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Abstract

A mathematical model is investigated to scrutinize flow of Tangent hyperbolic Nanofluid in
Darcy-Forchheimer porous medium over a stretching cylinder with convective heat and mass
conditions.The heat and mass transfer phenomena are visualized in the presence of melting
heat and gyrotactic microorganisms.Fluid is electrically conducted in the attendance of
applied magnetic field. Appropriate transformations procedure is implemented for the
transition of partial differential equations to ordinary one and then computer software-based
MATLAB function bvp4c is implemented to handle the envisioned mathematical model. The
deliberation of numerous parameters versus the velocity, heat and mass transfer and density
of gyrotactic microorganisms are portrayed through graphs. It is witnessed that velocity of
the fluid is decreased for increasing values of porosity number and the increasing value of
melting heat reduces the temperature. Furthermore the microorganisms profile dwindles for
increasing estimates of Peclet number. Local Nusselt number,Local Sherwood number and
density number of motile microorganismsare evaluated via tables. An outstanding matching

is obtained when the results obtained in the current analysis are compared with an established

result in the literature.
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Chapter 1

Introduction and Literature review

1.1 Introduction

The study of non-Newtonian liquids is an important subject, which is relevent to scientific
investigation since last few decays. All of those fluid for which the shear rate is changed
and the shear stress stay unaltered are consider to be non-Newtonian liquids. Then
non-Newtonian liquids does not show the linear relation along velocity gradient and
shear stress. Newton’s law of viscosity does not followed by non-Newtonian liquids. It
has been categorized into three types: rate, integration and differential type. And it
has vital applications in technology, engineering and industrial process, like as plastic
sheet formation, paper production, petroleum driling, biological solutions, ketchup and
so forth. Casson fluid is a non-Newtonian fluid, which have infinite viscosity at zero rate
of shear, and zero viscosity at an infinite rate of shear. Particularly, the model of Casson
liquid tell us the accurate flow of blood at lowest shear rate when it flows from small
arteries.

Nanofluid is an effective heat transfer fluid containing a mixture of nanoparticles
(Fe, Cu, 1-100nm in size) and Base-fluid (water, Ethylene glycol, oil). Many fluids have
thermal conductivities well below that of metals, limiting their ability to move large

amounts of heat quickly. Most processes get around these limitations by increasing the



size of the heat exchangers. However, when other constraints limit physical sizes, the
thermal conductivity (and even heat capacity) of the fluid may need to be changed.
One method of accomplishing this is putting significant quantities of microscopic bits of
metals into the fluid. Aslong as these particles remain in suspension, you gain some of the
thermal benefits of fluid while still retaining the fluidity of the base fluid. Nanofluid is the
colloidal suspension of nano sized particles in any base fluid. The thermal conductivity of
most of the solids are higher than any base heat transfer fluids(water,engine oil,ethylene
glycol etc). Because,while preparing nano fluid, we are mixing nano sized solid particles
of higher thermal conductivity to normal base fluid, the thermal conductivity of the
nanofluid increases. But in contrast, if the thermal conductivty of solid particle that is
mixed is lesser than that of base fluid,the thermal conductivity of nanofluid decreases. As
the temperature increases, the intermolecular attraction between the nanoparticles and
their base fluids weakens. Hence, the viscosity of nanofluids decreases with the increase in
temperature. Nanoparticles are not self propelled their movement is driven by Brownian
motion. The nanoparticles having irregular movement in the nanofluid with diameter not
more than 100nm is called Brownian motion. Nanofluid have applications in electronic
cooling, transportation, surface coating, biochemical and engine oils etc. There are four
following properties of nanofluid.

- Nonlinear development in thermal-conductivity using nanoparticles.

- Enhancement of thermal conducitivity using low concentration of nanoparticles.

- Augmentation in boiling crucial heat flux.

- Potent temperature dependent thermal-conductivity.

Henry Darcy first defined the idea of liquid passes through a porous media in 1856.
Darcy Forchheimer effect is the modification of Darcian flow having inertia term with
boundary conditions. Forchheimer term is introduced by Muskat in 1946. Darcy law is
any term or calculations that illustrate the flow of fluid across a spongy surface and is
valid for viscous and high flow rate. Any flow having Reynolds number not more than one

is apparently laminar then Darcy law will be applied on it. In melting process, thermal



energy is put away in a material through latent heat.

The model of Tangent hyperbolic liquid is an important class of non-Newtonian fluid
model. The term Tangent hyperbolic nanoliquid corresponds to the mixture of non-
Newtonian Tangent hyperbolic fluid and nano-size particles. The density of gyrotactic
microorganisms is might be denser than water so they swim upward in a fluid with free
stress and having rigid boundary on the steadiness of the suspension in a fluid, this process
is known as "Biconvection". Gyrotax is self propelled and increases the suspension of

nanofluid.

1.2 Literature Review

The term Nano-fluid was first examined by Choi [1], to explain the fluid suspension, due
to ultrafine of nanoparticles it has unique chemical and physical properties [2]. Nanopar-
ticles are basic forming components of nanofluid. Nanoparticles have higher surface area
to volume ratio and have large thermal conductivity as compared to micro-sized parti-
cles, they occupy large number of atoms on boundaries which gives them high stability
in suspensions, and can help in future with coefficient thermal management systems and
designing. Nanofluids with a wide particle distribution have better packing ability than
those of narrow particle distribution keeping constant volume fraction. This suggests
that a wide distribution of nanoparticle provides more free space to move around and
eventually makes the sample less viscous. It has been found that there is exceptional rise
in viscosity with a rise in volume concentration. Nanoparticle inclusion even at a low
volume fraction in the host liquid increased the nanoparticle concentration and greatly
increased the viscosity. Infact, with the addition of more particles, the effect of viscosity
turns out to be detrimental to the heat transfer system. The applications of nano liquid
on nuclear reactor is explained by Boungiorno et al. [3]. Nano-fluids are most beneficial
then their base fluids, more economical and used for the safety of nuclear reactor. Nano-

liquid with extraordinary heat transit property is the most discoursed subject of present



time [4 —5]. Pop and Khan [6] explained the boundary layer flow of nano liquids through
a stretch surface, they initiated that thermophoresis effect and Brownian motion are im-
portant. Nield and Kuznetsov [7] explained the convective flow of nanoliquid through
a vertically flat surface. Ferdows et al. [8] investigated the unsteady flow of viscous
nano liquid over a spongy media. The combination of forced and natural convection flow
is initiated as mixed convection and it arise in industrially and natural processes. The
variation in concentration and temperature causes buoyancy forces in mixed convection
flow. Nazar et al. [9] discussed the mixed convection flow of liquid with porous media
saturated by a nanoliquids over a circular cylinder. Its noted that by heating cylinder, the
boundary layer separation delays and by cooling cylinder, its boundary layer separation
comes near to the lower point of stagnation. Pressure is generated due to the buoyancy
forces at the boundary layer of liquid, which causes an increment in the concentration
and temperature of the liquid.

