
MOBEEN TAHIR

01-134182-025

MEHRUN-NISA RAJA

01-134182-024

Gun Detection System

Bachelors of Science in Computer Science

Supervisor: Jawwad Ijaz

Department of Computer Science

Bahria University, Islamabad

June 2022

© Mehrun-Nisa Raja and Mobeen Tahir, 2022

3

Certificate

We accept the work contained in the report titled ”Gun Detection System”, written by

Mobeen Tahir & Mehrun-nisa Raja as a confirmation to the required standard for the

partial fulfillment of the degree of Bachelors of Computer Science.

Approved by...:

Supervisor: Jawwad Ijaz

Internal Examiner:Usman Shaffique(Senior Lecturer)

External Examiner(Title):

Project Coordinator: Dr Moazzam Ali(Assistant Professor)

Head of the Department: Dr. Arif ur Rahman(Head of Department)

June 23rd,2022

i

Abstract

Consistently, a lot of populace accommodates firearm related brutality everywhere.

In this work, we foster a PC based completely computerized framework to recog-

nize fundamental deadly implements, especially handguns. Late work in the field

of profound learning and move learning has shown huge advancement in the space

of item identification and acknowledgment.We have executed YOLOv4 ”You Only

Look Once” object location model via preparing it on our custom data set.The

preparation results affirm that YOLO V4 beats YOLO V3 and traditional convo-

lutional neural network. Moreover, concentrated GPUs or high calculation assets

were not needed in that frame of mind as we utilized transfer learning for preparing

our model. Applying this model in our observation framework, we can endeavor to

save human existence and achieve decrease in the pace of murder or mass killing.

Moreover, our proposed system can likewise be carried out in top of the line obser-

vation and security robots to distinguish a weapon or dangerous resources to stay

away from any sort of attack or endanger to human existence.

ii

Acknowledgments

In the name of Allah, the most beneficent and the most merciful. We are highly

grateful to the One who created us and blessed us with a privileged life. We would

like to thank our parents who have always been a pillar of strength and support.

We are thankful to our parents who taught us that how hard work, devotion, and

working towards your goal with pure intention can take you to places.

Furthermore, we would like to thank and appreciate our supervisor Sir, Jawwad Ijaz

who has given us a chance to work on a project that can help in creating value

for our beloved country. His professional guidance, time, and effort will always be

remembered. Last but not the least, we would like to appreciate our friends who

make studying and hard times less challenging. May ALLAH (SWT) guide us to

the right path.

MOBEEN TAHIR & MEHRUN-NISA RAJA

Islamabad, Pakistan

June, 2022

“Hard work beats talent when talent doesn’t work hard.”

Tim Notke

iii

iv

Table of Contents

Abstract v

1 Introduction 1

1.1 Overview . 1

1.2 Problem Description . 2

1.3 Objective . 2

1.4 Project Scope . 2

1.5 Limitations . 3

2 Literature Review 4

2.1 A traditional Computer Vision Technique 4

2.2 Deep Learning . 6

2.2.1 Convolutional Neural Network (CNN): 6

2.2.2 Single Shot Dectector . 7

2.3 VGG16 . 8

2.4 Transfer Learning . 9

2.4.1 YOLO . 9

2.4.2 Machine Learning VS Deep Learning 10

2.4.3 Comparison of Discussed Techniques 12

3 Requirements Specifications 15

3.1 Existing System . 15

3.2 Proposed System . 15

3.3 Functional Requirements . 17

3.4 Non-Functional Requirements . 17

3.5 Hardware Requirements . 17

3.6 Software Requirements . 18

3.7 Use Cases . 19

v

vi TABLE OF CONTENTS

4 System Design 25

4.1 System Architecture . 25

4.2 System Architecture Diagram . 26

4.3 Design Constraints . 27

4.4 Design Methodology . 27

4.5 High Level Design . 27

4.5.1 Sequence Diagram . 27

4.5.2 Activity Diagram . 29

4.6 Low Level Design . 30

4.6.1 Web Application . 30

4.6.2 Client-Side App . 34

4.7 GUI Design . 38

4.7.1 Usability Principles . 38

4.8 External Interfaces . 39

5 System Implementation 41

5.1 Introduction . 41

5.2 System Architecture . 41

5.2.1 Object Detection . 42

5.2.2 YOLO . 42

5.3 Tools And Technologies . 43

5.3.1 AWS S3 . 43

5.3.2 Twilio . 43

5.3.3 Roboflow . 44

5.3.4 Google Colab Notebook . 44

5.3.5 Visual Studio Code . 44

5.3.6 Adobe XD . 44

5.3.7 QT Designer . 44

5.4 Experimental Setup . 45

5.4.1 Dataset Collection . 45

5.4.2 Labelling Dataset . 46

5.4.3 LabelImg . 46

5.4.4 TXT File . 47

5.4.5 Class Labels . 48

5.5 Methodology . 49

5.6 Model Training . 50

6 Testing 52

Table of Contents vii

6.1 System Testing . 52

6.2 Functional testing . 52

6.3 Interface testing . 53

6.4 Usability testing . 54

6.5 Compatibility testing . 54

6.6 Performance testing . 54

6.7 Testing Strategies . 54

6.7.1 Black Box Testing . 54

6.7.2 Specification Testing . 55

6.7.3 White Box Testing . 55

6.8 Testing Performance Test Cases . 55

6.9 Testing Usability Test Cases . 56

6.10 Test Cases . 56

6.10.1 Test Case 1 : Registration . 56

6.10.2 Test Case 2 : Log In . 57

6.10.3 Test Case 3 : Gun Detection 57

6.10.4 Test Case 4 : Saving Snapshot 58

6.10.5 Test Case 5 : Alert Generation 58

6.10.6 Test Case 6 : Notification . 59

6.11 Limitations . 60

7 Conclusion 61

7.1 Future Works . 62

A User Manual 63

References 72

List of Figures

2.1 Single Shot Detector Multi-Box Detector 8

2.2 YOLOv3 . 10

3.1 Guns . 16

3.2 Water Guns . 16

3.3 Use Case . 19

3.4 Registration . 20

3.5 Log In Process . 21

3.6 Monitoring Process . 22

3.7 Saving Snapshot . 23

3.8 Notification Process . 24

4.1 Client-Server Architecture . 25

4.2 System Architecture . 26

4.3 Sequence Diagram . 28

4.4 Activity Diagram . 29

4.5 Sign Up . 30

4.6 Log In . 31

4.7 Password Reset . 31

4.8 Password Reset Sent . 32

4.9 Enter New Password . 32

4.10 Password Reset Complete . 33

4.11 Alert Dashboard . 33

4.12 Alerts . 34

4.13 Log In Window . 35

4.14 Settings Window . 36

4.15 Detection Window . 37

5.1 System Architecture . 42

viii

List of Figures ix

5.2 Guns . 45

5.3 Guns . 46

5.4 LabelImg . 46

5.5 TXT File . 47

5.6 Class Labels . 48

5.7 Accuracy of our Model . 51

6.1 Interface Testing . 53

A.1 Client Side Login . 63

A.2 Client Side Login . 64

A.3 Client-Side Settings Window . 64

A.4 Client-Side Settings Window . 65

A.5 Client-Side Detection Window . 65

A.6 Client-Side Detection Window . 66

A.7 Client-Side Detection Window . 66

A.8 Client-Side Detection Window . 67

A.9 Client-Side Detection Window . 67

A.10 Client-Side Detection Window . 68

A.11 Watergun Detection . 68

A.12 Server-Side Sign Up . 69

A.13 Server-Side Login . 69

A.14 Alerts Dashboard . 70

A.15 Alerts . 70

A.16 SMS Notification Alert . 71

List of Tables

2.1 Machine Learning Vs Deep Learning. 11

2.2 Comparison of Discussed Techniques 14

3.1 Registration Process . 20

3.2 Log In . 21

3.3 Monitor . 22

3.4 Save Snapshot . 23

3.5 Notify . 24

6.1 Test Case: Register . 57

6.2 Test Case: Login . 57

6.3 Test Case: Gun Detection . 58

6.4 Test Case: Saving Snapshot . 58

6.5 Test Case: Alert Generation . 59

6.6 Test Case: Notification . 59

x

Acronyms and Abbreviations

API Application Programming Interface

CNN Convolutional Neural Networks

FPS Frames Per Second

GPU Graphics Processing Unit

GUI Graphical User Interface

ML Machine Learning

PMMW Passive Millimeter Wave

SPP Special Pyramid Pooling

SURF Speed-up Robust Feature

SIFT Scale Invariant Feature Transform

UI User Interface

VGG Visual Geometry Group

YOLO You Only Look Once

xi

Chapter 1

Introduction

1.1 Overview

From many statistics, it can be assumed that the violence rate concerning guns and

harmful weapons is increasing every year, becoming a challenge for law enforcement

agencies to deal with this issue on time. There are many places where the crime rate

caused by guns is very high, especially in places where there are no gun control laws.

