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Abstract

The present thesis determines the concept of the exact solution of nanofluid

flow over a stretching/shrinking sheet with dual availability in the following

steps. The thesis framework has been developed in the following way. In

the first chapter, exhaustive literature is discussed for the exact solution of

nanofluid flow across a stretching/shrinking sheet with dual availability. The

precis details about nanofluids, boundary layer theory and heat transfer are

discussed. Basic fluid terminologies and fundamental laws are explored in the

second chapter. In third chapter, an article, closed solution of boundary layer

flow on a moving surface embedded by nanofluid in the presence of magnetic

field and suction/injection is reviewed. By using appropriate tensor, de-

velop the continuity, energy and momentum equations. converted governing

PDEs into dimensionless non-linear ODEs by adoption of favorable similarity

variables and then solved analytically. In fourth chapter, extended the above

mention work by applying porosity, thermal radiation and viscous dissipation

to determine the dissipated energy during heat transfer. The consequences

of porosity Φ, suction/injection fw, stretching λ, and magnetic effect M on

skin friction, velocity, temperature, and streamlines are well explored and

showcased. An analysis of conclusions are included in fifth chapter.
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Chapter 1

Introduction and literature review

Heat transfer is mandated in a broad range of technical applications, as

well as in a huge number of industrial processes such as aircraft engine cool-

ing,blow molding, temperature control etc. It is more efficient for heat trans-

fer devices to transport a large quantity of heat across a small temperature

difference when the temperature divergence is small. Energy consumption

has emerged as a key element in the debate about the depletion of fossil fuel

reserves. When heat is transferred through a fluid, this is known as convec-

tion. Many studies have been conducted to determine how to enhance the

heat transfer and efficiency of fluids, thus reducing the amount of time needed

for heat transfer to occur. Low thermal conductivity seems to be the most

significant factor contributing to the low productivity of the heat exchanger

in manufacturing sectors. The fact that a variety of techniques are used to

enhance heat transfer is not without its limitations. Suspending small solid

particles in fluids is a novel technique of increasing their thermal conductivity

by increasing their surface area. Slurry may be created by mixing a variety

of granules into a fluid, including metallic, non-metallic, and polyethylene

particles, among other materials. It is expected that the thermal conductiv-

ity of aerosols in fluids will be higher than that of normal fluids. All prior

study on suspension thermal conductivity, on the other hand, has been con-

fined to millimeter-scale measurements. It is widely known that the thermal

conductivity of suspensions goes up with the tiny particle’s surface area to

volume fraction. Choi [1] had been the earliest to offer up the core idea

of nanofluid, which is a kind of fluid that contains embedded nanoparticles.

Nanofluids are a fantastic alternative to traditional thermal systems in a wide

range of applications. The fluid in which nano-sized particles with lengths
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ranging from 1-100nm are suspended is referred to as nanofluid. Nanoflu-

ids have enough potential to boost the thermal conductivity of a base fluid,

while nanoparticles have a higher capability to improve heat transfer than

either. Nanofluids are used in a wide range of applications [2] in electronics,

automobiles, and nuclear technology, in which efficient heat dissipation and

enhanced heat transmission are necessary. After that,Lixing cheg [3] briefly

highlights the advancements in nanofluid technology. Latterly Yang et al [4]

investigated the thermal characteristics of linear motion of nanofluids. In

the view of Tiwari and Das [5], a nanofluid theory focusing on the parti-

cle volume fraction was given to them. There have been a large number of

researchers that have focused on improving heat transmission by utilizing

nanofluids [6–11].

Thin layer of flowing viscous fluid near to the surface is known as bound-

ary layer. It has huge assortment of applications like aerospace, sport aero-

dynamic, heat transfer enrichment, moving lids etc. Prandtl [12] was the ear-

liest researcher who developed the theory of boundary layer. In research, he

discussed the flow field and separated it into two portions. The first one is an

inside boundary layer, where velocity gradient occurs, and second one is outer

side of boundary layer, where viscosity can be ignored. Many researchers at-

tempted to discover a closed solution but were unable to find solution, thus

the approximation is still commonly used. Later, in 1961, Sakiadis [13] was

the first to explore boundary layer flow over a solid surface using constant

velocity. He used both close and approximate approaches to examine the

solution of boundary layer. He was consequently unable to provide the exact

solution for above mention model. After the research of Prandtl, when the

transverse velocity component at the surface of plate is nonzero, a moving

continuous flat plate is considered by Erickson [14]. Subsequently Crane [15]
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studied the boundary layer flow on an expanding (stretched) sheet in 1970.

He developed an exact solution for steady, 2-D, in-compressible boundary

layer flow when the velocity is fluctuating. Gupta and Gupta [16] extended

the work of Erickson by considered suction/injection. An exact solution of

temperature distribution developed by Grubka and Bobba [17] using Kum-

mer’s function. Banks [18] worked on the field flow of extended (stretched)

surface and variable velocity with power law. An extended work further by

Ali [19] and elbashbeshy [20] on the porous stretching surface. Miklavcic [21]

and Wang [22] studied the fluid motion caused by extending (stretching) the

surface in two directions. Later on, many other researchers worked on the

boundary layer due to shrinking/stretching surfaces [23–25].