Mixed convection flow of convective nanoliquids flow through a stretching cylinder is
examined by Dinarvand et al. [10]. Mixed convection flow have numerous applications in
technology and industry in nature. For example; exposed to wind current, solar reciever,
electronic devices cooled by fans, flows in the atmosphere and in the ocean etc. Con-
centration and temperature differences give rise to buoyancy forces in mixed convection.
Fluid flows through a porous media have significance in industrial, chemical, environ-
mental and pharmaceutical system. It also use in ground water system, energy storage
units, geothermal heat exchanger layout, nuclear waste disposal, crude oil production and
water movement in reservoirs. The liquid flowing through a stretch cylinder have numer-
ous applications in engineering process. For example, glass fiber, by manufacturing of
food, paper production, drawing of films and plastic wire, liquid films in condensational
process, and crystal growing.

Forchheimer [11] described the squared velocity gradient in the equation of motion.
The term Forchheimer is named by Muskat [12]. Convective flow of saturated porous

media with thermophoresis feature and viscous dissipation is examined by Seddeek [13].



The Darcy-Forchheimer Brinkman relation through convective nanofluid is examined by
Umavathi et al. [14]. Henry Darcy [15] described the liquid flow through a spongy
surface, which based on the result of experiment on the flow of water over cribs of sand
on hydrogeology in the earth sciences. For the water flow he studied the aspects of sand
filters. After his experiment he deliberated that viscous forces dominate around inertia
forces with in porous media. Afterwards which becomes Darcy-law. Darcy law presumes
laminar flow of the fluid in the absence of density/inertia term which indicates that
absence of inertia term is not the case in classical Navier-stokes equations. Alzahrani
[16] describe the significance of Darcy-Forchheimer porous media in nanoliquids through
a stretching surface. The flow of Casson liquid with rotation parameter on the primary
velocity gradient with Darcy-Forchheimer effect is examined by Mandal and Seth [17].
They noted that primary velocity is closest to the stretching surface and reversed to the
secondary velocity.

Nourazar et al. [18] described the MHD thermal flow of nanoliquid pass through
a spongy surface over a stretching cylinder. Recently, many researcher and scientist
gained so much attentions towards the MHD nanoliquids flow through a porous media
beacause of innumerable applications in industry and engineering. MHD flow of nano
liquids by convected heat through a stretching surface is studied by Hayat et al. [19].
The flow of liquid at boundary layer and heat transfer have crucial applications in engi-
neering and industry. Applications related to energy transfer are for astrophysical flows,
reboiler, plasma, electrical heating jacket, steam jacketing or coil, and nuclear reactors
cooling. Heat transfer in magnetohydrodynamics (MHD) fraction inertia flow is stud-
ied by Rasheed and Anwar [20]. Magnetohydrodynamics (MHD) flow through stretched
cylinder with heterogenous-homogeneous reactions and Newtonian heat is investigated
by Hayat et al. [21]. MHD flow of an electrically conducting flow have numerous ap-
plications in metallurgical metal-working processes, engineering process like as MHD
generator, nuclear reactors, study of plasma, and extractional geothermal energy. MHD

techniques used to purify the molten metals from non-metallic inclusion. Properties of



heat transfer in the flow of nanoliquid is discussed by Ganvir et al. [22].

Bioconvection is a process when convection is caused by upward direction of swimming
motile gyrotactic microorganisms like algae. By adding microorganisms to a nanoliquid
it increases the stability and mass transfer of a liquid as a suspension [23 — 24]. Because,
upswimming of gyrotax, tend to concentration on the upper portion of the liquid cause
a heavy density stratification that’s mostly unstable [25 — 26]. Like gyrotax, another
specie oxytactic microorganisms also causes biothermal convection [27]. The model of
both gyrotax and oxytactic microorganisms is examined by Pedley and Hill [28]. The
motion of nanoparticles is driven by thermophoresis and Brownian motion, and they are
not self propelled, where as the motion of microorganisms are self propelled. Hence the
motion of gyrotax does not depent upon the motion of nanoparticles [29]. Mutuku et
al. [30] ,Pop and Xu et al. [31], Zaimi et al. [32], Tham et al. [33], Khan et al. [34],
and many others scientist drawn an attention on the several research of both gyrotactic
microorganisms and nanoliquid having nanoparticles.

The study of motion of electrically conducted liquid in the presence of magnetic field
is identified as MHD. The effect of melting heat transfer process on the MHD flow of a
Tangent Hyperbolic liquid is discussed by Hayat et al. [35]. By the process of melting
heat thermal energy is store in a material by latent heat [36]. The Non-Newtonian
melting heat transfer have crucial application in innovative thermal engineering, like
as in latent heat, welding process, magma solidification, thermal protection melting of
the permafrost, thermal insulation geothermal optimal utilization of energy, and in the
development of semiconductor. Robert [37] discussed the process of melting heat of ice
placed in a hoted air stream in the effect of steady state(t=0). The flow of laminar fluid
pass through a static flate plate on the surface of melting heat transfer is studied by Cho
[38] and Epstein [39]. Robert [40] discussed the phenomenon of melting heat in the steady
state. Recently, non-Newtonian fluids having melting heat transfer have innumerable
applications in innovational thermal engineering, as in latent heat thermal energy storage,

welding processes, thermal insulation, magma solidification, optimal utilization of energy,



preparation of semiconductors, geothermal energy recovery, etc. Hayat et al. [41 —
42] examined the transfer of melting heat in the viscoelastic liquid flowing through a
stretched cylinder and the effect of heterogeneous/homogeneous reactions. The transfer
of melting heat has abundent significance in composition of frozen ground defrosting,
laser fabrication magma solidification and storage of thermal energy. The behavior of
heterogeneous/homogeneous reactions and the transfer of melting heat in the visco-elastic

liquid flow through a stretch cylinder is described by Hayat et al. [43].
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Chapter 2

Basic preliminaries and laws

This chapter contains some elementary defination, concepts and laws that are helpful in

understanding work in the subsequent chapters.