The early detection of violent crime is of immense importance for citizens’ security

is one of the main concerns, Pakistan encounters. No doubt that despite having the

latest tools and technologies, there are still some places where we lack in security

due to which the criminals manage to get away with their crimes committed. Young

individuals are being more involved in such criminal activities. Many people die

each year from gun-related violence whether it is an individual attack or a massive

attack. Research shows that gun is the main weapon used for various crimes like

robbery, theft, and rape. The Crime rate in Pakistan is high as we know, Karachi

is the hub for such criminals’ activities, people live in fear there that at any time of

the day, they may be shot or robbed by gunpoint. Karachi being the hub does not

mean such activities do not take place in other parts of the country. It is considered

a norm to be robbed. Criminals due to this take advantage of the weak security

and mostly remain successful in their mission, knowing that they won’t be either

identified or caught and the loss of the people is never recovered. Our final year

project deals with these issues by working on the security system by building a Gun

Detection System. The weapon detection system will detect the weapon that the

criminal or any individual possesses in a closed environment using machine learning.

Once detection of the weapon is successful, a web application will be built to notify

the administration of that particular area of the unusual possession of a weapon by

1

2 Introduction

an individual so that an action can be taken immediately. Further more, our project

differentiates between a toy gun/water gun and the other usual gun.

1.2 Problem Description

The problem identification is the ability of any mishap to happen and not being able

to report to the incident or identify any suspicious activity is due to the security

loopholes we still have. Criminals get away with robbery, theft, breaking through

and, rape. In Pakistan, few individuals also tend to possess a weapon/gun without

any license, which they tend to use in rage for personal rivalries which results in

loss of life. Attacks in educational institutes have become even much more common,

terrorist attack and attacks on institutional faculty over rage and many students

also tends to carry a weapon and do not fear the consequences of possession and

usage of a weapon. Our project thus aims to tackle all these issues, by on-spot

identification of the gun possessed by the criminal. It will notify the administration

of the organization on their specific security by building a web application. Along

with this, also for future reference, a snapshot of the scene will be saved.

1.3 Objective

“Our objective is to develop a prototype of a gun detection system identifying guns.

The main concern is to make sure to identify a gun and differentiate it from a toy

gun/water gun, being possessed by any individual who is on the selected premises

for now. For this system we will be building a web application that will serve the

purpose of detecting the gun and an alert will be generated on it only if the gun is

detected.No alerts to be generated if the gun is a water gun/toy gun. The criminal

activity will be further investigated based on the snapshot of the incident that will

be saved along with the alert.”

1.4 Project Scope

The scope of this project is to provide a better security in the premises of the se-

lected area and attempt to design and develop a system that can detect the guns

in no time with less computational resources. It is evident from technological ad-

vancements that most of the human-assisted applications are now automated, and

are computer-based. Our project aim’s to detect the guns in no time with less com-

putational resources. Additionally, the security officials will also get access to the

1.5. Limitations 3

system through an application. The training and testing will be based on the input

data set that is the images of the gun and the storage of data will be in the form

snapshot of a video clip of the entire scenario.

1.5 Limitations

• Internet Connection

• Camera Result

• Light Factor

Chapter 2

Literature Review

Being able to provide high security and reduce criminal activities which tend to be

life-threatening becomes challenging at any place. Due to this, criminal activity

and its identification have become the main concern for all the organizations to be

able to control the harmful activities being carried out by the criminals. This is

the reason that for over many years researchers have been working and finding out

different ways and techniques to be able to detect these activities with the help of the

advancements in the computer field. In doing several researchers have contributed to

the idea of observing the behavior and activities using object detection. Our project

is also based on object detection, in which the object will be identified whether the

object in the image is a gun, this will ultimately inform us about the possession of

a weapon by an individual which will result in evaluating the criminal activity that

is being performed. To develop the framework of a system, the process is broken

down into three main levels: firstly, to extract low level information, secondly to

detect the object or track or identify some unusual activity and thirdly, the high

level involves making decision on the disturbance or unusual activity behavior. Over

the years there have been several methods and techniques used in detection of a gun

such as:

• A traditional Computer Vision Technique

• Deep learning

2.1 A traditional Computer Vision Technique

As the technology evolves, methods to solve a solution evolve too. Before there were

any advancement in ML, we used a traditional computer vision, image processing

4

2.1. A traditional Computer Vision Technique 5

techniques to detect the objects. Researchers have a remarkable work when it comes

to following the image processing approach. Author Rohit kumar’s [1]contribution

to gun detection was in such a way that they proposed a framework which exploited

color-based segmentation (Color based segmentation is performed to extract the

color related to gun, i.e. black if the gun is of black color.) to eliminate un related

object from an image using k-means clustering. Harris interest point detector and

Fast Retina Keypoint (FREAK) is used to locate the object (gun) in the segmented

images. These two techniques and their similarity to the prototype was used to iden-

tify if they detected blob is a gun or not. The authors had used their own created

data set that consisted of 65 positive and 24 negative images which had a true pos-

itivity rate of 84.26%. Apart from the above mentioned, techniques and processes,

there were some other main processes that lead to the gun detection mentioned by

author Rohit such as preprocessing which involved removal of different noises from

the image which arises during the acquisition or transmission of image and then the

next step is to move on to the blob extraction to extract a blob from a segmented

image. Moving onwards to morphological closing and boundary extraction, it is used

to perform to eliminate the presence of small gaps in the blob and then boundary

of blob is extracted in order to obtain the shapes of the gun or the object speci-

fied. Here the author introduced a SURF Feature extraction methodology which is

faster than other interest point detector like SIFT, to extract features from identi-

fied different objects and hence compared with the basic standard features of the

gun(object), which identifies if the detected thing is a object or not . The authors

had used their own created data-set that consisted of 15 positive and 10 negative

images which had a true positivity rate of 86.67%. Concealed Weapon Detection [2]

by Bhafna Khajone follows several step and techniques that were used to detect a

concealed weapon. Firstly, Infrared sensor images were used as input, secondly the

process begins with the image being denoised meaning that noise to be removed from

the image. After the noise has been removed, the authors used a wavelet technique

to enhance/clarify the image. Once enhancement is done, the fusion of the images

has to take place, as multiple images of one object exist. Next comes the image

decomposition by creating image pyramids. Lastly segmentation takes place that is

where the objects are further extracted from decomposed images. Neither the data

set nor the positivity rate has been mentioned. All the above-mentioned techniques

followed the image processing methods, that did not have better accuracy or effi-

ciency. To bring improvements in the already used methods Machine Learning and

Deep Learning became highly famous in order to solve problems related to object

detection.

6 Literature Review

2.2 Deep Learning

2.2.1 Convolutional Neural Network (CNN):

Deep learning is a subset of machine learning where artificial neural networks, algo-

rithms inspired by the human brain, learn from large amounts of data. Deep learning

allows machines to solve complex problems even when using a data set that is very

diverse, unstructured and inter-connected. Authors after image processing, used

different techniques to solve the issues in detection of the gun. Different approach

used by the author Gyanendra K. Verma [3] was of We have used Deep Convolu-

tional Network (DCN), a state-of-the-art Faster Region-based CNN model, through

transfer learning, for automatic gun detection from the clustered scene. During

training the authors performed the preprocessing of data set images different ap-

proach to tackle the same issue. They used Deep Learning based Convolutional

Neural Network (CNN), primarily Faster R-CNN (Region based CNN) which uses a

combination of region proposals along with convolutional neural networks to extract

the features of an image based on the regions, along with labeling those extracted

features and then training the entire model using this process by going through

the entire training data set. While training the model, pre processing steps were

performed by abstracting the mean value of RBG. which is computed on the train-

ing data by the authors. Then, they moved along the stack of convolutional layers

whose filters are of the size 3 x 3, which have a convolutional stalk of 1 pixel. Next,

by the use of five Max pooling layers, spatial pooling was implemented. Max pool-

ing was performed on a 2 x 2 window with the assistance of 2 strides. Three fully

connected layers follow the stack of those convolutional layers, which have varied

depth in varied architectures. Soft-max is the final layer and with the rectification

non-linearity, the entire hidden layer can be provisioned. For classification multi

layered architecture was required for which the author used a technique called gra-

dient decent learning for weight changes in the classification network of CNN. On

the basis of the data set used by the authors which had sixty-five positive images