Thermal radiation is said to be the procedure in which a heated surface

emits energy in the form of electromagnetic radiation throughout all direc-

tions. Radiation is the process through which energy is transmitted across

material in the form of waves or particles. Radiation is classified into three

types: sound, energy, and light. Thermal radiations are employed to calcu-

late energy transfer in the production of polymers and fossil fuels, as well as

in astrophysical fluxes. Thermal radiation is essential in space exploration,

high-temperature operations, and regulating the heating process within that

polymer industrial sector, among other applications.

Brownian motion was discovered as the primary mechanism behind nanoflu-

ids that boost thermal conductivity. It has been founded that nanoparticles

with smaller sizes can improve the thermal conductivity at elevated tempera-

tures than nanoparticles with larger diameters. The literature has a variety of

models, each of which emphasizes a particular process as the primary mech-

anism, such as Brownian motion or liquid layering. Recently, researchers

examined the two components of effective thermal conductivity, namely the
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static and dynamic components, as suggested by Koo, Kleinstreuer and Li

(KKL) [27, 28]. Later Sheikholeslami [29] and many other researchers used

the KKL models in there recent develop models [30–32].

Recently Khan et al [33] is endeavored to examine solution of dual nature

of heat exchange and fluid flow on shrinking/stretching sheet. Haq et al [34–

36]also worked on dual nature solution.

Our goal is to use of KKL model to examine dual availability of solution

for nanofluid flow shrinking sheet underneath magnetic field action, this work

is motivated by that of the existing literature. Thermal radiation effect

is used with the saturation of nanoparticles within the base fluid (water).

Viscous dissipation is also considered to determine dissipated energy during

convective heat transfer. Dual solutions have been found for velocity and

temperature. An analysis of conclusions are included in the last chapter.
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Chapter 2

Basic definitions and concepts

In this chapter, several basic concepts, definition and laws related to

fluid flow and heat transfer are being briefly addressed.

2.1 Fluid

The matter has three types solid, liquid and gases. The combination of

liquid and gases is called fluid.

2.2 Fluid mechanics

The branch of mechanics concerned itself with the characteristics of fluids

in motion or at rest. It is split into three parts. static fluid, fluid dynamics

and kinematics.

2.2.1 Statics fluid

The investigation of fluid particles at rest is termed as statics fluid.

2.2.2 Fluid dynamics

Fluid dynamics is the analysis of the motion of the particles contained in

a fluid.

2.2.3 Fluid kinematics

Fluid kinematics is the examination of the movement of fluid particles in

the absence of any extraneous force.
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2.3 Properties of fluid

2.3.1 Kinematic viscosity

The fractional relation of dynamic viscosity to density is characterized as

termed kinematics viscosity. It is denoted by ν. Mathematically kinematic

viscosity is expressed as

ν =
dynamic viscosity

density
=
µ

ρ

.

2.3.2 Dynamic viscosity

Dynamic viscosity is identified fractional connection of shear stress to

deformation rate, that’s denoted by µ. Mathematically,

µ =
shear stress

deformation rate

Its dimension [L2T−1].

2.3.3 Density

The density of a fluid’s particle is defined as the ratio of its mass to its

volume, and it is represented as ρ. Mathematically,

ρ =
m

V



8

Dimension is [ML−3].

2.4 Classification of fluid

2.4.1 Ideal fluid

Ideal fluid (inviscid fluid)is defined as fluid with zero viscosity.

2.4.2 Real fluid

The fluid with viscosity which is not at zero, is called real fluid.

2.4.3 Compressible fluid

When the density of fluid directly proportional to the temperature and

pressure, referred compressible fluid.. One of most common example is of

gases.

2.4.4 Incompressible fluid

If density remains constant regardless of the temperature and pressure,such

fluid is known as incompressible fluid. In general, liquids are considered to

be incompressible.

2.5 Two-Dimensional flow

Dimensions are basically the space coordinates and mostly the fluid mo-

tions are considered to be three dimensional but for the convenience in its

calculation, it is taken to be two dimensional so that it can easily be dealt

with. 2-D flow means flow to be in the plane coordinate.
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2.6 Boundary layer

Thin layer of a flowing viscous fluid nearest to the surface is boundary layer.

It has large assortment of applications like aerospace,sport aerodynamic, heat

transfer enhancement,polymer extrusion and so on.

2.7 Convection

When a heated fluid, such as air or water, moves across a space, heat

is transmitted via that fluid. Convection occurs as a consequence of the

propensity among most fluids to expand when they heat up.

2.8 Porous medium

Porous media are those that have tiny openings in their surface that enable

fluids to flow through them. Porous-surfaced items contain vacuum areas or

pores by which fluid particles may pass. Wooden materials, sand, tissue

papers, sponges and foams are examples of porous medium.

2.9 Nanofluids

The fluid in which nano-sized particles with 1-100nm length are suspended

is called nanofluid. Nanofluids have capable ability to boost the thermal

conductivity of base fluid, Nanoparticles have greater potential to enhance

heat transfer.
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2.10 Heat and mass transfer

Heat transfer is a kinetic process in which energy is transferred from one

particle to another via the movement of particles. Mass transfer, on the

other hand, is the movement of mass from one location to another, as in

absorption, evaporation, and so on.

2.11 Thermal radiation

Thermal radiation is said to be the procedure in which a heated surface

emits energy in the form of electromagnetic radiation throughout all direc-

tions. Radiation is the process through which energy is transmitted across

material in the form of waves or particles.