2.1 Fluid

A substance that consist of particles and that particles constantly distorts when shear

stress is applied. For example oil, paint, blood, ketchup, milk, and water etc.

2.1.1 Fluid mechanics

It is the class of natural science that deals with the behavior of fluids. It is futher classified

into two classes.

2.1.2 Fluid statics

It is a class of fluid mechanics which explores the aspects of fluid properties at stationary

state.

11



2.1.3 Fluid dynamics

It is a class of fluid mechanics which explores the aspects of fluid properties at motion.

2.2 Stress

Within the deformable body, the force per unit area is identied as stress. In SI its unit

is (Nm~2) and dimension is |75 . Mathematically,

Ti = i, =x,7 (2.1)
j

Here F; and A; are the componants of force and area respectively. It is further catogrized

into two types.

2.2.1 Shear stress

The force that act on a substance parallel to the unit area of the surface is identified as

shear stress.

2.2.2 Normal stress

The force that act on a substance perpendicular to the unit area of the surface is identified

as normal stress.

2.3 Flow

Flow is specified as a material that continually deforms fluently under the effects of

distinct form of forces. Flow is further categorised into two classes.

12



2.3.1 Laminar flow

Laminar flow is the phenomenon in flow field where fluid have uniform state and velocity

is remain same at each measure.

2.3.2 Turbulent flow

A flow in which liquid flows irregularly and velocity changes at each measure is identified

as turbulent flow.

2.4 Viscosity

The viscosity is an intensive property of liquid which estimates the internal resistance of
liquid flow over deformation when numerous forces are acting on the fluid. It describes

the behavior and motion of the fluid nearest the boundary. It is further divided into two

types

2.4.1 Dynamic viscosity ()

It is to measure the resistivity of a liquid flow with an applied external force. Mathemat-

ically,
"= Gra(?i}(le?cro?tffislf)city’ (2:2)
or
Tyx
= CGuldy) (2.3)
Its ST unit is 287 with dimension [44] .

2.4.2 Kinematic viscosity (v)

Kinematic viscosity is the ratio of the dynamic viscosity p to the mass density p. The

kinematic viscosity can be obtained by dividing the absolute viscosity of a fluid with the

13



fluid mass density. It is denoted by the Greek letter . Mathematically, we can write.

Dynamic viscosity — p
V= - - ==, (2.4)
Fluid density P

Its SI unit is (%) with dimension [LTZ} )

2.4.3 Newton’s law of viscosity

The liquids which demonstrate the direct and linear relationship between the gradient of

velocity and shear stress. Mathematical expression of Newton’s law of viscosity is:
Tye & (du/dy), (2.5)

or

Tye = (1)(du/dy). (2.6)

2.4.4 Viscous fluid

A fluid is identified as viscous fluid when offers resistance to flow. For example honey,

petrol, glues, ketchup.

2.4.5 Newtonian fluid

Newtonian fluid is a satisfaction of Newton’s law of viscosity and show the direct and
linear correspondance between the shear stress and gradient of velocity. Here shear force
Tye 18 linear correspondance to the gradient of velocity du/dy and g is constant. For

example, water, glycerin, benzene, ethyl alcohol, hexane etc.

14



2.5 Non-Newtonian fluids

Non-Newtonian liquid does not satisfies the Newton’s law of viscosity and the relation
between shear force 7,, and gradient of velocity du/dy is not linear. For example honey,
ketchup, toothpaste, blood, shampoo etc. Mathematical expression of Non-Newtonian
fluid is.

du\"
Tya X (d_y) ,n#1, (2.7)

) Tye = (K) (du)n, (2.8)

dy

This expression can be changed into Newton’s law of viscosity when K = yy and N =1,

Tye = (11) (%) : p=(K) (3_;)”1 (2.9)

2.6 Density

ie.,

Density equals the mass per unit volume of a substance or ratio between mass and volume.
It measures material of a substance in a unit volume. Mathematically, it can be written
as:

p="1 (2.10)

V1

Here p denotes density, m; is mass and v; is a volume of a substance. Its SI unit is

kilog ram

meter3

2.7 Pressure

Force exerted on a surface per unit area is identified as pressure. Mathematical expression

for the pressure is.

p=" (2.11)
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Here P is a pressure, F* denote force and A is the area of the surface. Its SI unit is

pascal which is equal to Nm 2.

2.7.1 Compressible fluid

The fluid having variable density is known as compressible fluid. Density and viscosity

of a liquid increases with the increasing of pressure. For example, gas, mercury etc.

2.7.2 Incompressible fluid

The liquid having constant density is known as incompressible fluid. The variation of
density in fluid flow with pressure increase or decrease is not high and it can be neglected.

For example, air flow through a fan, blood etc.

2.8 Heat

Heat is the flow of energy from a warm object to a cooler object.

2.9 Buoyancy force

The upward force applied by any liquid upon a body set in it is identified as Buoyancy

force. Mathematically, it can be expressed as:

where F}denote buoyancy force, V; show the submerged volume, D; is the density of

fluid and ¢; denotes the force of gravity.
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2.10 Concentration

It is a measurement of the amount of a substance in a mixture. It is the ratio of the
mass of a substance (M) to the total volume of a mixture (V;). Mathematically, it can

be expressed as:

M
C =7 (2.13)
Its SI unit is —g—kg;te%m,and dimension is [4%] .

2.11 Shear thinning

It is the Non-Newtonian conduct of liquids whose thickness diminishes under shear strian.

For example: blood, paint, and ketchup.

2.12 Shear thickning

It is the Non-Newtonian conduct of liquids whose thickness increases under shear strian.

For example: mixture of cornstarch and water.

2.13 Nanofluid

Nanofluid is an effective heat transfer fluid containing a mixture of Nano-particles (Nanopar-
ticles: Fe, Cu,1-100nm in size) and Base-fluid (base fluid: DI-water, Ethylene, glycol, oil).
It increases the thermal conductivity and convective heat transfer coefficient of the base

fluid.

17



2.14 Casson fluid

Casson fluid is characterized as a shear thinning fluid which is expected to have an infinity
viscosity at zero rate of shear, a yield stress beneath which no flow happen and a zero

viscosity at an infinite rate of shear. For example: honey, jelly, sauce, soup etc.