(gun present) and twenty-four negative images (gun is not present). The data set

was set up such that it comprises of images of various kind of handheld gun with

various scale, revolution and orientation. The overall accuracy achieved by us using

proposed system before with the traditional image processing was 84.26% which was

transformed to 93% by using deep learning. This technique proved to be very effec-

tive as the results show. Another approach implemented by author Jose L Salazar [4]

who presented a new data set obtained from a real CCTV and synthetic images, to

which Faster R-CNN was applied using Feature Pyramid Network with ResNet-50

2.2. Deep Learning 7

resulting in a weapon detection model able to be used in quasi real-time CCTV

(90 ms of inference time with an NVIDIA GeForce GTX-1080Ti card) improving

the state of the art on weapon detection in a two stages training. In this work, an

exhaustive experimental study of the detector with these datasets was performed,

showing the impact of synthetic datasets on the training of weapons detection sys-

tems, as well as the main limitations that these systems present nowadays. The

generated synthetic data set and the real CCTV data set are available to the whole

research community. The accuracy level achieved was 91.43%. Another approach

implemented by author Gulzar Ahmed [5] was that he designed a new Intelligent

Ammunition Detection and Classification (IADC) system using Convolutional Neu-

ral Network (CNN). The proposed system is designed to identify persons carrying

weapons and ammunition using CCTV cameras. When weapons are identified, the

cameras sound an alarm. In the proposed IADC system, CNN was used to detect

firearms and ammunition. The CNN model which is a Deep Learning technique

consists of neural networks, most commonly applied to analyzing visual imagery

has gained popularity for unstructured data classification. Additionally, this sys-

tem generates an early warning through detection of ammunition before conditions

become critical. Hence the faster and earlier the prediction, the lower the response

time, loses and potential victims. The proposed IADC system provides better results

than earlier published models like VGGNet, OverFeat-1, OverFeat-2, and OverFeat-

3. Another approach implemented by author Muhammad Tahir Bhatti [6] were

sliding window/classification and region proposal/object detection. Some of the

algorithms used are VGG16, Inception-V3, Inception-ResnetV2, SSDMobileNetV1,

Faster-RCNN Inception-ResnetV2 (FRIRv2), YOLOv3, and YOLOv4. Precision

and recall count the most rather than accuracy when object detection is performed

so these entire algorithms were tested in terms of them. Yolov4 stands out best

amongst all other algorithms and gave a F1-score of 91% along with a mean average

precision of 91.73% higher than previously.

2.2.2 Single Shot Dectector

Single Shot detector like YOLO takes only one shot to detect multiple objects present

in an image using multi-box. It is significantly faster in speed and high-accuracy

object detection algorithm. SSD approach had been taken by the authors Aditya

Vikram [7] to bring in more accuracy and efficiency. Their paper implemented

weapon detection using a convolution neural network (CNN) based SSD and Faster

RCNN algorithms. They used two types of datasets. One dataset, which had pre-

labelled images and the other one is a set of images, which were labelled manually.

8 Literature Review

Figure 2.1: Single Shot Detector Multi-Box Detector

SSD speeds up the process by eliminating the need of region proposal network. To

increase the efficiency SSD brings a few technologies including default boxes and

multi-scale features. These improvements allow SSD to match the Faster R-CNN’s

accuracy using lower resolution images, which further pushes speed higher. SSD

and Faster RCNN algorithms are simulated for pre-labeled and self-created image

dataset for weapon detection. Both the algorithms are efficient and give good results

but their application in real time is based on a trade off between speed and accuracy.

In terms of speed, SSD algorithm gives better speed with 0.736 s/frame. Whereas

Faster RCNN gives speed 1.606s/frame, which is poor compared to SSD. With

respect to accuracy, Faster RCNN gives better accuracy of 84.6%. Whereas SSD

gives an accuracy of 73.8%, which is poor compared to faster RCNN. SSD provided

real time detection due to faster speed but Faster RCNN provided superior accuracy.

2.3 VGG16

We have authors Justin Lai et al [8] who have tapped into other techniques within

deep learning field. They resized the images first to make it compatible with the

tensor-box framework. Then by using the scripts they set a bounding-boxes around

each gun and after that they reformatted the output scripts to be used as json.

They have used VGG-16 classifier and tested on the 200 images of different guns

and achieved accuracy of 58% for revolver and 46% on rifle. After that they decided

to implement Over-feat through tensor-box and trained by using 20% confidence

threshold and a learning rate of 0.0003. This resulted in train accuracy of 93%

and test accuracy of 89%. Another approach was implemented by the author Javed

Iqbal et al [9]in which they used VG-16 with the combination of Region Proposal

2.4. Transfer Learning 9

Network (RPN) and Faster R-CNN for object classification. They used data set

from multiple sources and achieved an accuracy of 88.3%.

2.4 Transfer Learning

Transfer learning is a famous method in computer vision because it allows us to build

accurate models in a time saving way. With transfer learning, rather than beginning

learning process from zero, you start from images or pattern that exist before by

learning when solving a different problem. This way you save time. In computer

vision, transfer learning is usually expressed through the use of pre-trained models.

A pre-trained model is a model that was trained on a large benchmark data set to

solve a problem similar to the one that we want to solve. The approach had been

implemented by the authors Mehmet Tevfik Agda et al [10] where they implemented

multiple architectures such as Alex-Net, VGG16 and VGG19 with transfer learning

to achieve their desired results. The authors used data set from various open access

sources. The total images in their data set were 16000 images containing 9500 knives,

3500 guns, and 3000 normal pictures. The authors achieved a greater accuracy value

using transfer learning as compared to learning from scratch. They had the following

accuracies:

• Alex-Net with 97.74%,

• VGGI 6 with 99.38%

• VGGI 9 with 99.27% which is higher than the highest accuracy they obtained

from Alex-Net with 84.58% when learning from scratch.

2.4.1 YOLO

We have author Arif Warsi et al [11] who used a deep learning model called Yolov3

on their own dataset of guns with different orientation and position by using ima-

geNet. By using transfer learning for training of YOLOv3 model and weight trained

on ImageNet by YOLOv3 team instead of starting from zero. YOLOv3 is an object

detection algorithm widely used for real time processing. Input images were divided

into M x M grids. A single object is then predicted by this grid cell. Logistic re-

gression is used to predict an object scores for each bounding-box by YOLOv3 and

changes the method to compute the cost function.

The detection results are examined frame by frame in the videos the highest ac-

curacy they achieved was 98.64%. Another author Lei Pang [12]proposes using a

real-time detection method for detecting concealed metallic weapons on the human

10 Literature Review

Figure 2.2: YOLOv3

body applied to passive millimeter wave (PMMW) imagery based on the YOLOv3,

and a sample dataset. It uses the darknet-53 and darknet-13 networks for feature

extraction. Similar to the Visual Geometry Group (VGG) network, it is mainly

composed of a set of 3×3 and 1×1 convolutional layers. The YOLOv3 deepens the

convolutional network to extract a greater number of deep features. A short-cut is

added to YOLOv3 to build a residual module, thus avoiding gradient disappearance

from deep network training. Secondly, it is introduced into the Faster R-CNN, with

the idea of inputting the a priori anchor box during model training, but the selec-

tion of the anchor box is automatically obtained from the training data by means

of k-means clustering. The experiments shown that the YOLOv3-based contraband

detection method for the PMMW images and can meet the real-time detection re-

quirements during large passenger flows. In terms of trade of detection accuracy,

detection speed, and computation resource, the YOLOv3-53 model is more advan-

tageous and effective, even with an insufficient sample data. Due to the equipment

limitations, the available multi-source PMMW image data are limited, and the data

needs to be detected and improved. Furthermore, more training tests of various

types of contraband should be developed for further PMMW security requirements.

2.4.2 Machine Learning VS Deep Learning

The key difference between deep learning vs machine learning stems from the way

data is presented to the system. Machine learning algorithms almost always require

structured data, whereas deep learning networks rely on layers of the ANN (artificial

neural networks). Machine learning algorithms are built to “learn” to do things by

2.4. Transfer Learning 11

understanding labeled data, then use it to produce further outputs with more sets

of data. However, they need to be retrained through human intervention when

the actual output is not the desired one. Deep learning networks do not require

human intervention as the nested layers in the neural networks put data through

hierarchies of different concepts, which eventually learn through their own errors.

However, even these are subject to flawed outputs if the quality of data is not good

enough.

Machine Learning Deep Learning

Optimal Data Volumes

Thousands of Data Points Bid Data:Millions of Data Points

Outputs

Numerical Value, like classifica-
tion or score

Anything from numerical values
to free-form element, such as free
text and sounds

How it works

Uses various types automated al-
gorithms that learn to model
functions and predict future ac-
tions from data

Uses neural networks that pass
through many processing layers
to interpret data features and re-
lations

How it’s managed

Algorithms are detected by data
analyst to examine specific vari-
able in data sets

Algorithms are largely self-
directed on data analysis once
they’re put into production

Table 2.1: Machine Learning Vs Deep Learning.

