 2M 
Group1.groupID = civ  
 
# Group of ambulances 
 
Group2.nrofInterfaces = 1 
Group2.interface1 = highspeedInterface 
Group2.nrofHosts= 10 
Group2.bufferSize = 3M 
Group2.groupID = amb 
 
# Group of police cars 
 
Group3.nrofInterfaces = 1 
Group3.interface1 = highspeedInterface 
Group3.nrofHosts= 15 
Group3.bufferSize = 4M 
Group3.groupID = pol 
 
## Movement model settings 
# How long time to move hosts in the world before real simulation 
 
MovementModel.warmup = 500 
ExternalEvents.nrofpreloads = 500 
ExternalEvents.class= ExternalMovement 
ExternalMovement.file = oneMobilityTrace 
 
## Message creation parameters  
# How many event generators 
# Class of the event generator 
# Events.class = MessageEventGenerator 
# Specific settings for the MessageEventGenerator class 
# Creation interval in seconds (one new message every 15 to 25 seconds) 
# Message sizes (100kB - 1MB) 
# Range of message source/destination addresses 
# Message ID prefix 
 
Events.nrof = 4 
 
Events1.class = MessageEventGenerator 
Events1.interval = 15, 25 
Events1.sizeRange = 100k, 1M 
Events1.hosts=0, 99 
Events1.prefix=S 
Events1.msgTime=240,280 
 
Events2.class = MessageEventGenerator 
Events2.interval = 15, 25 
Events2.size = 100k, 1M 
Events2.hosts=0, 99 
Events2.prefix=C 
Events2.msgTime=265,305 
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Figure A.16: Appendix ii: Configuration File for Scenario 2: Disaster  

  

Events3.class = MessageEventGenerator 
Events3.interval = 15, 25 
Events3.size = 100k, 1M 
Events3.hosts=0, 99 
Events3.prefix=P 
Events3.msgTime=290,330 
 
Events4.class = MessageEventGenerator 
Events4.interval = 15, 25 
Events4.size = 100k, 1M 
Events4.hosts=0, 99 
Events4.prefix=R 
Events4.msgTime=315,355 
 
# World's size for Movement Models without implicit size (width, height; meters) 
 
MovementModel.worldSize = 3000, 3000 
 
## Reports - all report names have to be valid report classes 
# Number of reports to load 
# Default directory of reports (can be overridden per Report with output setting) 
 
# Report classes to load 
 
Report.nrofReports = 1 
Report.reportDir = reports/Thesis/Disaster 
Report.report1 = MessageStatsReport 
 
## Default settings for some routers settings 
# Prophet Router settings 
 
ProphetRouter.secondsInTimeUnit = 30 
 
# EBR Router settings 
 
EBRRouter.nrofCopies=20 
EBRRouter.alpha=0.85 
EBRRouter.updatePOPInterval=1.0 
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Figure A.17: Appendix ii: Snapshot of Scenario 2 Configuration File 

iv) SAMPLE OF REPORT FILE 

 

Figure A.18: Appendix ii: Snapshot of MessageStatsReport File 
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