2.15 Convective boundary condition

This condition is also known as Robins boundary condition, is dened on the surface
that both heat conduction and heat convection at the sheet are equal and in the same

direction. Mathematically, it can be expressed as:

dT(0,1)

-k
dx

= h[T1 — T(0,1))]. (2.14)

2.16 Mechanism of heat transfer

It is a type of energy that move from hotter to colder systems. It is classified into three

types.

2.16.1 Conduction

In this type of mechanism of heat transit, direct heat flows from one substance to another
due to the collision of unconditional molecules and electrons in liquids and solids. For

example ice melting in our hand. Its mathematicall denotation is:

dt

Q= —KAAT = —KA(—).

(2.15)

Here, negative sign denoting the flow from higher to lower area.
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2.16.2 Radiation

In this mechanism of heat transit, heat flow from hotter to colder region due to electro-

magnetic waves. Its mathematical denotation is:

q=eaA(AT)*. (2.16)

2.16.3 Convection

In this mechanism of heat transit, direct heat move from a liquid. Air is a liquid.For

example green house effect. Mathematically it can be written as.

Q = HA(Tsys - ﬂnf)- (217)

2.17 Thermal conductivity

Measurement of the capacity of substance to conduct heat is known as thermal conduc-

tivity.

2.18 Diffusion

The net development of particles from high concentration to low concentration is identi-

fied as diffusion.

2.18.1 Brownian diffusion

The nanoparticles that have random movement in the Nanofluid with diameter less than

100nm is called Brownian motion.
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2.19 Magnetohydrodynamics(MHD)

Magnetic impact of fluid under electric conduction is known as Magnetohydrodynamics.

2.20 Thermal radiation

In matter, the thermal motion of particles produces electromagnetic radiation is known

as thermal radiation.

2.21 Tangent hyperbolic fluid

It is one of the non-Newtonian liquid having four constant fluid models capable of de-
scribing shear thinning effect. This fluid has numerous applications in industry and their
experimental/ investigational results are considerably utilized in one of a kind laborato-

ries for the reason of industries and engineering.

2.22 Darcy law

Darcy law describes the flow of liquid through spongy/porous media, and it expresses that
heat is directly proportional to the permeability of spongy medium K*, cross-sectional

area A, pressure drop AP and is inversely proportional to the dynamic viscosity .

04 ap), (2.18)
1
or
_ _ (@)~

AP=P,— P = <A) = (2.19)

or
AP = -ty (2.20)

Kt
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In case of fluid flow ¢ = v (velocity of fluid):

Ly
K*

AP = — (2.21)

Negative sign is due to the direction of liquid flow from high pressure towards low pressure

region.

2.22.1 Darcy Forchheimer

In Darcy Forchheimer the fluid flow through spongy surface, the viscous forces of fluid
prevails the inertial forces and this result in greater flow rate of fluid. The additive
term inertial effects/velocity square term is called Forchheimer term which describe the
non-linear conduct of pressure difference against data flow. Mathematically, it can be
expressed as:

aP 12 _ prbVQ

xX- K TR (2.22)

2.23 Melting heat

It is a physical action where substance changed over to liquids from solids and stage

adjustment happens with an addition in internal energy.

2.24 Dimensionless numbers

2.24.1 Reynolds number (Re)

The significant dimensionaless number which is used to recognize that either the flow is
laminar or is turbulent. It describes inertial to viscous forces ratio. Mathematically, it
can be expressed as:

Re — inertial forces (2.23)

viscous forces’

21



(2.24)

Here, v depict the velocity of fluid, L describe the characteristic length and v represent
kinematic viscosity. Reynolds number are utilized to describe distinct flow behavior
(laminar or turbulent flow) within a similar fluid. Laminar flow arises at small Reynolds
number, in which we can note that viscous effects are eminent. Turbulent flow arises at

high Reynolds number where inertial effects are eminent.

2.24.2 Prandtl number (Pr)

It is a dimensionless amount used in computation of heat transfer between a moving fluid

and a solid body and is mathematically denoted as;

v

Pr = 2.25
= (2.25)

2.24.3 Skin friction number (Cy,)

The drag among liquid and solid surface, experienced by a liquid during flow over a
surface, is identified as Skin friction coeficient and is additionally causing decrease in the

rate of flow.

2.24.4 Schmidt number (Sc)

It is a dimensionless amount used in the ratio of non-Newtonian viscosity (kinematic) to

mass diffusivity. Mathematically, it can be written as:

v
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2.24.5 Nusselt number (Nu.,)

It is a dimensionless amount that corresponds to convection and conduction heat transit

parameters at the boundary. Its mathematical expression is:

2w

Ny, = —————.
YT R (T — Ta)

(2.27)

2.24.6 Sherwood number (Sh,)

It is a dimensionless amount and is the ratio of the convective mass transfer to the rate
of diffusivity of mass transport. Mathematically, shown as:
zh,,

Sh: = 5 et (2.28)

2.24.7 Thermophoresis parameter (V)

Thermophoresis is the movement of suspended particles through a fluid affected by an

applied thermal gradient. Mathematically shown as:

TDT (Tf — Too)
VT ’

Nt =

(2.29)

2.24.8 Hartman number (M)

The ratio between electromagnetic force to the viscous force is identified as Hartman
number. Mathematically, expressed as:
oBZl

M==" 2.30
T (2.30)
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2.24.9 Forchheimer number (F})

The Forchheimer number is the ratio of pressure gradient to viscous resistivity. Mathe-
matically, it can be shown as:
Ch

2.24.10 Melting parameter (M)

The combination of two stefen quantities (M) and (M) in case of solid

and liquid facts. Mathematically, shown as:

cy (T — T
M, = .
YN G (T, - Th)

(2.32)

2.25 Homotopic solutions

Homotopy is one of the basic concept of topology. It is stated as continous mapping
in which one function can be constantly transformed into the another function. If one
function h; and the other hy, are maps from the topological space D with the other

topological space E, then there exists a continous mapping H such that

H:DxI[0,1] — E, (2.33)

where d € D and
F(d,0) = hy(z), (2.34)
F(d,1) = hy(x). (2.35)

That mapping H is termed as homotopy.
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2.26 Homotopy analysis method

The Homotopy Analysis method (HAM) is involved to find the series solutions of highly
nonlinear problems. This method presents us with convergent series solutions for highly

nonlinear systems.
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Chapter 3

Mixed convection flow of Casson
nanofluid over a stretching cylinder

with convective boundary conditions

In this chapter we discussed the mass conditions as well as convectional heat with
nanoparticles in mixed convection. Flow obey constitutive relationship of casson fluid is
initiated through stretched cylinder. Liquid is electrically conducted in the presence of
applied magnetic field. The required boundary layer equations is converted into ordinary
differential equation after applying some similitude transformation. Homotopy Analysis
method is used for the convergent solution of the resulting system. Sherwood numbers

and Nusselt number are reduced in term of thermophoresis number.