12 Literature Review

2.4.3 Comparison of Discussed Techniques

Category Research
Paper

Authors Methods
Used

Dataset Accuracy

Image Pro-
cessing

A Computer
Vision based
Framework
for Visual
Gun Detec-
tion using
SURF

Rohit Ku-
mar Tiwari

SURF fea-
ture extrac-
tion

Self-made 15
Positive and
10 Negative
images

86.67%

A Computer
Vision based
Framework
for Visual
Gun Detec-
tion using
Harris In-
terest Point
Detector

Rohit Ku-
mar Tiwari
* and Gya-
nendra K.
Verma

Harris in-
terest point
detector and
Fast Retina
Keypoint
(FREAK)

Self- made 65
Positive and
24 Negative
images

84.26%

Concealed
Weapon
Detection
Using Image
Processing

Bhavna
Khajone,
Prof. V. K.
Shandilya

Image Pro-
cessing

Not men-
tioned

None

Deep Learn-
ing

A Handheld
Gun Detec-
tion using
Faster R-
CNN Deep
Learning

Gyanendra
K. Verma

R-CNN
Deep Learn-
ing

Self -made 65
Positive Im-
ages and 24
Negative Im-
ages

93%

Real-time
gun de-
tection in
CCTV

Jose-L-
Salazar

CNN Deep
Learning
Feature
Pyramid
Network
with ResNet-
50 Data
augmenta-
tion

Multiple
Datasets
(33,500-gun
images)

91.43%

2.4. Transfer Learning 13

Intelligent
Ammunition
Detection
and Clas-
sification
(IADC) sys-
tem

Gulzar
Ahmed

CNN Not specified 96.74%

Weapon
Detection
in Real-
Time CCTV
Videos Using
Deep Learn-
ing

Muhammad
Tahir Bhatti

VGG16,
YOLOv3,
FRCNN

Different
Sources

93%

Weapon De-
tection using
Artificial
Intelligence
and Deep
Learning
for Security
Applications

Aditya
Vikram

(CNN)
based SSD
and Faster
RCNN

Self- made
Database

SSD 73.8%
RCNN
84.6%

Developing
a Real-time
gun de-
tection in
Classifier

Justin Lai et
al

VGG16 Self-made
Dataset (200
Images)

89%

Leveraging
Orientation
for Weakly
Supervised
Object De-
tection with
Application
to Firearm
Localization

Javed Iqbal
et al

VGG16,
RFCNN,
RPN

Different
Sources
(10973 +
13647 Im-
ages)

88.3%

14 Literature Review

Deep Neural
Networks
based on
Transfer
learning

Memet tevfik
Agdas et al

Transfer
learning

16000 images
by different
resources

VGG16
99.38%
VGG19
99.27%
Alex-Net
97.74%

Gun De-
tection
System using
YOLOv3

Arif Warsi el
al

YOLOv3 Data-set
from Ima-
geNet

98.64%

Real Time
Concealed
Object De-
tection From
PMW

Le Pang et al YOLOv3,
SSD, VGG16

Limited
Dataset

95%

Gun De-
tection in
Surveillance
Videos using
Deep Neural
Networks

JunYo Lim
et al

M2Det UCF Crime
Dataset
(3000 gun
images)

80%

Automatic
gun de-
tection
Approach
for video
surveillance

Mai kamal
el den Mo-
hamed et al

CNN in
combination
with Alex
Net and
GoogleNet

Multiple
Sources
(13743 Im-
ages)

GoogleNet
97.9% Alex
Net 99.2%

Weapon
Detection
Using YOLO
V3 for Smart
Surveillance
System [13]

Sanam
Narejo et al

YOLOv3 Custom
Dataset

98.89%

Table 2.2: Comparison of Discussed Techniques

Chapter 3

Requirements Specifications

3.1 Existing System

In this section we will analyze the existing system. Through our research, we found

out that quite a lot of work has been done on weapon detection, but still the accuracy

was not high and the application was lagging behind. For the system the previously

used techniques such as CNN or Faster R-CNN were not up to today’s standard,

thus needed a better approach for object detection, due to which YOLO (You Only

Look Once) was introduced, which changed the computer vision techniques and set

a standard for object detection.

3.2 Proposed System

Our proposed system is used to detect a gun from the video and identify if a person

possess a gun or not, and differentiate between a toy gun and gun. This proce-

dure/detection will be carried out on the basis of YOLO. Our system will comprise

of a web application, that will be accessible to the security officials. The app would

be user friendly and to do so an easy and understandable user interface would be

built. The system uses few compute vision methods and deep learning for iden-

tification of a gun from captured image. For object detection and classification,

we trained the classifier model of YOLOv4, i.e, “You Only Look Once” on our

customized dataset. Our dataset comprises of guns and waterguns. For our gun

detection system, we used our own customized dataset. We collected our dataset

from google images, which were about 3000+ images in which specifically choose the

weapon of single type (pistol) and of water gun for development purpose, which we

will later increase the types of weapon. Following are the some of the images from

15

16 Requirements Specifications

our dataset:

(a) (b) (c)

Figure 3.1: Guns

(a) (b) (c)

Figure 3.2: Water Guns

3.3. Functional Requirements 17

3.3 Functional Requirements

• User should be able to Sign Up or Log In to the system

• User must be able to enter a phone number in the dialogue box

• User should enter location in the dialogue box

• The admin panel should be available to the user for alerts and information

• User must be notified through sms on mobile number

• Camera must be also in a working condition

• Internet also must available

• System should be able to read frames and analyze video.

• System should be able to identify the gun and water gun.

3.4 Non-Functional Requirements

• Availability: After installation of the application on computer,it will be avail-

able for use.

• Re-usability: Different modules of the system will able to be reusable in some

other systems.

• Reliability: The system should be reliable in detecting a gun from a videos.

• Maintainability: Developers will be responsible for system maintainability.

3.5 Hardware Requirements

The hardware requirements for our system:

• Laptop

• Workstation.

• Internet Connection

• Camera

This system does not need any assistance of extra hardware.

18 Requirements Specifications

3.6 Software Requirements

The development of our project uses the python. The prerequisites software and

libraries for this project are:

• LabelImg Directory: LabelImg Directory,a graphic image annotation tool.

Qt and Python are used to build its GUI. Annotations can be saved as per our

required format (XML,PASCAL, VOC).It is an open source and available to

all.

• Google Colab: For the training and testing of our model we used google

colab. The code on Colab’s notebook is executed Google’s Cloud Server. This

helps you use Google’s Hardware regardless of the power of your computer.

• Visual Studio Code: We used VS Code for the development of our web

application, it is a code editor with support for development operations like

debugging, task running, and version control.

• Adobe XD: We used Adobe XD for designing the user interface of our web

application.

• QT Designer: Qt Designer is a tool that provides us to create GUI of client

side of our web application productively and efficiently.

3.7. Use Cases 19

3.7 Use Cases

Note : The use cases may change during SDLC

Figure 3.3: Use Case

20 Requirements Specifications

Figure 3.4: Registration

Registration Process

Actor User

Description Use case specifies registration
process

Main Success factor User must be able to register
and add in Log in details

Pre-Condition The application is in running
state

Post-Condition User has been successfully
registered

Table 3.1: Registration Process

3.7. Use Cases 21

Figure 3.5: Log In Process

Log In

Actor User

Description This use case specifies Log In
procedure

Main Success factor The user must be able to Log
In and enter specified details

Pre-Condition The User should be registered

Post-Condition User has been successfully
Logged In

Table 3.2: Log In

22 Requirements Specifications

Figure 3.6: Monitoring Process

Monitor

Actor User

Description This use case specifies moni-
toring procedure

Main Success factor User must be able to monitor
the situation

Pre-Condition The camera and application
should be running

Post-Condition Gun has been detected

Table 3.3: Monitor

3.7. Use Cases 23

Figure 3.7: Saving Snapshot

Save Snapshot

Actor User

Description This use case specifies saving
the frame

Main Success factor The screenshot to be saved

Pre-Condition The gun should be detected in
frame

Post-Condition Saved Snapshot

Table 3.4: Save Snapshot

24 Requirements Specifications

Figure 3.8: Notification Process

Notify

Actor User

Description This use case specifies alert
generation

Main Success factor The notification received
through sms

Pre-Condition The gun should be detected in
the scene

Post-Condition Notified

Table 3.5: Notify

Chapter 4

System Design

In this chapter of System Design, which is all about defining component, interfaces

and data to reach to our specified requirements, we have a deeper look into the

development phases of our gun detection system. This chapter will discuss the sys-

tem architecture and provide details of the design methodology, constraints, models,

interaction between the system and the user.

4.1 System Architecture

Our developed system based on 3-tier application architecture. The gun detection

is done at the client-side application by each input frame, of both the pistol and

water gun. After successful detection of the guns, the saved frame that consists only

of the pistol will be alerted to the server side, which stores the information of the

detected gun(pistol) in database which is accessed by the server.