2.12 Hypergeometric confluent function

A confluent hypergeometric function is a solution to a confluent hypergeo-

metric equation, which is a degenerate version of a hypergeometric differential

equation in which two of the three regular singularities combine to produce

an irregular singularity.

2.12.1 Kummer’s function

Kummer’s (confluent hypergeometric) functionM(a, b, z), introduced by Kum-

mer (1837), is a solution to Kummer’s differential equation. This is also

known as the confluent hypergeometric function of the first kind.

Kummer’s equation may be written as:

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0,
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with a regular singular point at z = 0 and an irregular singular point at

z = ∞. It has two (usually) linearly independent solutions M(a, b, z) and

U(a, b, z). Kummer’s function of the first kind M is a generalized hypergeo-

metric series given by:

M(a, b, z) =
∞∑
n=0

a(n)zn

b(n)n!
= |F |(a; b; z),

where:

a(0) = 1,

a(n) = a(a+ 1)(a+ 2) · · · (a+ n− 1) ,

is the rising factorial.

2.13 Some useful non-dimensional numbers

2.13.1 Reynolds number

The non-dimensional number defining the change in the inertial forces to

the viscous forces. Mathematically;

Re =
ax2

ν
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2.13.2 Prandtl number

It is the non-dimensional number which is a change in kinematic viscosity

ν with respect to thermal diffusivity λ. Mathematically,

Pr =
ν

λ

2.13.3 Biot number

It is a non-dimensional number defined as, When the heat transfer co-

efficient is being multiplied with the characteristic length and divided with

thermal conductivity of the body. Generally, it can be expressed as;

Bi =
Lch

k

Here Lc =
V olume of body
surface area

, characteristic length, h is heat transfer coefficient

and k is thermal conductivity.

2.13.4 Eckert number

The fractional relation of kinetic energy and enthalpy is characterized

termed Eckert number. Generally, it can be expressed as;

Ec =
advective mass transfer

viscous dissipation
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2.13.5 Nusselt number

A dimensionless number which is the ratio between the convective and

the conductive heat transfer at the boundary is called local Nusselt number.

Mathematically, it is expressed as;

Nux =
xhx
k
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Chapter 3

A closed solution of boundary layer flow on a moving

surface enclosed by nanofluid in the presence of

magnetic field and suction/injection

The main objective of this chapter is to investigate flow of boundary

layer and heat transfer over moving surface in the presence of magnetic field

and suction/injection. Initially, governing equations are formulated. Later

on, with the help of similarity variables, transformed the governed nonlinear

PDEs to the dimensionless nonlinear ODEs to obtain closed form solution of

momentum and energy. The presence of some other parameters on energy

and momentum equations can also be seen. This chapter is the review of [26].

3.1 Formulation of the problem

Consider the laminar, 2-D and steady flow of viscous nanofluid on a con-

tinuous moving surface. By assuming surface velocity Uw and mass transfer

velocity Vw. Let magnetic field effect β0 be the normal to the surface. Con-

sidering water as base fluid contains either Silver or Copper or Aluminum

oxide. All nanoparticles are considered to be of the same size. In addition,

suppose that the fluids phases and nanoparticles are in thermally equilib-

rium and there is no slip between both fluids. The governing equations of

boundary layer for 2-D laminar steady nanofluid flows on moving surface are;

∇ · V = 0, (3.1)
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Fig. 1: Geometry of the problem

ρnf(V · ∇)V = divτ − σβ2
0V, (3.2)

(ρCp)nf(V ·∇)T = τ ·(∇V )−divqc, (3.3)

Here, τ can be expressed as;

τ = −pI+µR1, (3.4)

R1 is first Rivlin-Ericksen tensor, that is,

R1 = (∇V )+(∇V )T , (3.5)

∇V = gradV, (3.6)

qc = −k (∇T ), (3.7)

For given problem, we define

the velocity field as V = [ũ(x, y), ṽ(x, y), 0],

and temperature

T = T (x, y), (3.8)

Using Eq. (3.8) in Eqs. (3.5) and (3.6), we get
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∇V =


ũx ũy 0

ṽx ṽy 0

0 0 0

 and (∇V )T =


ũx ṽx 0

ũy ṽy 0

0 0 0

 , (3.9)

Now, by utilizing Eq. (3.9) in Eq. (3.5), we obtain

E1 =


2ũx (ũy + ṽx) 0

(ṽx + ũy) 2ṽy 0

0 0 0

 , (3.10)

Substituting Eq. (3.10) in Eq. (3.4), it results

τ =


−p+ 2µ(ũx) µ(ũy + ṽx) 0

µ(ṽx + ũy) −p+ 2µṽy 0

0 0 −p

 , (3.11)

To express the matrix Eq. (3.11) in component form, we have

τxx = −p+2µ(ũx), τxy = τyx = µ(ṽx+ ũy), (3.12)

τxz = τzx = τyz = τzy = 0, τyy = −p+2µ(ṽy), (3.13)

τzz = −p, (3.14)

Using Eqs. (3.12), (3.13) and (3.14) in Eq. (3.2), we get

ρ(ũũx + ṽũy) = −∂p
∂x

+ µ∇2ũ− σβ2
0 ũ, (3.15)