3.1 Mathematical formulation

We consider an incompressible Casson nanofluid flow bounded by stretched cylinder
in presence of convective boundary conditions. The existence of magnetic field does
not effect the fluid electric conductivity. In radial direction r-axis is deliberated while

alongside the axis of cylinder, z-axis is taken into consideration. The uniform magnetic
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field whose intensity is denoted by By act in the radial direction. Here thermal radiation
and viscous dissipation are not present. Chemical reaction is ignored in concentration
equation. Here u and w are velocities, u along z-direction and w along r direction. T
denotes the temperature of fluid and C'is fluid concentration. Similarly 7., represents the

ambient temperature and C', represents the ambient concentration is shown in Fig 3.1.

o ey =
&b NS
11
~ 2

Fig 3.1: Fluid geometry

The subsequent governing equation is assumed as:

ou w Ow

&—F?—FE:O, (3.1)
Yo TVar TV I6; or?2  ror
* B2u
g |i6T (T_Too) (1 - C100) + Lpp) (O_ Coo):| - d pO ; (32)

T T (T ory [ arae b or]

oz Yor Yo T i or 1P or T \ Or ’ '
oC oC *C  10C Dy (0*T 10T
“a*“’a—%(mﬁa) @(W FE)' (34)
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with the subsequent boundary conditions that support the system of equations (3.1) — (3.4) .

—D,, =k, (Cp—C) atr=a,

ar
u—0,T— Ty, C— Cy, asr — 0. (3.5)

Here, dimensionless form of the above mathematical model is obtained by using following

transformation
L1 1w
Corgr’ ]
1 r2—a®> |U
w - (UVZ> af(n)v n= 2, V_Z’
T—Ty 0 —-0Oy
0(n) = T =T ¢ (n) = Cr = (3.6)

Here, satisfaction of equation (3.1) is inevitable. However, equations (3.2) — (3.5) reduce

to

(1+3) (@20 774 200"} 557 = P N0+ N =15 =0, (3
ir [(1 +29n) 0" + 279’] 0N, (L 29)0¢ + N, (1 +29m) 8" =0,  (3.8)
(14 2yn) ¢" + 2v¢' + Scfd' + % [(1 +2yn) 0" + 290 | =0, (3.9)
F(0)=0, f'(0) =1, 6 (0) = —7, (1 = 6(0)),¢' (0) = =7, (1 — ¢(0)), (3.10)
f'(00) =0, #(00) =0, ¢(c0) =0. (3.11)

with

N e M G e
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v v h vl k [ vl
Pr=—, Se=— = —4/— =/ —. 3.12
r O(’ c DB’ ’yl k’ U()’ 72 Dm UO ( )

The Nusselt number and sherwood number in dimensional form is given by:

ZQw 2hm,
Nu, = ————,5h, = , 3.13
WTy - Ty " Dl — ) (3:19)
Here, wall heat flux ¢, and wall mass flux h,, is given as:
oT oC
w — —k— r=a; hm =—Dp— r=aq - .14
¢ or | B or | (3.14)

Local Nusselt number and local Sherwood number in dimensionless quantities from equa-

tions (3.13) and (3.14) are appended as follows:
Nu, (Re.)? = —¢'(0), (3.15)

Sh, (Re,) " = —¢/ (0). (3.16)

Reynolds number is given as, Re, = ¥2
v

3.2 Solution procedure

The method used to find the solution of system is Homotopy analysis method. (HAM)
is an analytical technique used to compute the convergent series solutions. This method
discriminates itself from other analytical methods due to some important attributes. Fol-
lowing this method, the initial approximations (fo (7),600 (1), ¢y (n))and relevant linear

operators (Ly ,Lg, Ly) are expressed as follows:

fo(n) =[1 —exp (—n)],

o) = (T2 ) em (o), g0 ) = (T2 ) -op(om). @D

L4+,
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Lf :f”/—f/, LQ :91/_0, L¢ :¢//_¢- (318)

along with the properties
L (1 + caexp(n) + czexp(—n)) =0,

Ly (s exp(n) + ¢s exp(—1n)) =0,
Ly (cg exp(n) + crexp(—n)) = 0. (3.19)

here ¢; and (j = 1 — 7) are defined as optional constants.

3.3 Convergence analysis

Homotopy analysis method is applied to determine the convergence solution of non linear
system of equations which depends upon supplementary parameters 7is, fip and f,. These
parameters are important to adjust and manage the convergence zone while plotting h—
curves. The admissible ranges of iy, hy and hy are —1.1 < hy < —0.5, —=1.4 < hy < —0.2
and —1.3 < f, < —0.4. Table 3.1 represents the series solution convergence and it depicts
that 30" order of guesstimate is enough to establish the series solution. It can be noticed

that the values from table are adequately in order to the H- curves shown in Fig. 3.2.

30



] - /(0
' -~ 4'0)
P “ - ¢'(O)
2 3 e e e e e e e
he ' *\
> ! evecmcccscccccceecaaa. LT \
T » ] Y 1
-~ i K \
? , -_— o e . “I ‘
~ ! < RN vy
! / \ PR
b L
: l \ -
1 ’ ‘ 1 1

Q0

Fig 3.2: h-curve for f, 6 and ¢

05

Table 3.1: Convergence of Homotopy series solutions for varied order of estimations. f, 6 and ¢.