Figure 4.1: Client-Server Architecture

25

26 System Design

4.2 System Architecture Diagram

An architectural diagram is a diagram of a system that is used to deduce the overview

of the software system. It is an important tool as it provides an overall view of the

physical application of the software system. Our developed system’s overall archi-

tectural overview is illustrated in the diagram below:

Figure 4.2: System Architecture

4.3. Design Constraints 27

4.3 Design Constraints

There are some design constraints in our project.

• Our system’s user interface must be operational

• Application to be user-friendly

• Response time to be minimum

• Application should be responsive

A constraint that we face on the system is the non-availability of multiple guns’

dataset.

4.4 Design Methodology

In design methodology we define the procedures and techniques which will help us

in designing our system. As we have to develop a web application, this is why

we needed some Python (Django) knowledge. The design process always requires

iterations and improvements on each level in order to minimize errors in the final

product due to which we brainstormed and encouraged new ideas and collaborative

thinking to work through each idea and arrive at the best and optimal solution.

4.5 High Level Design

High level design provides us a detailed overview of how different functionalities

and features coordinate and interact with each other. This section highlights the

basic workflow along with alternative paths just in case a failure occurs. Following

diagrams are used to demonstrate how different functions of this app will work.

4.5.1 Sequence Diagram

A sequence diagram is a type of interaction diagram which describes how and in

what order a group of objects works together. They illustrate how different parts

of a system will interact with each other to carry out a function, and the order in

which the interactions occur when a particular use case is executed.

In our first step, the user will launch the application, then the system will ask the

user to enter login credentials or register. After the user has successfully registered,

the user will then enter login details. On those login details user will further be

asked to enter Camera Location and Phone Number. After entering the specified

28 System Design

details, the system will launch the monitoring window. Once our application starts

monitoring, the detection algorithm detects the types of guns, and forms a bound-

ing box around it. After successful detection of the gun, our application saves the

detected frame only of the detected pistol/handgun and generates alert including

the frame/ snapshot to the server to save it in the database.

The figure below is the sequence diagram of our proposed system, which is showing

the interactions between the objects, and is describing the order in which the inter-

action is taking place.

Figure 4.3: Sequence Diagram

4.5. High Level Design 29

4.5.2 Activity Diagram

This activity diagram explains the behavior of the system from the starting point

to the ending point in the form of flowchart. It shows that the user will feed input

to application then the application will detect both the guns by using the trained

model. Then, if it succeeds in detecting the gun, it will form a bounding box

around the guns and will display the labels. Followed by that, the system saves

the frame/snapshot of the detected pistol and then generates alert of that pistol,

that includes the frame/ snapshot sent to the server to save it in the database.The

figure below is the activity diagram of our proposed system, which is showing the

behaviour between the objects, from the beginning till the end.

Figure 4.4: Activity Diagram

30 System Design

4.6 Low Level Design

The purpose of LLD or a low-level design document (LLDD) is to give the internal

logical design of the actual LLD describes the class diagrams with the methods and

relations between classes and program specs. It describes the modules so that the

programmer can directly code the program from the document.

4.6.1 Web Application

Our Web-Application consists of two main pages. The first page consists of the

registration process which includes:

• Sign up

• Login

• Forgot password

Figure 4.5: Sign Up

4.6. Low Level Design 31

Figure 4.6: Log In

Figure 4.7: Password Reset

32 System Design

Figure 4.8: Password Reset Sent

Figure 4.9: Enter New Password

4.6. Low Level Design 33

Figure 4.10: Password Reset Complete

Then the second page consists of the following:

• Alert dashboard

• Alert Details Page

Figure 4.11: Alert Dashboard

34 System Design

Figure 4.12: Alerts

4.6.2 Client-Side App

• Login Window

• Settings Window

• Monitoring Window

4.6. Low Level Design 35

Figure 4.13: Log In Window

36 System Design

Figure 4.14: Settings Window

4.6. Low Level Design 37

Figure 4.15: Detection Window

38 System Design

4.7 GUI Design

The user interface of our proposed application is quite simple, understandable and

easy to use. We have kept few buttons and input fields to get it to work. For

our web application after launching and opening, it starts off by asking the user to

register into the system, after registration, the client-side is requested to enter login

credentials, and after completing the basic login and registration procedure. All the

attributes, pages, input fields, dialogue box, format and layout of our GUI has been

kept simple and uniform rather than complicated so that the user faces no problem

or difficulty in using it.

4.7.1 Usability Principles

We have followed the Usability Principles given by Dr. Donald Norman for designing

the Graphical User Interface of our proposed system. Usability means user-centered

design. Both the design and development process are focused on the user, to make

sure their goals, models, and requirements are met.

Visibility

Users need to know what all the options are and know straight away how to use

them. This means that the user should know what’s going on inside the application.

For example in our system, it is obvious that the user has to show a gun, which

on detection will generate an alert, which will be clearly visible to the user. The

information regarding the detected gun is also kept clear so that the user faces no

difficulty in reading it.

Feedback

Like they say, every action needs a reaction. Meaning any functionality performed

should give a response that could be in form of sound, highlighting or animations.

The feedback should also be given in a reasonable time frame. In our case, we are

giving feedback to the user, in the form of alert and also by detection of the gun,

whenever the system is exposed to a gun.

Constraints

Constraints are the limitation of an interface. This prevents the users from choosing

the incorrect options. In our system, we are only using the inbuilt camera of a

laptop. This is the one constraint. Secondly, the quality of a camera is another

4.8. External Interfaces 39

constraint. If the quality is not good enough, the resolution is not proper it can

result either in wrong detection or no detection. Another constraint of our system

is that we are at the moment only covering the small area, not a huge space. The

detection area is limited. Another constraint is that we have to show at least 2 feet

away for the system to be able to detect the weapon. Internet connection is also

another constraint of our system, if we have a poor connection, this might result in

delayed or no alerts at all. We have made this application for national as well as

for international use and we know that English is the most common language in the

world. So that in future it can be widely used. Another constraint in our system, is

that the alerts cannot be deleted once sent to the alert’s panel.

Mapping

Mapping is the relationship between controls and their effect. The control buttons

are mapped better onto the sequence of actions. We have a camera screen where

users feed gun to the system and upon feeding the corresponding details are shown

which shows where and what actions are being performed and tells us at what stage

are we in the system.

Consistency

Consistency, how consistent our system is. On using it every time, the same action

should produce the same result. We have kept the appearance of both the web

app and client-side app consistent. Our buttons, fonts and labels are kept uniform.

Color scheme is also kept consistent to avoid any confusion.

Affordance

Affordance is the basically, how we see something to how it is used. In our application

the camera display opens in order to have a gun being shown to it. After that the

application simply displays a registration form, which indicates the user to register

into the system. Secondly from the client-side end, a login dialogue box pops up

which also indicates the user to log in into to the system. This procedure then

lands us on to the dashboard, showing all the details such as the alerts and images

regarding the system which gives user a complete idea of system.

4.8 External Interfaces

• The laptop must have a working camera in order to clearly stream the video.

40 System Design

• The system that is being used to build this project must have 8GB RAM &

256GB + SSD Hard Drive for smooth working experience.

• The internet connection must be good

• There must be significant space for the data-set training

Chapter 5

System Implementation

5.1 Introduction

The Implementation requires the translation of the design into programs that work

successfully. In the implementation phase, the system is installed, all the processes

are completed, and the documentation is provided to the user. Once this phase

is completed, the application will be in static production, when the system enters

static production, It will verify to ensure that all the requirements that we have

planned are met and that we have obtained an acceptable result.

5.2 System Architecture

System architecture defines the basic structure of our system that highlights both

the internal and external components of the project. The proposed system is made

by using the YOLOv4 object detection model and Python. The Architecture of the

system is categorized into three main steps/processes.

1. Camera Input: The input takes in the form of a video frames or image.

2. Processing: Processing is the key process, as the main functionality is per-

formed here such as extracting frames from the video, resizing the frame as

needed, and then entering it to our trained model. After the results are found.

3. Output: After the successful detection of the weapon, the frame will be saved

and sent to the server with a notification alert.

41

42 System Implementation

Figure 5.1: System Architecture

5.2.1 Object Detection

In object detection, the input is given as an image with the ground truth values

of the bounding box. The input image is divided into a grid cell containing the

center point which is primarily responsible for object detection and a square grid.

Each grid cell will predict bounding boxes and the confidence scores linked with the

boxes. The score will indicate the accuracy of the box and how confident is the

model, that the box contains the specified object. The confidence score is IoU of

predicted values and the ground truth values of the bounding box.