ρ(ũṽx + ṽṽy) = −∂p
∂y

+ µ∇2ṽ − σβ2
0 ṽ, (3.16)
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0 = −∂p
∂z
, (3.17)

In the Eq. (3.3), τ · (∇V ) be zero due to the absence of viscous dissipation

and qc from Eq. (3.7) gives;

τ · (∇V ) = 0, (3.18)

qc = −k [Tx , Ty , 0], (3.19)

Now, utilizing the above equations Eqs. (3.18) and (3.19) in Eq. (3.3), we

obtain

ρCp (ũTx+ ṽTy) = knf∇2T, (3.20)

The boundary conditions of the preceding problem would be as follows

ũ = ũw(x) = ax, ṽ = ṽw at y = 0, (3.21)

ũ(y → ∞) → 0. (3.22)

Here, ṽw, mass transfer on the surface for suction velocity (ṽw < 0) and

injection velocity (ṽw > 0).

T = T̄w = T̄∞+bx at y = 0, (3.23)

T (y → ∞) → T̄∞ . (3.24)

Cf and Nux can be written as

Cf =
τ̄w
ρũ2w

, Nux =
xq̄w

knf(T̄w − T̃∞)
, (3.25)

τ̄w = µ(ũy) , q̄w = −knf(Ty) at y = 0. (3.26)

We look for similarity equation, of the nonlinear PDEs (3.15, 3.16, 3.20)
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Table 1: Thermal properties of Cu and water

Physical properties Base fluid (water) Cu

Cp(J/kgK) 4179 385

ρ(kg/m3) 997.1 8933

k(W/mK) 0.613 400

α× 107 (m/s) 1.47 1163.1

to dimensionless nonlinear ODEs by introducing similarity variables as

η = y

√
a

ν
, ψ =

√
aνxf(η), θ(η) =

T − T̄∞
T̄w − T̄∞

, (3.27)

Converting ψ into ũ and ṽ, we get

ũ = axf ′(η), ṽ = −
√
aνf(η). (3.28)

Here, prime symbolizes the differentiation of a function w.r.t. η. By applying

the above similarity transformations Eq. (3.27) on Eqs. (3.15), (3.16) and

(3.20), we obtain the dimensionless ODE as

f ′′′+B(1−ϕ)2.5(ff ′′−f ′2)−M(1−ϕ)2.5f ′ = 0 , (3.29)

θ′′+
Pr

L
(fθ′−f ′θ) = 0 , (3.30)

The reduced boundary conditions are

f(0) = fw , f
′(∞) = 0 , f ′(0) = 1, (3.31)

θ(0) = 1 , θ(∞) = 0 . (3.32)
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Where, M is magnetic parameter, Pr is the prandtl number and fw is sec-

tion/injection.

Pr = (
νρCp

k
)f , M =

σβ2
0

aρf
, B = (1−ϕ+ϕρs

ρf
), L =

knf
kf

1− ϕ+ ϕ (ρCp)s
(ρCp)f

,

(3.33)

Also, using Eq. (3.27) in Eqs. (3.25) and (3.26), we get

Cf =
2τw
U 2
w

=
−2m√

Re(1− ϕ)2.5
, (3.34)

where, Rex = (ax2/ν), local Reynolds number,

Nux =
xqW

kf(Tw − T∞)
= −knf

kf
(Re)θ′(0) , (3.35)

where qw = −knf (∂T∂y )y=0 = −knf (Tw − T∞)
√

a
νf
θ′(0).

To establish the solution of the transformed dimensionless nonlinear ODEs,

assume the solution of Eq. (3.29) satisfying boundary conditions as

f(η) = fw+
1

m
(1−e−mη) , (3.36)

Using Eq. (3.36) in Eq. (3.29), it yields

m2−B(1−ϕ)2.5fwm−(B+M)(1−ϕ)2.5 = 0 , (3.37)
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Solving the above equation for the value of m, we get

m =
1

2
(fwB(1−ϕ)2.5+

√
(fwB(1− ϕ)2.5)2 + 4(B +M)(1− ϕ)2.5),

(3.38)

Eq. (3.38) shows solution of the given problem. From Eqs. (3.28) and

(3.36), we obtain

ũ = axe−mη and ṽ = −
√
aν(fw+

1
m(1−e

−mη)). (3.39)

In order to get the solution of the energy equation in the form of non-

dimensional nonlinear ODE, we consider a new variable ξ as follows:

ξ =
Pr

Lm2
e−mη , (3.40)

To apply this variable in Eq. (3.30), we convert the differentiation w.r.t η

by using chain rule for first and second order ODEs, that is,

d
dη = d

dξ ·
dξ
dη and d2

dξ2 (
dξ
dη)

2+ d
dξ ·

d2ξ
dη2 , (3.41)

After applying the above chain rule on Eq. (3.30), we obtian

ξ
d2θ

dξ2
+(1− γ− ξ)

dθ

dξ
+ θ = 0 , (3.42)

and the reduced boundary conditions are

θ(
Pr

Lm2
) = 1 , θ(0) = 0 . (3.43)
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Eq. (3.42) is similar to Kummer’s D.E that’s give Kummer confluent hyper-

geometric function |F̄ | ,

θ(ξ) =
ξγ|F̄ |(−1 + γ; 1 + γ;−ξ)