Order of Approximation | —f”(0) | —60'(0) | —¢'(0)
1 0.87552 | 0.15903 | 0.31705

) 0.82354 | 0.15542 | 0.28887

10 0.82498 | 0.15572 | 0.28845

15 0.82495 | 0.15570 | 0.28858

20 0.82493 | 0.15570 | 0.28856

25 0.82493 | 0.15570 | 0.28856

30 0.82493 | 0.15570 | 0.28856

3.4 Results and discussion

The present section clarifies the impacts of distinct parameters on all involved distrib-

utions through graphical illustrations. Figures 3.3 — 3.7 are plotted to determine the
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behavior of Casson fluid 3, curvature paramter ~, mixed convection number A\, buoyancy
number N, and Hartman parameter M on the velocity profile f' (7). In figure 3.3 it is
depicted that for greater values of Casson fluid 3, velocity gradient decreases. The reason
is that the fluid become more viscous with the increasing of Casson fluid. Therefore more
resistance is offered which reduces the momentum boundary layer thickness. In figure
3.4 it is seen that for large values of curvature number ~ velocity gradient increases, the
radius of cylinder decreases which enhance the fluid flow. Figure 3.5, indicates that for
growing values of mixed convectional number A\, buoyancy forces enhance, which increase
the velocity gradient f’(n). Figure 3.6 depicts that for greater number of buoyancy num-
ber N,, velocity gradient increases. Figure 3.7 shows that for greater number of Hartman
parameter M, velocity gradient reduces. Figures 3.8 — 3.11, plots to depicted the impact
of of curvature number v, Brownian motion number N,, thermophoresis number N;, and
thermal Biot number v, on the temperature 6 (). Figure 3.8 depicts that for increasing
number of curvature number ~, fluid temperature enhances. Figure 3.9 shows that fluid
temperature enhances with the greater number of Brownian motion number, which en-
hance the random motion of nanoparticles. In this process kinetic energy is convert into
heat energy due to increment in the collision of nanoparticles. Figure 3.10 shows that for
larger number of thermophoresis amount V;, temperature increases. As thermophoresis
causes the small particles to be driven away from a hot surface towards a cold one that’s
why temperature increases with an increase in NV;. Figure 3.11 depicts that temperature
enhances for the greater number of Biot number ~,. This is because of higher thermal
Biot number enhances the heat transfer coefficient and this type of increment in the heat
transfer enhances the thermal boundary thickness. Figures 3.12 —3.16 dipicts to examine
the behavior of curvature amount v, Brownian motion amount /N, thermophoresis para-
meter V;, Schmidt parameter Sc, and concentration Biot amount 7,, on the nanoparticles
volume fraction ¢ (7). In Figure 3.12 it can be noted that for larger values of curvature
numbers 7, the volume of nanoparticles enhances. Figure 3.13 dipicts that concentration

¢ (n) reduces when Brownian motion parameter N, grows. This is due to the reason
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that Brownian motion is a zig zag motion in which the kinetic energy of the particles
increases. Which in result shows an increase in particle collision. In this way boundary
layer thickness reduces with an increment in NV,. Figure 3.14 dipicts that by increment
in the thermophoresis amount N;, concentration profile ¢ (1) also reduces. Figure 3.15
shows that by increasing Schmidt amount Sc¢, the concentration profile ¢ (1) decreases.
Ratio of viscosity to mass diffusivity is known as Schmidt number. When Sc increase
then mass diffusivity decreases. Ultimate there is reduction in fluid concentration. Figure

3.16 shows that concentration profile enhances by increasing values of the Biot number

Yo-

f' ()
1.0,

0.8

0.6

0.4
| B=15,2,25,3

0.2

Fig 3.3: Impact of 5 on f'(n)
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f'(n)
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Fig 3.4: Impact of v on f'(n)
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Fig 3.5: Tmpact of X on f'(n)
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Fig 3.8: Impact of v on 6(n)
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Fig 3.9: Impact of N, on 6 (n)
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Fig 3.10: Impact of N; on 0 (n)
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Fig 3.11: Impact of v, on 6 (n)
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Fig 3.12: Impact of v on ¢ (n)
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Fig 3.13: Impact of N, on ¢ (n)
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Fig 3.15: Tmpact of Sc on ¢ (n)
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Fig 3.16: Impact of v, on ¢ (n)

Table 3.2 depicts some values of Sherwood numbers and local Nusselt number. Local

Nusselt number reduces by growing N,, N, and v, and enhance for greater numbers of
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v and 7,. Here local sherwood number reduces by growing N; and v, and enhances for
greater numbers of v, N, and 7,.
Table 3.2: Numeric values of Nusselt and sherwood number for different values of

75 Nb7 Nt7fyl7a’nd Yo-

v | N | Ne |y | 72 | Nus (Re.)™? | She (Re.) ™/
01]01101]0.21(0.7 0.15571 0.28856
0.2 0.15712 0.29877
0.3 0.15839 0.30942
0.1]0.2 0.15459 0.31332
0.3 0.15352 0.32173
04 0.15243 0.32602
0.1]0.2 0.15553 0.24168
0.3 0.15532 0.19622
0.4 0.15513 0.15235
0.1]0.5 0.29332 0.25090
0.7 0.35292 0.23510
0.9 0.39792 0.22329
0.210.5 0.15578 0.24135
0.8 0.15569 0.30742
1.0 0.15563 0.33836
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Chapter 4

Flow of Tangent hyperbolic
nanofluid in Darcy-Forchheimer
porous medium over a stretching
cylinder with motile gyrotactic

microorganism

In this chapter we discussed the convectional heat and mass conditions in the flow of
Tangent hyperbolic nanoliquid in a Darcy-Forchheimer porous media over a stretched
cylinder with motile gyrotactic microorganism. The liquid is electrically conducted in
the behavior of magnetic field. The boundary layer equation is converted into ordi-
nary differential equation after applying some suitable transformation. Built in function

bvpdc(MATLAB) is used for the convergent solution of resulting system.
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4.1 Mathematical analysis

We consider an incompressible 2-dimensional boundary layer steady laminar flow of Tan-
gent hyperbolic nanofluid in Darcy Forchheimer porous media containing gyrotactic mi-
croorganisms. In radial direction r-axis is deliberated while alongside the axis of cylinder,
z-axis is taken into consideration. The uniform magnetic field whose intensity is denoted
by Bj act in the radial direction. The magnetic Reynolds number is assumed small and
thus the induced magnetic field is negligible in comparison with the applied magnetic
field. Electric field effect is not accounted. Here thermal radiation and viscous dissipa-
tion are not present. Chemical reaction is ignored in concentration equation.Here C,
represents the ambient concentration of fluid and T, is the ambient temperature of fluid

as shown in Flig 4.1.

Fig 4.1: Fluid geometry
The governing equations of momentum, energy, mass, and gyrotactic microorganisms in

cylinderical coordinates r and z can be written as.

ou w Ow
&‘F?—Fa—o, (4.1)
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supported by the boundary conditions:

T
u:U:#, v =0, /{;g——p[}\*+Cs(Tm—Tg)]w,
—Dm%—fzkm(C’f—C),n:nJc at r = a,

u—0,T—-Ty, C—Cyx, N — Ne, at r— o0.