5.2.2 YOLO

YOLOv4 is a real-time object detection that achieved state-of-the-art performance

on the COCO dataset [14]. YOLOv4 functions by splitting the object detection

task into two pieces. Firstly, regression to identify object positioning via bounding

boxes, and secondly, the classification to identify the object’s class. YOLOV4 imple-

mentation is done by using the Darknet framework. YOLOv4 has enables us with a

better object detection network architecture and new data augmentation techniques.

As compared to the previous models, YOLOv4 has amazing high performance for a

great high FPS. Every YOLO model is an object detection model. An Object detec-

tion model is trained to look at an image and look for a subset of object classes. On

finding, these object classes are enclosed in a bounding box and their corresponding

5.3. Tools And Technologies 43

class is identified. The COCO dataset contains approximately 80 object classes, and

our models are trained and evaluated on the COCO dataset. From here now on,

it’s assumed that object detection models will generalize to new object detection

tasks if they are exposed to new training data. The object detector takes an image

in for input and compresses its features down through a convolutional neural net-

work backbone. The combination of backbone feature layers takes place in the neck.

The detection takes place in the head. YOLO is a one-stage detector, that makes

the predictions for object localization and classification concurrently. The backbone

network is pre-trained on ImageNet classification. By pretraining, we mean that

the network’s weights have beforehand been adapted to recognize relevant features

in an image. We considered the CSPDarknet53 backbone for our YOLOv4 model.

CSPDarknet53 is based on DenseNet, which was made to connect the layers in the

CNN. The DenseNet has been modified to be able to separate the feature map of

the base layer by copying it and sending one copy through the dense block and

sending the other directly to the next stage. This is to remove the computational

bottlenecks and improve the learning ability by sending the raw version of the fea-

ture map. Now, we combine the features that have been formed in the backbone to

move toward the detection phase. Among all the options, YOLOv4 opts for PANet

for the feature aggregation and adds an SPP block following the CSPDarknet53 to

elevate the receptive field and filter out the important features from the backbone.

Lastly, in the YOLOv4 Detection step, the same head has been used as the one

used in YOLOv3, with anchor-based detection steps, and three tiers of detection

granularity.

5.3 Tools And Technologies

5.3.1 AWS S3

We used AWS services to store our images in the backend. The images that we are

saving, on the alert generation, are the ones being stored on AWS S3. Amazon S3

is an object storage service that offers industry-leading scalability, data availability,

security, and performance.

5.3.2 Twilio

We used Twilio for mobile alerts. Twilio’s APIs power its platform for communica-

tions. Behind these APIs is a software layer connecting and optimizing communi-

cations networks around the world to allow your users to call and message anyone.

44 System Implementation

5.3.3 Roboflow

Roboflow is an online platform for improved data collection preprocessing, and model

training techniques. Roboflow provides flexibility to the users in terms that users can

also upload their own data set. We used Roboflow to upload our own dataset and

applied some pre-processing techniques like augmentation. Roboflow also supports

team collaboration, any changes made to the data, will be shown to anyone that is

part of the team.

5.3.4 Google Colab Notebook

Google Colab is a free Jupyter notebook environment running completely in the

cloud. Colab needs no setup to be required also any notebooks you create can

be shared and edited by your team members. Colab supports the most popular

machine learning libraries which can be easily loaded into your notebook. We used

Google Colab to train our model. Firstly, we created a notebook, then executed

the code in python by cloning the YOLO repository, then we imported our dataset

from Roboflow through API, after that we configured our model and completed our

model training. [15]

5.3.5 Visual Studio Code

We used VS Code for the development of our web application, it is a code editor

with support for development operations like debugging, task running, and version

control. We developed a client-side and server-side application on vs code which we

will later deploy on Heroku for real-time alerts. We build the server-side application

in the Django framework of python and used the REST framework for API. [16]

5.3.6 Adobe XD

We used Adobe XD for prototyping our weapon detection system. Adobe XD is the

Adobe prototyping tool for user experience and interaction designers. Adobe XD

features are used for creating wireframes, prototypes, and screen designs for digital

products such as websites and mobile apps. [17]

5.3.7 QT Designer

We created our application GUI by using the QT Designer which helped us to create

productively and efficiently. Qt Designer is a tool that provides us user interface

to create GUIs for our PyQt applications. With this tool, we can create GUIs by

5.4. Experimental Setup 45

dragging and dropping QWidget objects on an empty form. After this, we can

arrange them into a coherent GUI using different layout managers. Qt Designer is

platform and programming language independent. It doesn’t produce code in any

particular programming language, but it creates a file with. UI extensions which

are XML files.

5.4 Experimental Setup

Python was chosen as the programming language because it is a high-level program-

ming language that is simple to learn and code, making it one of the most extensively

used programming languages for constructing machine learning and deep learning

algorithms.

5.4.1 Dataset Collection

We collected our dataset from google images, which were about 3000+ images which

consisted of a single type of gun(pistol/hand gun) and water gun for development

purposes, we will later increase the types of weapons in our detection system. There

were several limitations while making our dataset, it goes without saying that we

could not possibly include all types of guns in our dataset, so we choose specific

guns to make our customised dataset for development purposes. Following are the

certain pictures from our data set.

Dataset pictures

(a) (b) (c)

Figure 5.2: Guns

46 System Implementation

(a) (b) (c)

Figure 5.3: Guns

5.4.2 Labelling Dataset

The images in the dataset were manually labeled with the use of a system called

’LabelImg.’ each image is labeled by drawing bounding boxes around the desired

signs in the image and selecting their relevant classes.

5.4.3 LabelImg

For each image, an txt file, also known as a ’Annotation file,’ is created and saved

into a specified space. Annotations are saved as txt files in YOLO format. [18]

Figure 5.4: LabelImg

5.4. Experimental Setup 47

5.4.4 TXT File

The annotation files contain details about the weapon in the image such as name of

image, class and coordinates of the annotation. These files are further used to train

and enable the algorithm to detect the weapon. We labelled our dataset in YOLO

format which was to be used in training of Yolov4 model.

Figure 5.5: TXT File

48 System Implementation

5.4.5 Class Labels

A weapon in an image can be detected and identified by humans. The human visual

system is quick and accurate, and it can handle complicated tasks like detecting

multiple things. We can quickly train computers to identify and analyze multiple

weapons inside an image with high accuracy, due to the availability of large amounts

of data, faster GPUs, and better algorithms. Assigning a class label to an image is

a part of image labeling; all labels are kept in the class file shown below.

Figure 5.6: Class Labels

5.5. Methodology 49

5.5 Methodology

Our application is developed using a Water-Fall Model, keeping in mind the en-

hancements that might be made in the future. The application was developed in

different phases.

• Research

In the first phase of application development, we were gathering the required es-

sential information regarding the development of the application. We read vari-

ous research papers and also tried to find any existing dataset for guns but we

could not find any, therefore we decided to make our own dataset. We trained our

yolov5(pytorch) model by Ultralytics, but there were several issues deploying on

client-side.

• Development

In the second phase, we planned and initiated the development of the application. So

we started by making our custom dataset, firstly just to get an idea we made a small

dataset consisting of just 1 weapon we used labelImg directory which is an open-

source platform for labeling datasets. We first labeled our dataset in Yolo format

and trained it by using YOLO v4 on google Colab notebook. For the development

of our detection system interface, we used VS Code and QT Designer.

• Web-Application Development

1. Server-Side Application

2. Client-Side Application

For the development of our gun detection system, we used the following:

• Python

• OpenCv

• Django

• QT Designer

The server-side application will be hosted on herokuu later. To store saved snapshots

Amazon S3 will be used. YOLO v4 object detection model will be used for the

detection algorithm. For the Server-side application, we will create a new account

to show the system’s functionality. Once the account is created, then we can log

in within the client-side application. After successfully logging in, we will need

50 System Implementation

to provide the camera’s location and mobile number, which later will be used to

send the alert. After entering the specified details we’ll need to press the start

monitoring button and the detection window will be opened within the detection

window a camera’s output is displayed. Once a gun is detected a bounding box is

drawn around it and the percentage of confidence is shown within the console, and

also the frame will be saved and sent to the server. When we open the alert link we

can see the detection image the location, the receiver, and the time. Also, we can

log in to the account that we created earlier and see the list of alerts with all the

information and the filtering option will also be available. We can also click on the

view button to see the larger image. We can click the link and the alert page will be

opened within your phone and there you can see the new alert and as we press the

view button a larger image is displayed in the system. Our system will also have

a password reset functionality where we can provide a registered email address and

the password reset email will be sent including text and the link for the password

reset. And over there we can provide a new password for the account and then a

new password will be set automatically.

5.6 Model Training

We at last succeeded in training our model by using the object detection algorithms

to help us implement the YOLOv4 model by using our own custom dataset. It used

transfer learning techniques to reduce the amount of training data required and

shortens the data training time. We used YOLOv4 and got some reasonably good

results by training our custom dataset on Google Colab. The average accuracy was

over 80.65%. We used the dataset approximately of more than 3000 images, on

which we applied the 95/1/4 rule which means that 95% of the data is for training,

1% for validation and 4% for testing.