( Pr
Lm2 )γ|F̄ (−1 + γ; 1 + γ;− Pr

Lm2 )
, (3.44)

where γ = Pr
Lm2 (mfw + 1), the solution of Eq. (3.44) in terms of η it gives

θ(η) = (e−mη)γ
|F̄ |(−1 + γ; 1 + γ;− Pr

Lm2e
−mη)

|F̄ |(−1 + γ; 1 + γ;− Pr
Lm2 )

, (3.45)

and temperature gradient

θ′(0) = (−mγ) +

(
(
Pr(γ − 1)

Lm2(γ + 1)
)

|F̄ |(γ; 2 + γ;− Pr
Lm2

|F̄ |(−1 + γ; 1 + γ;− Pr
Lm2

)
,

(3.46)
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3.2 Results and discussion

The ordinary nonlinear differential equations are solved with the help of

mathematical software Maple. In this segment, we have covered the effects

of volume fraction of nanoparticles (ϕ), suction/injection (fw) and magnetic

parametric (M) on velocity and temperature profile. Water has been used

as a base fluid with fixed Prandtl number as (Pr = 6.2).

Fig. 2 depicts impact of magnetic field parameter (M) upon velocity of

boundary layer of Cu-nanofluid. It is evident, due to increased magnetic

field, velocity has been declined. It is because of the fact that the drag force

also referred as Lorentz force, appears when magnetic fields are used to the

fluid. This force tends to slow down the fluid velocity in the boundary layer.

The impact of volume fraction of nanoparticles upon velocity of the Cu-

nanofluid boundary layer is demonstrated in Fig. 3. The increasing in volume

fraction (ϕ) results, as reduction in velocity. Fig. 4 shows the significance

of the suction/injection factor through the velocity inside the Cu-nanofluid

boundary layer. When suction/injection parameter (fw) is increased, it is

noticed that the velocity decreases.

Fig. 5 depicts impact of magnetic field parameter (M) upon tempera-

ture of boundary layer of Cu-nanofluid. This is evident, due to increased

magnetic field, temperature will also be increased. The impact of volume

fraction of nanoparticles (ϕ) upon temperature of the Cu-nanofluid bound-

ary layer is demonstrated in Fig. 6. The increasing in volume fraction

(ϕ) results, an increment in temperature. Fig. 7 shows the significance of

the suction/injection factor through on temperature inside the Cu-nanofluid

boundary layer. When the suction/injection parameter (fw) is increased, it

is noticed that temperature also decreased.

Fig. 8 illustrate variation of skin friction against suction/injection (fw).
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Enhancing the suction/injection factor causes an increment in skin friction

and shear stress, although involvement of magnetic factor M beneath the

boundary layer causes a gain in shear stress, seen in this investigation. Fig.

9 displays variation in local Nusselt number against suction/injection fw

with the variation of magnetic parameterM , increasing in the magnetic field

decrease Nusselt number and rate of heat transfer that means the hardness

and the strength of the surface will be poor in the presence of magnetic field.
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Fig. 2: Velocity profile for magnetic parameter M .

Fig. 3: Velocity profile for volume fraction ϕ.
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Fig. 4: Velocity profile for suction fw.

Fig. 5: Temperature profile for magnetic parameter M .
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Fig. 6: Temperature profile for volume fraction ϕ.

Fig. 7: Temperature profile for suction fw.
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Fig. 8: Skin friction for suction/injection fw.

Fig. 9: Nusselt number for suction/injection fw.
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Chapter 4

Exact solution of nanofluid flow over a stretching /

shrinking sheet with dual availability

This chapter is a continuation of the previous chapter by adding some

new effects and constraints. The effect of a nanofluid particle (CuO) and

viscous dissipation with thermal radiation is presented. There has been

a comprehensive investigation of heat transfers of nanofluid by considering

porous medium and viscous dissipation. Subsequently, mathematical formu-

lation was modeled using boundary conditions. Using similarity variables,

all PDEs of momentum and energy are converted into nonlinear ODEs for a

formal formulation. At the end, nonlinear ODEs are solved by using Maple

to get closed solution.

4.1 Mathematical modeling and exact solution

Consider 2-D, steady flow over a shrinking sheet in porous medium by

considering the viscous dissipation effects. ũw(x) = ax (where a is positive

constant) is constant velocity of moving sheet. The governing equations are;

∂ũ

∂x
+
∂ṽ

∂y
= 0 , (4.1)

ρnf(ũ
∂ũ

∂x
+ ṽ

∂ũ

∂y
) = µnf

∂2ũ

∂y2
−σnfβ

2
0 ũ−µnf

1

K
ũ , (4.2)

(ρCp)nf(ũ
∂T

∂x
+ ṽ

∂T

∂y
) = knf

∂2T

∂y2
+µnf(

∂ũ

∂y
)2+σnfβ

2
0 ũ

2− ∂qr
∂y

,

(4.3)



29

Fig. 10: Geometry of the problem.

Where velocity in x-direction is ũ, velocity in y-direction is ṽ, T is the

temperature,

Radiation heat flux qr is possible to write by taking advantage of Rosseland

approximation as

qr = −(
4σ̂

3K̂
)(
∂T 4

∂y
), (4.4)

Here, K̂ is absorption co-efficient and σ̂ Stefan Boltzmann constant.