Here, the subsequent dimensionless transformation are used:

7]:

r2 _ g2

2a

P =

_ oy 10y
o or’ roz’
U T - T - Cy
1/2 _ n— N
(Uvz)“af(m), x(n) F—
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Here, satisfaction of equation (4.1) is inevitable. However, equations (4.2) — (4.6) take

the form:
FI =242y (L —n*) 7+ (1 —n*) (1+29m) £ + 20 We (1 + 2yn)*2 £ f"

+3n Wey (1+290)"? 2 + X0 (n) + No¢ (n) — Nex ()] — M f'

~K*f' — F f? =0, (4.9)
1
B (14 2yn) 0" +2~40'] + [0
+Ny (14 291) 0'¢' + N, (1 4 2yn) 0% = 0, (4.10)

(1+2yn) ¢" + 27v¢' + Scfd'+

Ny

N

2vx" (1) + (14 2yn) x" + LbPr f (n) X' (n)

(14 29n) 0" + 2+0'] = 0, (4.11)

—Pe(1+2yn)x'¢' =0, (4.12)

f10) =1, f(0) =0, M0’ (0) +Prf(0) =0, ¢'(0) = =7, [1 - (0)],

x(0) =1, f'(c0) =0, #(c0) — 0, ¢(c0) — 0, x(c0) — 0. (4.13)
with
vl o B2l 7Dp (C; — Cy) gl*B
K= —— =2 N, = XL A= L(1—Cy) (T — T
kl U07 pU(] ) b Y ) UOQZ ( C ) ( f ) )
UO Uo (0% ch Cr (Tf — Too) Cb
We=—=4/—T2 Lb=—, Pe= M, = F=—
€ [3/2 2Qu 2, Dn’ € Dn ) 1 A+ Cs (Tm — To)’ 1 \/EZ’
N T m=p) iy =ne) k("= p) (Cr = Cx) 7:(Vl )1/2
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The Nusselt number, Sherwood number and density of motile gyrotactic microorganisms

in dimensional form is given by:

Y Sh, = , Np, = ——"
k(Tf - Too> DB(Cf - Coo) Dn(nf - noo)

Nu, = (4.15)

Here, wall heat flux ¢, wall mass flux h,, and motile gyrotactic microorganisms flux ¢,

is given as

or oC

on
E ‘r:aa Iy = —Dp—— |r=a7 n = -D, (_> ‘r:a. (416)

Qu = —Fk or or

Local Nusselt number, local Sherwood number and density number of motile microor-

ganisms from equation (4.12) and (4.13) in dimensionless form is defined as follows:

Nu, (Re,)? = —0'(0), (4.17)
Sh. (Re.) ™ = —¢/(0), (4.18)
Nn. (Re,)" 2 = —\(0). (4.19)

Re, = % expresses the local Reynolds number.

4.2 Results and discussion

This part is devoted to depict the influenced velocity, temperature, concentration profile
and the local density of gyrotax. Various parameters like the curvature number v, mixed
convection number A, Buoyancy parameter N,, Hartman number M, Schmidt parame-
ter Sc, Prandtl parameter Pr, Brownian motion number Nb, thermophoresis parameter
Nt, concentration Biot number ~,, Weissenberg number We, local inertia coefficient
[y, porosity parameter K*, Peclet number Pe, and melting parameter M; influenced
on velocity profile f'(n), temperature, concentration profile ¢ and gyrotax density are

discussed and analyzed. In Figure 4.2 it is indicated that greater values of curvature
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number 7 causes an increment in velocity profile f’(n).When curvature parameter -y
increase it enhances the radius of cylinder which increase the liquid flow. Features of
mixed convection number A\ on the velocity f’(n) are noticed in Figure 4.3. It is de-
picted that the velocity profile increases for large number of mixed convection number
A. Figure 4.4 defines the influence of Buoyancy paramter N, on velocity profile f’(n).
Velocity profile enhances, for larger N,. Hartman parameter M on the f’(7n) is shown
in Figure 4.5. It is elucidated that when the values of Hartman parameter M are larger
then boundary layer thickness becomes lower. An increment in the power of magnetic
field cause resistivity in force, which reduce the velocity of liquid. Figure 4.6 is plotted
to show that an influence in Weissenberg number We corresponds to decay in influenced
velocity f’(n). Due to growing values of Weissenberg number We there is increment in
relaxation time which offer more resistance to flow and results in low velocity. Figure 4.7
shows the decrement behavior of the local inertia coefficient F in velocity profile f’ (7).
This is becuase the porous medium slow down the motion of fluid and this result in
decreasing of velocity. The desending behavior in velocity distribution f’(n) of porosity
parameter K* is noticed in figure 4.8. Figure 4.9 is portrayed to notice the significant
aspects of power index n* on velocity gradient f’(n). By increasing the values of power
law index n* the boundary layer thickness decreases. This is due to the fact that fluid
nature changes from shear thinning to shear thickning in an increasing n*. Figure 4.10
portraied the behavior of thermophoresis number N, on velocity profile f’ (7). It is noted
that velocity profile decays with increasing values of biconvection Rayleigh parameter
N.. N, parameter involve density difference which creates reduction in velocity profile.
Change in temperature gradient 0 (1) for the values of curvature parameter ~ is sketched
in Figure 4.11. The temperature enhences, for large estimates of curvature parameter ~.
Figure 4.12 illustrates the variation of Brownian motion amount N, on temperature pro-
file 6 (n) . It is seen that for growing values of Brownian motion number N, temperature
profile is enhanced, which enhance the random motion of nanoparticles. In this process