5.6. Model Training 51

Figure 5.7: Accuracy of our Model

Chapter 6

Testing

6.1 System Testing

System testing is a testing procedure carried out on your system, to evaluate the

performance of your product, if it is working as planned and if the system complies

with its specified requirements. System testing is one of the most essential parts or

processes in the building of your system or application. It is confirmed that many

systems face a failure when they’re testing, and the evaluation is poor. Evaluation

of our work is extremely important, not only of our own system but also evaluat-

ing it with the existing systems, software, hardware, and methods to have better

knowledge and idea of our system. Testing can be of two types, qualitative and

quantitative. In qualitative, we look at the minor details, understanding more in

detail what the user wants and whereas the quantitative is all about objectivity and

group behavior. We must know where our system excels and where our system lacks,

there is no such thing as development that is perfect. Flaws and imperfections are

a part of every process or system. The following are different types of testing that

should be considered during the system testing.

6.2 Functional testing

Functional testing is basically in which through our team of testers a quality assur-

ance is determined whether our application is acting the way it is supposed to as our

defined or mentioned requirements. In our system, the functional testing would be

testing the functionalities of the web application such as the user interaction, and

as well as the tasks or functionalities are being performed correctly and logically.

Our main purpose is to make sure that the quality is being met according to our

52

6.3. Interface testing 53

expectations of the system and to also reduce errors so that in return there is a

complete customer satisfaction.The functional testing, we performed as follows:

• To check If all the required and mandatory fields are present and being dis-

played correctly on the screen.

• To check, if all our fields are working fine, such as enter password or log in

details.

• To check, how the application responds to closing or reopening of the web

application.

6.3 Interface testing

In the Interface testing, the system’s GUI functionality is tested. We check whether

the system is meeting the requirements of the application or not. The main testing

of our system mainly comprised of the system being able to detect the gun. In our

web application, there is a dashboard that contains alert information, so we see if

the panel can scroll properly or not. As the main purpose of Interface testing is to

verify the functionality of an interface, therefore we tested our app’s interface from

all the aspects.

Figure 6.1: Interface Testing

54 Testing

6.4 Usability testing

Usability in simpler words is testing out how easy it is to use your system or appli-

cation. How practical and user-friendly system have you built. Keeping in mind the

user experience comes with the user being satisfied and that is achieved by building

a user-friendly app, thus considering this factor, we have tried to keep our design

quite simple and minimalistic so that the user faces no difficulty in using our appli-

cation. Usability testing requires representative users to test your application to get

better feedback rather than just your own developer testing the app. We have kept

our application quite simple; all the user has to do is register and expose a gun to

the camera so that it can detect it.

6.5 Compatibility testing

Compatibility testing is used to check the compatibility of our system with different

computing models, meaning which platform supports the working of our application.

Our web application is compatible with all browsers and also our client-side app is

compatible with MacOS and windows.

6.6 Performance testing

Performance testing is to test how well our application runs under some load. It

tests the efficiency of the system. Our system mainly consists of how reactive the

application is to detection. How quickly does it respond when a gun is exposed to

it. So our system works quite fast as it detects guns in an average time of 120ms,

and the average accuracy is about 88%.

6.7 Testing Strategies

• Black Box Testing

• Specification Testing

• White Box texting

6.7.1 Black Box Testing

The black box testing, as the name suggests keeps the core functionalities hidden

but the testing is done from the user experience. In the black box, we test the

interface and the requirements of the application. For our application, we perform

6.8. Testing Performance Test Cases 55

black box testing in such a way that the camera is exposed to the gun and then on

our system, the bounded box around the gun is shown indicating the detection of

the gun and the dashboard shows the alert and the snapshots. We randomly ran

our application on different volunteers to test the application on them, assuring that

the distance between the user using the application and the gun is at least 2 feet to

get the best results.

6.7.2 Specification Testing

In Specification testing, we trained our custom model and tested it on dataset im-

ages. Our dataset is divided in such a way that 95% is kept for training, and 4% for

testing, whereas 1% for validation. Once the Model detects the gun, it forms the

bounding box and returns the confidence score for the gun that match the training

data.

6.7.3 White Box Testing

White Box Testing is basically testing the core functionalities of the system. The

internal structure and the code are tested. For white box testing, the code should

be easily understandable to both the team members. For white box testing, these

areas are to be considered.

• Code functionalities

• Detection of the weapon

• Testing each function

• Response time

6.8 Testing Performance Test Cases

To evaluate the performance of our model, we performed several tests to analyze

the performance of our model. Following are test cases we applied to our system.

• To ensure that the response time and confidence score of our detection are

according to our requirements.

• To check whether our client-side application and server-side application remain

connected during all time

• To ensure the camera quality is also satisfactory

56 Testing

• To ensure detection of both the guns.

• To ensure that upon detection of the gun, the alerts are generated

• To ensure that the snapshot of the gun is also saved

6.9 Testing Usability Test Cases

As discussed earlier, usability testing involves how user- friendly the application

is. The main purpose is to have an easy-to-use app rather than a complicated one

that will be difficult to understand and operate. Therefore, we intend to build an

application that is easy to use and acceptable as well to be sold in the market. For

this purpose, we ensured the following:

• Font size to be visible and easy to read

• Buttons to be of a standard size

• Buttons to be placed on the same screen

• Logo to be consistent with the application

• Color schemes not to be too sharp

6.10 Test Cases

Various test cases were performed and run through our detection system to check

the system’s performance & effectiveness. We have listed them below:

6.10.1 Test Case 1 : Registration

In test case 1, we will be testing our web application’s registration process. We tested

this process and our web application successfully passed this test as our web-app

was signed up successfully several times without any bugs and errors.

6.10. Test Cases 57

TestID 1

Test Case Description Testing of Registration Process

Initial State Application Should be Running

Input User will enter details

Expected Output Successful Sign Up

Output User Input is valid and account is
created

Status Pass

Table 6.1: Test Case: Register

6.10.2 Test Case 2 : Log In

In test case 2, we will be testing our web application’s registration process. We

tested this process and we were able to login multiple times and our web app passed

this test successfully without any errors.

TestID 2

Test Case Description Testing of login Process

Initial State Application Should be Running

Input User will enter details

Expected Output Successful Sign In

Output User log in details are valid and
signed in

Status Pass

Table 6.2: Test Case: Login

6.10.3 Test Case 3 : Gun Detection

In test case 3, we will be testing our client-side application core functionality of

detection. We tested this process and we were able to detect gun and water gun

multiple times and our server side received alerts and snapshot of detection success-

fully without any errors.

58 Testing

TestID 3

Test Case Description Testing of Gun Detection Process

Initial State User must have a camera/webcam
running with machine

Input User holds gun in front of camera

Expected Output Bounding box is formed around gun

Output Our Application is detecting the gun

Status Pass

Table 6.3: Test Case: Gun Detection

6.10.4 Test Case 4 : Saving Snapshot

In test case 4, we will be testing our client-side application where we are testing

that our application saves the snapshot after successful detection of gun. We tested

this process and we were able to detect gun multiple times and passed this test.

TestID 4

Test Case Description Testing of Snapshot Saving Process

Initial State Application must be running and
client must be logged in

Input Gun should be detected and
bounding box must be formed
around gun

Expected Output Saved Snapshot of detection

Output Successfully saved snapshot of
detection

Status Pass

Table 6.4: Test Case: Saving Snapshot

6.10.5 Test Case 5 : Alert Generation

In test case 5, we will test our alert generation, where we are testing that detected

gun with saved snapshot is sent to the server after detection and server side is

receiving that alert successfully. We tested this process and were able to receive

alerts multiple times and passed this test.

6.10. Test Cases 59

TestID 5

Test Case Description Testing of Alert Generation

Initial State Client-Side application must have
internet connectivity

Input Snapshot must be saved and alert
including snapshot should be sent to
server over the internet.

Expected Output Received Alert

Output Successfully received alert of
detection

Status Pass

Table 6.5: Test Case: Alert Generation

6.10.6 Test Case 6 : Notification

In test case 6, we will be testing our alert notification by receiving mobile SMS. We

tested this process and we were able to receive alerts multiple times and passed this

test.

TestID 6

Test Case Description Testing of mobile notifications

Initial State Server-Side application must be
running

Input Alert must be received.