T 4 ∼= 4T 3
∞T − 3T̄ 4

∞,

By using T 4 in Eq.(4.4), we get

qr = −(
16σ̂ T 3

∞

3K̂
)(
∂T

∂y
) , (4.5)
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so eq. (4.3) becomes

(ρCp)nf(ũ
∂T

∂x
+ v

∂T

∂y
) =knf

∂2T

∂y2
+ µnf(

∂ũ

∂y
)2

+ σnfβ
2
0 ũ

2 + (
16σ̂ T 3

∞

3K̂
)(
∂2T

∂y2
), (4.6)

The boundary conditions for both the equations of momentum and energy

are provided as;

ũ = ũw(x) = −ax, ṽ = ṽw at y = 0 , (4.7a)

ũ → 0 as y → ∞, (4.7b)

−k(∂T∂y ) = h̄f(T̃w−T ) at y = 0, (4.7c)

T → T∞ as y → ∞ . (4.7d)

Where Tw = T∞ + bx ,

The physical properties of nanofluids are

ρnf = (1−ϕ)ρf+ϕρs , (4.8a)

(ρCp)nf = (1−ϕ)(ρCp)f+ϕ(ρCp)s , (4.8b)

σnf
σf

= 1+
3(σs

σf
− 1)ϕ

(σs

σf
+ 2)− (σs

σf
− 1)ϕ

, (4.8c)

Brownian movement has major effects on thermal conductivity. According to

Koo and Kleinstreuer [27, 28] effective thermal conductivity made up of two

parts: static portion and Brownian motion portion. The Brownian motion

has significant consequence on thermal conductivity.

knf = kstatic+kBrownian, (4.9)
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kstatic is static thermal conductivity according to Maxwell.

kstatic
kf

= 1+
3(

kp
kf

− 1)ϕ

(
kp
kf

+ 2)− (
kp
kf

− 1)ϕ
, (4.10)

kBrownian = 5×104(ρCp)f β ϕ

√
kbT ∗

dpρp
g(T ∗, ϕ) , (4.11)

Where, β and g are two empirical functions. Later Li [28] updated the KKL

model by merging β and g into a new function G and introducing a thermal

interfacial resistance Rf = 4 × 108km2/W the initial kp renewed by a new

kp.eff in the genre of

Rf =
dp
kp

=
dp

kp.eff
, (4.12)

The function G will have a varied function depending on the kind of nanopar-

ticles and based fluid. Only water is utilized as a base fluid in this application.

This function has the following format for CuO-water nanofluids.

G(T ∗, ϕ, dp) =(b1 + b2 ln(dp) + b3 ln(ϕ) + b4ln(ϕ) ln(dp) + b5

ln(dp)
2) ln(T ∗) + (b6 + b7 ln(dp) + a8 ln(ϕ) + b9

ln(dp) ln(ϕ) + b10 ln(dp)
2) , (4.13)
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In Table 3, above co-efficients are given, Finally KKL correlation can be

written as

kBrownian = 5×104 ϕ (ρCp)f

√
kbT ∗

ρpdp
G(T ∗, ϕ, dP ) , (4.14)

µnf can be written as viscosity

µnf = µstatic+µBrownian = µstatic+
kBrownian

kf
× µf
Prf

, (4.15)

where µstatic =
µf

(1−ϕ)2.5

Table 2: Thermal properties of CuO and water [27, 28]

Physical properties Base fluid (water) Nanoparticle (CuO)

Cp(J/kgK) 4179 540

ρ(kg/m3) 997.1 6500

k(W/mK) 0.613 18

dp - 29

σ (Γ.m)−1 0.05 10−10

To convert the governing PDEs into dimensionless ODEs, have used the

similarity transformation,

ũ = axf ′(η), ṽ = −(aν)1/2f(η), η = y

√
a

ν
, θ(η) =

T − T̄∞
T̄w − T̄∞

,

(4.16)
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Table 3: Thermal properties of CuO and water [27, 28]

Coefficient vlues CuO-water

b1 -26.593310846

b2 -0.403818333

b3 -33.3516805

b4 -1.915825591

b5 6.42185846658e−2

b6 48.40336955

b7 -9.787756683

b8 190.245610009

b9 10.9285386565

b10 -0.72009983664

Applying above Eqs. (4.16) and (4.8(a, b, c)) in Eqs. (4.2), (4.2) and (4.6),

we get

A2f
′′′+A1(ff

′′−f ′2)−(MA6+ΦA2) f
′ = 0 , (4.17)

(A4 +Rd) θ′′ +A3Pr(fθ
′ − f ′θ) + Pr A2Ecf

′′2

+ A6PrMEcf ′2 = 0 (4.18)

f(0) = fw, f
′(0) = − c

a = −λ, f ′(∞) = 0 , (4.19)

θ′(0) = −Bi[1− θ(0)],
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θ(η) → 0, when η → ∞ , (4.20)

The physical parameters are specified as follows:

Pr =
νf(ρCp)f

kf
, M =

σfβ
2
0

aρf
, Φ =

µf
ρfaK

, Bi =
hf
k

√
νf
a
,

Ec =
(ax)2ρf

(ρCp)f(T̄w − ¯T∞)
, Rd =

16σ̂T 3
∞

3K̂kf
, fw =

vw√
aνf

,

A1 =
ρnf
ρf
, A2 =

µnf
µf

, A3 =
(ρCp)nf
(ρCp)f

, A4 =
knf
kf
, A5 =

σnf
σf

,

(4.21)