kinetic energy is convert into heat energy due to increment in the collision of nanopar-
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ticles. Figure 4.13 portraied the behavior of thermophoresis number N; on temperature
profile (7). Temperature @ (1) increase for growing values of thermophoresis number V.
Greater values of thermophoresis number N, causes an increment in the thermophoretic
forces which leads to movement of nanoparticles from hot to cold surfaces and similarly
it increases the temperature. Figure 4.14 depicts the temperature field 6 () for various
values of melting parameter M;. Due to melting process it acts like a blowing bound-
ary condition at the stretched surface of cylinder. By increasing melting parameter the
difference between fluid ambient temperature and temperature of the melting surface
increases and there is increment in the boundary layer thickness which diminishes the
liquid temperature. Figure 4.15 depicts that for increasing values of Brownian motion
number N, cause decrement in concentration profile ¢ (n). In nanoliquid flow,because
of existence of nanoparticles, the Brownian motion occurs and with an increment in the
Brownian motion number N, it is affected and similarly the boundary layer thickness
reduces. Figure 4.16 shows the behavior against concentration parameter ¢ (). Here,
¢ (n) is an increasing function of ~y. Figure 4.17 is plotted to show the curves of ¢ (n)
for various terms of N, at other variables are fixed. It can be judged that N, influences
the temperature. Figure 4.18 is plotted to show that an increment in Schmidt amount
Sc corresponds to decrement in nanoparticles influenced concentration ¢ (n). There is
an inverse relationship between Schmidt number and the Brownian parameter. Greater
number of Schmidt parameter Sc leads to a lower Brownian diffusion coefficient which
causes reduction in nanoparticles concentration. This is the reason that a rise in the
Sc produce a decay in diffusion coefficient which brings about a reduce in concentration
and its associated boundary layer thickness. Figure 4.19 analysis the difference in con-
centration for various values of concentration Biot amount v,. Here we noticed that the
concentration is a increasing function of 7,. Influences of Pe on the gyrotax density is
noted in Figure 4.20. It is noted that the gyrotax density decreases for growing values
of Pe. Because Pe number has direct relation with cell swimming speed which created

decreasing trend in density of motile microorganisms. Figure 4.21 shows an increasing
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effect of gyrotax density x (n) by increasing the number of ~. Figure 4.22 shows an in-
creasing effect of gyrotax density y (1) by increasing the number of Ny,. As the IV, motion
number increased the nanoparticles diameter peogressively smaller, it leads to increase
in density of microorganisms. Figure 4.23 shows an decreasing effect of gyrotax den-
sity x (1) by increasing the number of L,. A decrement in x (1) is achieved for higher
bio-convection Lewis number L;, bio-convection Lewis number has inverse relation with
motile microorganism diffusion coefficient which causes decay in the density of motile
microorganisms.

Table 4.1 shows the values of Nusselt number and Sherwood number for various para-
meters. Nusselt number exhibits an increasing behaviour on rising amount of v, We, Mj,and
for power law index n* while decreasing behavior is noted for N, N;,and 7, and sherwood
number diminshes for increasing behavior of N, and increasing for v, We, My, n*, N, N;, and
72

Table 4.2 displays the impact of Lb, Pe, Pr, v, We, M;, N,, and N; on den-
sity number of motile microorganisms. Density number enhances on increasing values of

Lb, Pe, Pr, v, We, M;, N; while diminishes for V.
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Table 4.1: Numerical values of Nusselt and Sherwood numbers for different values of

v, Np, Nt, 9, We, My, and n*.

v I Ny | Ny | vy | We | My | 0t | Nu. (Re.) "2 | She (Re,)”?
0.1 0.24449 0.13815
0.2 0.24457 0.18931
0.3 0.24511 0.23598
0102 0.17588 0.27756
0.3 0.17501 0.15546
0.4 0.17423 0.088754
0.1]0.2 0.25264 0.10911
0.3 0.25187 0.25377

0.4 0.25105 0.39496
0.1]05 0.25337 0.036463

0.8 0.25333 0.043021

1.0 0.25331 0.045767

15| 1.0 0.64682 0.2417

1.5 0.6513 0.24469

1.9 0.68218 0.25131

1.2 |05 0.63888 0.24065

0.7 0.65662 0.24574

0.9 0.67748 0.25632

0.6]03]| 06487 0.24312

04| 0.66156 0.24704

05| 0.65885 0.25032
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Table 4.2 : Numerical values of density of motile gyrotactic microorganisms for dif-

ferent values of v, Ny, N;, We, Pr, My, L, and Pe.

Nl

¥ | Ny | Ny | We | Pr| My | Ly | Pe | Nn, (Re,)”
0.1 0.73986
0.2 0.83802
0.3 0.92491
0.1]0.2 0.71345
0.3 0.71268
0.4 0.71224
0.1]0.2 0.73463
0.3 0.74714
0.4 0.75803
0.1 1.0 0.83764
1.5 0.84552
1.9 0.93038
0.77699
0.81437
1.0104

0.5 0.81437
0.7 0.85871
0.9 0.90134
0.6 | 0.2 0.83976
0.3 1.057

0.4 1.2387

0.2]01| 0.83976
0.2 0.8495

0.3 | 0.85897

1.2

[=>E B B e I S
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Chapter 5

Conclusions and future work

In this thesis two problems have been analysed where first problem is about review paper
and second problem is the extension work for it. Conclusion of both the problems are as

followings:

5.1 Chapter 3

The impact of mass condition and convective heat in mixed convection flow of casson
nanoliquid by stretch cylinder is discussed in the presence of applied magnetic field. The

main consequences of this analysis are listed below:

e Influenced velocity, temperature and nanoparticles concentration are greater for

higher amount of curvature number.

Velocity gradient is decreasing for the greater amount of Hartman parameter and

Casson fluid number.

Temperature enhanced by increasing thermophoresis number and Brownian motion.

Influenced concentration enhances for the greater values of Biot amount.

Concentration profile increases for greater values of thermophoresis number.
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e Larger values of Schmidt parameter cause a decrement in concentration distribu-

tions.

5.2 Chapter 4

e In the present exploration, we have studied the flow of Tangent Hyperbolic nanofluid
flow in Darcy-Forchheimer porous media through stretched cylinder with motile gy-
rotactic microorganisms. Analytical solution of the problem is extracted by using
bvpdc(Matlab) method. The salient features of the present investigation are ap-

pended as follows:

e Velocity, temperature, local gyrotax density and nanoparticles concentration are

higher for higher values of curvature parameter.

e Velocity profile decreases for larger values of Wessenberg number, local inertia

coefficient and porosity parameter.
e Temperature reduces for greater values of melting parameter.
e Velocity profile reduces for growing values of power law index.

e Local density of motile microorganisms influenced by increasing Peclet number.

5.3 Future work

The current study can be extended to the subsequent models as well:

e The model may be extended to any other non-Newtonian fluid.
e The energy equation can be enhanced by adding the Cattaneo-Christov heat flux.

e The effect of Arrhenius activation energy can be added.
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