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Abstract

Deep learning models perform well in open-air captured image classification

problems but, in the case of underwater images, can’t find better accuracy due to

low-level features. Under-water image classification is a difficult task due to the

independent nature of the sea. To overcome low-level issues, we need to implement

advanced deep learning models. Meanwhile, the deep learning community focuses

on pre-trained deep networks to classify out-of-domain images and transfer learn-

ing. This study proposes a model for underwater image classification. We split the

Labeled Fishes in the Wild (LFW) dataset into two versions as raw and enhanced

before implementation. Strategy II of the transfer learning approach has been used

by analyzing the nature of the dataset. We have applied pre-trained CNN architec-

tures such as VGG, ResNet, Xception, and DenseNet on the dataset to find better

results. DenseNet121 offers the most accurate predictions for raw and enhanced

versions. We achieved 97.84% classification accuracy on the original version and

gained 99.35% accuracy on the enhanced version dataset. In the end, we tested our

application on Fish Species Image Dataset (FSID) and achieved correct results.
Keywords— Underwater Image Classification, Deep Learning, Convolutional Neu-

ral Network, Transfer Learning, Pre-trained CNN Architectures, Image Enhancement.
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CHAPTER 1

INTRODUCTION

1.1 Background

Computer vision is a broad field in deep learning which handles object detec-

tion, object tracking, image segmentation, and image classification. Computer vision

is a platform for classifying images in different conditions such as underwater and

open air. Deep learning algorithms were applied and gained success on many large

datasets for open-air image classification but make overfitting when applied these

algorithms on small datasets [2]. In open-air captured image classification problems,

the deep learning algorithms operate effectively, but, in the case of underwater im-

ages, the deep learning models didn’t find better accuracy due to low-level features.

Under-water image classification is a difficult task because of the autonomous na-

ture of the ocean [3]. The classification algorithms for underwater images need to

address additional issues that arise from the loss of quality of an image due to light

scattering, absorption, and reduction of image saturation which intensely affect the

visual perception [4]. To overcome low-level issues, we need to implement advanced

deep learning models. Preprocessing is necessary for these problems to improve

the image colors and advance image classification [5]. Suitable image processing

algorithms play a vital role in enhancing the vision of underwater images. Convolu-

tional Neural Network (CNN) is one of the most promising classifiers for recognizing

different kinds of images. Extracting features from an image is the main focus of

classification and is carried out by grouping pixels into various labels [6]. Supervised

and unsupervised learning are the main types of machine learning used in classifica-

tion problems. Supervised learning is an algorithm that extracts features, train the

model and analyze by using labeled data. However, unsupervised learning also plays

a vital role in image classification in which the pixels of the image are automatically

bunched into clusters [7]. Currently, deep learning models are broadly used in image

processing to get accurate predictions. The reason behind it is its fast-computing

performance to handle and execute large datasets by learning things from dept [8].

Generally, CNN is an appropriate classification technique while performing image
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processing tasks. CNN can automatically recognize the main features of the image

without any human supervision [9]. Deep learning algorithms deal with the mul-

tilevel representation of data to make input images clear and understandable such

as from lower-level to higher-level. ImageNet is a large dataset available in deep

learning, has included manually-annotated data that support test algorithms to or-

ganize multimedia data [10]. For classifying images of large datasets, choosing CNN

is the foremost procedure in deep learning. Like other deep learning models, the

CNN’s uses Stochastic Gradient Descent (SGD) to train a different model such as

graphical models (where the amount of data is large). CNN has various training

layers that are helpful in low-resolution image classification. For example, the input

layer, convolutional filters layer, pooling layer, fully-connected layer, and the output

layer [11, 12]. The ability of parameter tuning is a valuable technique to advance

CNNs for image classification [13]. Many data sets are available for the traditional

underwater image classification, but we are trying to figure out a more effective

method for deepwater image classification.

1.2 Research Gap

In this study [14], we have found that the current models follow inaccurate al-

gorithms that implicitly limit the progress of underwater image enhancement. And,

some users did not understand the physical model of underwater images. So, they

might ignore the presence of the backscatter effect in long distances. The proposed

methodology in [15] can only improve contrast in extreme conditions. The results

in [16] argue that small images may lose too much information when enlarging im-

ages or transforming to gray-scale. The researcher in [17] can achieve better results

by applying more CNN architectures with more fake images. Due to the effect of

background noise and other underwater stuff, the proposed algorithm [18] couldn’t

have achieved 100% accuracy as some pictures couldn’t predict correctly. The pro-

posed system can improve by further applying contrast enhancement techniques to

overcome the lost features problem. The ResFeats [19] method might not achieve

better classification accuracy due to the complex nature of underwater images and a

wide range of classes, such as benthic and fish, etc. Executing different deep learn-

ing algorithms such as convolutional neural networks may increase the classification

performance of the proposed method [20]. Deep et al. [21] might increase the accu-

racy by preprocessing and augmenting the dataset and applying other deep learning

methodologies such as transfer learning to enhance the performance of the proposed

method. The dataset collected in this study [22] is from the same water condition

doesn’t allow us to evaluate the model in different water conditions. The label as-

signed to a benthic image was not the main idea from the dataset. So, this created

several issues but also revealed interesting areas in multi-label image classification

2



[23]. The model [24] can be more effective by adding more layers and applying them

to large datasets. Transferring high-frequency SAS-image CNNs to low-frequency

SAS images has not been done yet. Also, the relative benefit of transfer learning

as a function of training dataset size requires a larger dataset than the existing one

[25].