Cf and Nux are expressed below;

Cf = 2
τw
U 2
w

=
−2m√

Re(1− ϕ)2.5
, (4.22)

where, Rex = (ax2/ν), local Reynolds number,

Nux =
xqW

kf(Tw − T∞)
= −(A4+Rd)

√
Re θ′(0), (4.23)

where

qw = −
(
knf + (16σ̂ T 3

∞
3K̂

)
)
(∂T∂y )y=0.
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4.2 Methodology

By assuming the solution, we get exact solution of Eq. (4.17) satisfying

boundary conditions.

f(η) = fw − λ

m
(1− e−mη), (4.24)

Using the above equation in Eq. (4.17), we get

B1m
2−fwm+λ−B1B2M−B1Φ = 0, (4.25)

where B1 = A2/A1, B2 = A5/A2,

so the solution of (4.25) is

m =
fw ±

√
fw

2 + 4B1(B1B2M +B1Φ− λ)

2B1
, (4.26)

Hence dual solution (4.26) of the proposed problem is accessible.

f ′(η) = −mλe−mη,

so velocity components become

ũ = −axλe−mη, and ṽ = −
√
aν(fw−

λ

m
(1−e−mη)), (4.27)
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To find the solution of eq.(4.18), we establish a new variable ξ,

ξ = e−mη, (4.28)

By turning Eqs. (4.24) and (4.28) into account Eqs. (4.18) and (4.20), we

get

ξ
d2θ

dξ2
+(1+γ+hξ)

dθ

dξ
+hθ+

PrEcλ2

C
(A2+

MA5

m2
)ξ = 0, (4.29)

The boundary conditions will be formulated as having:

θ(0) = 0, θ′(1) =
Bi

m
[1−θ(1)], (4.30)

where h = PrA3λ
m2C , γ = −h(fwmλ − 1), C = A4 +Rd,

By solving Eq. (4.29), we obtain

θ(ξ) =e−hξhyp.(γ, [1 + γ], hξ)C2 + e(hξ)ξγC1

− 1

2

PrEcλ2(A2m
2 + A5M)(hξ − γ − 1)

h2m2C
, (4.31)
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By applying boundary conditions and putting the value of ξ in (4.31), the

final solution is,

θ(η) = − 1

2h2m2C
(ehe

−mη

hyp.([γ], [1 + γ], he−mη)EcPrλ2(A2m
2γ

+ A2m
2 + A5Mγ + A5M)) +

1

2((−hm−mγ +Bi)h2e−hm2C)

((e−hEcPrλ2A5Mhyp.([1 + γ], [2 + γ], h)γhm+ e−hhyp.([γ],

[1 + γ], h)EcPrλ2BiA5Mγ − e−hEcPrλ2A2hyp.([γ], [1 + γ],

h)m3γh+ e−hhyp.([γ], [1 + γ], h)EcPrλ2BiA2m
2γ − EcPrλ2

BiA5Mγ − e−hEcPrλ2A5Mhyp.([γ], [1 + γ], h)mγh− EcPr

λ2BiA2m
2γ + e−hEcPrλ2A2hyp.([1 + γ], [2 + γ], h)m3γh−

e−hEcPrλ2A2hyp.([γ], [1 + γ], h)m3h+ e−hhyp.([γ], [1 + γ],

h)EcPrλ2BiA5M + EcPrλ2BiA2hm
2 − EcPrλ2BiA2m

2

− e−hEcPrλ2A5Mhyp.([γ], [1 + γ], h)hm+ EcPrλ2A2m
3h

+2Bih2m2C − EcPrλ2BiA5M + e−hhyp.([γ], [1 + γ], h)Ec

Prλ2BiA2m
2 − EcPrλ2A5Mhm+ EcPrλ2BiA5Mh)

ehe
−mη

(e−mη)−γ)− PrEcλ2(A2m
2 + A5M)(he−mη)− γ − 1

2h2m2C
.

(4.32)
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4.3 Results and discussion

In this erudition, put on view to moving continuous surface enclosed by

nanofluid under the involvement of magnetic field and thermal radiations.

The partial differential equations (PDEs) transformed into ordinary differ-

ential equations which are solved analytically. In order to generate exact

solutions for the specified problem of boundary value an algorithm built by

the Maple software. Consequences for temperature profile, skin friction co-

efficient, velocity profile and local Nusselt number displayed against a variety

of influencing factors, porosity (Φ), magnetic parameter (M), shrinking pa-

rameter (λ), suction injection (fw), Eckert number (Ec) with an inflexible

value of Prandtl (Pr = 6.2) and volume fraction (ϕ = 0.04). The upper

branch associated with solution of positive (+) part of the eq. (4.26) and

lower branch associated with solution of negative (−) part of eq. (4.26).

Figs. (11 - 14) illustrate the fluctuation of fw, Φ, M , and λ on the

solution area form, with changes occurring among each region of the solution.