Expected Output Receiving mobile notification alert

Output Received SMS including alert link

Status Pass

Table 6.6: Test Case: Notification

60 Testing

6.11 Limitations

There were several limitations that we faced just like any other application. Such as,

the convolutional neural network has its drawbacks like the classification of images

with different certain different positions. Due, to this our model, also experiences

these limitations. Our model is also limited; it can only detect one gun at the

moment. Another limitation was of a GPU and the computational resources were

also limited so thus training takes a lot of time through neural networks. Another

limitation, we faced is that of light, if the light is unusual, the system might not be

able to detect the weapon. Also, the camera quality proved another limitation, if

the quality is not good enough to record thus the weapon detection would not be

accurate. Along with this is the internet connectivity as alerts have to be generated

for which the internet connection is mandatory. Due to all these reasons our system

faces certain limitations. Hopefully, in the future we will try to overcome these

limitations.

Chapter 7

Conclusion

Our Gun Detection System has been successfully designed and developed. Our ap-

plication, aims to develop a system for the betterment of security, to help the system

recognize criminal activity being done with improved technology. Considering es-

pecially Pakistan, despite the physical appearance and nonstop monitoring by the

security officials, criminals always manage to get away and this always raises a ques-

tion about the system’s capability or competence.

This System will drastically help in detecting the gun possessed by anyone, which

might get a chance to escape from the naked eye and improve the current situation

of the security concerns at the moment.

Our Gun Detection system would completely replace current infrastructure with

the growing availability of low-cost storage, video infrastructure, and better video

processing technologies.

In this study, the YOLO v4 object detection model was implemented and trained

over our customized collected data set for gun detection. We have proposed a model

that provides a sense to a machine to be able to identify a gun and a water gun

separately and differentiate between them. Upon identification of the gun, it should

be able to generate an alert only when a gun(pistol) has been detected and not on

the detection of the water gun during this period. We have also tried to improve the

system in such a way that the incident’s recording has also been saved so that for

any future investigations there is proof of the entire incident. There is a dire need

to improve and update the current surveillance capabilities with better resources to

aid in monitoring the effectiveness of human operators.

We additionally examined the difficulties and restrictions that were faced by gun

recognition, also performed several test cases to be able to identify our strengths

and weaknesses so that in the future we can reduce our weaknesses and be able to

61

62 Conclusion

work more on our strengths so that our end product given to the user should be free

of any loopholes.

7.1 Future Works

• In the future, we can train our model using YOLOv5 to even have better

accuracy, than we are experiencing right now.

• We can extend our dataset by including a variety of guns and along with that

variety of other weapons such as knives.

• We know any organization’s security officials are allowed a possession of the

gun, so in the future, we can train the model in such a way that it does not

generate alerts when the gun is being detected by the guard.

Appendix A

User Manual

Figure A.1: Client Side Login

63

64 User Manual

Figure A.2: Client Side Login

Figure A.3: Client-Side Settings Window

User Manual 65

Figure A.4: Client-Side Settings Window

Figure A.5: Client-Side Detection Window

66 User Manual

Figure A.6: Client-Side Detection Window

Figure A.7: Client-Side Detection Window

User Manual 67

Figure A.8: Client-Side Detection Window

Figure A.9: Client-Side Detection Window

68 User Manual

Figure A.10: Client-Side Detection Window

Figure A.11: Watergun Detection

User Manual 69

Figure A.12: Server-Side Sign Up

Figure A.13: Server-Side Login

70 User Manual

Figure A.14: Alerts Dashboard

Figure A.15: Alerts

User Manual 71

Figure A.16: SMS Notification Alert

References

[1] Rohit Kumar. Tiwari et al. A computer vision based framework for visual

gun detection using harris interest point detector. Procedia Computer Science,

54:703–712, 2015.

[2] Bhavna Khajone and VK Shandilya. Concealed weapon detection using image

processing. Int. J. Sci. Eng. Res, 3:1–4, 2012.

[3] Gyanendra K Verma and Anamika Dhillon. A handheld gun detection using

faster r-cnn deep learning. In Proceedings of the 7th international conference

on computer and communication technology, pages 84–88, 2017.

[4] Jose L Salazar González, Carlos Zaccaro, Juan A Álvarez-Garćıa, Luis M Soria

Morillo, and Fernando Sancho Caparrini. Real-time gun detection in cctv: An

open problem. Neural networks, 132:297–308, 2020.

[5] Gulzar Ahmad, Saad Alanazi, Madallah Alruwaili, Fahad Ahmad, Muham-

mad Adnan Khan, Sagheer Abbas, and Nadia Tabassum. Intelligent ammu-

nition detection and classification system using convolutional neural network.

2021.

[6] Muhammad Tahir Bhatti, Muhammad Gufran Khan, Masood Aslam, and

Muhammad Junaid Fiaz. Weapon detection in real-time cctv videos using deep

learning. IEEE Access, 9:34366–34382, 2021.

[7] Harsh Jain, Aditya Vikram, Ankit Kashyap, Ayush Jain, et al. Weapon detec-

tion using artificial intelligence and deep learning for security applications. In

2020 International Conference on Electronics and Sustainable Communication

Systems (ICESC), pages 193–198. IEEE, 2020.

[8] Justin Lai and Sydney Maples. Developing a real-time gun detection classifier.

Course: CS231n, Stanford University, 2017.

72

References 73

[9] Javed Iqbal, Muhammad Akhtar Munir, Arif Mahmood, Afsheen Rafaqat Ali,

and Mohsen Ali. Leveraging orientation for weakly supervised object detection

with application to firearm localization. Neurocomputing, 440:310–320, 2021.

[10] Mehmet Tevfik Ağdaş, Muammer Türkoğlu, and Sevinç Gülseçen. Deep neural

networks based on transfer learning approaches to classification of gun and

knife images. Sakarya University journal of computer and information sciences,

4(1):131–141, 2021.

[11] Arif Warsi, Munaisyah Abdullah, Mohd Nizam Husen, Muhammad Yahya,

Sheroz Khan, and Nasreen Jawaid. Gun detection system using yolov3. In

2019 IEEE International Conference on Smart Instrumentation, Measurement

and Application (ICSIMA), pages 1–4. IEEE, 2019.

[12] Lei Pang, Hui Liu, Yang Chen, and Jungang Miao. Real-time concealed object

detection from passive millimeter wave images based on the yolov3 algorithm.

Sensors, 20(6):1678, 2020.

[13] Sanam Narejo, Bishwajeet Pandey, Ciro Rodriguez, M Rizwan Anjum, et al.

Weapon detection using yolo v3 for smart surveillance system. Mathematical

Problems in Engineering, 2021, 2021.

[14] Coco dataset. https://towardsdatascience.com/

getting-started-with-coco-dataset-82def99fa0b8.

[15] Google colab. https://colab.research.google.com/?utm_source=

scs-index.

[16] Visual studio code information. https://code.visualstudio.com/.

[17] All about adobe xd. https://www.adobe.com/products/xd.html.

[18] Labelimg. https://github.com/tzutalin/labelImg.

https://towardsdatascience.com/getting-started-with-coco-dataset-82def99fa0b8
https://towardsdatascience.com/getting-started-with-coco-dataset-82def99fa0b8
https://colab.research.google.com/?utm_source=scs-index
https://colab.research.google.com/?utm_source=scs-index
https://code.visualstudio.com/
https://www.adobe.com/products/xd.html
https://github.com/tzutalin/labelImg

	Abstract
	Introduction
	Overview
	Problem Description
	Objective
	Project Scope
	Limitations

	Literature Review
	A traditional Computer Vision Technique
	Deep Learning
	Convolutional Neural Network (CNN):
	Single Shot Dectector

	VGG16
	Transfer Learning
	YOLO
	Machine Learning VS Deep Learning
	Comparison of Discussed Techniques

	Requirements Specifications
	Existing System
	Proposed System
	Functional Requirements
	Non-Functional Requirements
	Hardware Requirements
	Software Requirements
	Use Cases

	System Design
	System Architecture
	System Architecture Diagram
	Design Constraints
	Design Methodology
	High Level Design
	Sequence Diagram
	Activity Diagram

	Low Level Design
	Web Application
	Client-Side App

	GUI Design
	Usability Principles

	External Interfaces

	System Implementation
	Introduction
	System Architecture
	Object Detection
	YOLO

	Tools And Technologies
	AWS S3
	Twilio
	Roboflow
	Google Colab Notebook
	Visual Studio Code
	Adobe XD
	QT Designer

	Experimental Setup
	Dataset Collection
	Labelling Dataset
	LabelImg
	TXT File
	Class Labels

	Methodology
	Model Training

	Testing
	System Testing
	Functional testing
	Interface testing
	Usability testing
	Compatibility testing
	Performance testing
	Testing Strategies
	Black Box Testing
	Specification Testing
	White Box Testing

	Testing Performance Test Cases
	Testing Usability Test Cases
	Test Cases
	Test Case 1 : Registration
	Test Case 2 : Log In
	Test Case 3 : Gun Detection
	Test Case 4 : Saving Snapshot
	Test Case 5 : Alert Generation
	Test Case 6 : Notification

	Limitations

	Conclusion
	Future Works

	User Manual
	References