Changing the values of the parameters (fw,Φ,M and λ) may have an impact

on the solution m in the appropriate way. Fluctuation in skin friction as a

function of several factors are presented in Figs. (15 - 18). Figs. 15 evidently

indicates that rising λ leads to an increases in skin friction co-efficient Cf for

suction when fw > 0, it decreases for injection when fw < 0. It can be seen

in Fig. 16 that skin friction Cf rises with increasing porosity (Φ) for suction

when fw > 0 and it decreases for injection when fw < 0. It is discovered

in Fig. 17 that when values of Φ rise, Cf diminishes in both the lower and

upper regions. It is determined in Fig. 17 that raising suction parameter fw

increases skin friction co-efficient for λ > 0 and decreases for λ < 0.

Figs. (19 - 22) are illustrated to assess the dimensionless velocity pro-

file for different effects of fw, λ,M, and Φ correspond to lower and upper
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branches. This can also be indicated in Fig. 19 that velocity reduces with

increasing fw in lower solution, while velocity rises with growing fw in upper

branch. Since suction fw is directly proportional to skin friction co-efficient,

so due to increment in skin friction, momentum boundary layer has been

compressed. When λ burgeoning, velocity is varying directly in lower solu-

tion but in upper solution velocity varies inversely as delineated in Fig. 20.

The response of magnetic parameter M is seen in Fig. 21, fluid velocity is

observed to decrease as M rises for lower branch. It is because of the fact

that the drag force also referred as Lorentz force, appears when magnetic

fields are used to the fluid. This force tends to slow down the fluid velocity

in the boundary layer but The upper branch is mounting as magnetic pa-

rameter M rises. The consequences of porosity (Φ) is appeared in Fig. 22,

velocity decline with increasing porous parameter Φ in lower branch, at the

same moment it varies directly in upper branch.

The impact of various parameters such as suction fw, stretching λ, ra-

diation Rd, Eckert number Ec, and Biot number Bi on lower and upper

branches of temperature profile are indicated in Figs. (23 - 27). The temper-

ature decreases with increasing fw in both branches (upper and lower) can be

seen in Fig. 23. It delineated in fig. 24 that temperature is varying inversely

to λ either in lower and upper branches. The consequences of radiation fac-

tor (Rd) appears in fig. 25 temperature declined with rising of Rd in both

branches. It demonstrates in fig. 26 that raising Eckert number Ec leads

into an increase in temperature on both solutions. In Fig. 27, It is noticed

that the temperature profile improves as the biot number rises on lower and

upper branches. So the temperature relies on the convective heat transfer

coefficient, heat transfer is directly proportional to heat transfer coefficient.

Fig. 28 displays variation in local Nusselt number against suction/injection
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fw with the variation of magnetic parameter M , increasing in the magnetic

field decrease Nusselt number and rate of heat transfer in upper branch,

that means the hardness and the strength of the surface will be poor in the

presence of magnetic field and opposite behavior seen in the lower branch.

At the end, Fig. 29 - 32 stream function ψ is plotted and compared for

the cases of suction/injection with fixed valuesM = 0.2,Φ = 0.2 and λ = 1.5

for both lower and upper branches.
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Fig. 11: Relation of m vs suction fw.

Fig. 12: Relation of m vs porosity Φ.
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Fig. 13: Relation of m vs magnetic parameter M .

Fig. 14: Relation of m vs stretching parameter λ.
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Fig. 15: Fluctuations of skin friction for stretching parameter λ.

Fig. 16: Fluctuations of skin friction for porosity Φ.
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Fig. 17: Skin friction as shrinking/stretching for porosity Φ.

Fig. 18: Fluctuations of skin friction for suction fw.
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Fig. 19: Velocity profile for suction parameter fw.

Fig. 20: Velocity profile for stretching parameter λ.
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Fig. 21: Velocity profile for magnetic parameter M .

Fig. 22: Velocity profile for porosity Φ.



47

Fig. 23: Temperature profile for suction parameter fw.

Fig. 24: Temperature profile for stretching λ.
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Fig. 25: Temperature profile for radiation parameter Rd.

Fig. 26: Temperature profile for Eckert number Ec.
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Fig. 27: Temperature profile for Biot number Bi.

Fig. 28: Nusselt number for suction/injection fw.
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Fig. 29: Stream Lines for suction fw > 0.

Fig. 30: Stream Lines for suction fw > 0.
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Fig. 31: Stream Lines for injection fw < 0.

Fig. 32: Stream Lines for injection fw < 0.
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Chapter 5

Conclusion

This chapter sums up the analytical and graphical findings from the re-

view and extension effort. In this chapter we discuss all of the results from

the preceding two articles. Following points are noted:

� The governing PDEs are transformed to nonlinear dimensional ODEs

through a similarity transformation for an exact solution.

� The dimensionless ODEs of energy and momentum produced a dual

nature solution in closed form under certain conditions.

� To deal with the nanofluid, the KKL model is used and the equations

are solved using well-known software Maple.

� Variation in skin friction, velocity, temperature and streamlines against

suction fw, stretching λ, porosity Φ and magnetic fieldM are explained

and depicted in figures.

� In upper branch, magnetic M and suction fw boost the velocity profile

whereas behavior is revers in lower branch.

� The thickness of thermal boundary layer declined against rising suction

fw and stretching λ.

� Skin friction Cf rising with increasing porosity (Φ) and stretching λ for

suction when fw > 0 and it decreases for injection when fw < 0.

� The thickness of thermal boundary layer directly varies with increasing

radiation Rd, Biot number Bi and Eckert number Ec.
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