1.3 Problem Statement

Nowadays, computer vision is the top trending technology and the rapidly

increasing research in image classification and object detection towards open-air

captured images. The existing systems are mostly attentive to light conditional

approaches of image classification. In the case of underwater image classification,

many challenges occur, such as:

• Blur

• Distinct nature

• Light scattering

• Absorption

• Saturation

• Low-light illumination problem

The underwater captured images might be a blur, distinct nature due to dif-

ferent types of waters like normal and shallow water, and light scattering because of

displacement of the light direction. Similarly, another problem is the size reduction

at the center of deepwater images due to the blueish color under the water. This

problem is also called absorption. The further challenge that occurs in the under-

water taken image is saturation. Saturating the images refers to the decrease of

the intensity of the image corners. Correspondingly, the main issue in underwater

captured images is that they might be dark because of the low-light illumination

problem. By observing these problems and challenges, there will be a requirement

for a precise deep learning algorithm for underwater image classification, which can

perform better than existing systems.

3



1.4 Research Questions

Table 1.1: Research questions for the proposed model

S.No Question Description

1

How to overcome the challenges

of underwater image classifica-

tion?

To choose the most used and sug-

gested deep learning methods ap-

plied in underwater image classi-

fication.

2
How will the accuracy of the raw

underwater images be increased?

To recognize the effective classifi-

cation methods applied with orig-

inal/raw underwater images for

classification.

3

How will the accuracy of the en-

hanced underwater images be in-

creased?

To identify the efficient classifi-

cation and latest image enhance-

ment techniques for underwater

image classification.

4
Which CNN model predicts more

precisely for underwater images?

Analysis and comparison of CNN

architectures applied on original

and enhanced dataset versions.

1.5 Objectives

The main purposes of deep-water image classification are to:

• Train the proposed base model with more layers.

• Train with large underwater image dataset using faster GPUs to gain more

accurate results.

This research aims to use the CNN algorithms to predict the underwater im-

ages and achieve better accuracy. As shown in the literature review section, several

methods had used for image classification. Almost all of them used CNN or CNNs

sub-techniques like ResNet etc. In this study, we are applying CNNs on a large

dataset than the turbid underwater image dataset [26] (TURBID Dataset) as men-

tioned in the future work for classifying underwater images in the base paper [24].

In this research, we are using Labeled Fishes in the Wild dataset [27]. We are imple-

menting different CNN architectures by analyzing several works from the literature

review. So, we will identify which model gives us better accuracy that we compare

the evaluation with the results of our base model(DUICM) and other existing works

based on underwater image classification.
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1.6 Significance of the study

We are implementing classification methods on the chosen features from La-

beled Fishes in the Wild Dataset. There are almost 1400+ images taken from

different videos in the underwater dataset. Our proposed method aims to overcome

low-level feature issues using a large dataset instead of a small dataset increased

performance in both forms, such as original and enhanced. And applying the pre-

trained models that are much more suitable methods than traditional ones to go

deeper with layers. It may also save time during model creation by using a transfer-

learning approach instead of making deep models from the beginning. Alternatively,

our proposed model will be helpful for many purposes, such as mine classification,

for military purposes, finding dead bodies beneath the water, finding treasure, and

many more.

1.7 Structure of Thesis

The rest of the paper has divided as follows: Section 2 describes the review of

different related works. Section 3 explains the proposed methodology and briefly dis-

cusses various techniques used in this work. In Section 4, we discuss the experiments

and results. Section 5 presents the conclusion and future research directions.
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CHAPTER 2

RELATED WORK

Classification models perform well in the case of open-air captured images

and classify with better accuracy. Underwater captured images have low-level fea-

tures, and the system needs well-designed algorithms that perform higher and com-

plex calculations for the underwater taken image. We have been discussing various

methodologies for image enhancement, different techniques, and traditionally used

approaches for deepwater image classification.

2.1 Underwater Image Enhancement

2.1.1 Enhancement Benchmark Dataset

The aim of the study [14] was to analyze underwater image enhancement using

extensive tainted images. Researchers generated a benchmark dataset for classifi-

cation called the UIEBD dataset that has 950 underwater captured images. The

collected images in the dataset from multiple light effects such as natural, artificial,

or a mixture of both lights. The UIEB dataset provides a platform to evaluate the

performance of different deep-water enhancement models. Furthermore, by using the

generated UIEB dataset, scientists conducted a comprehensive survey of single deep-

water image enhancement techniques ranging from qualitative to quantitative esti-

mations. Researchers proposed a CNN algorithm named Water-Net trained by the

generated UIEB dataset for underwater image enhancement, which determines the

evaluation of UIEB and the advantages of the proposed network. Also, the proposed

CNN model enhances the advancement of computer vision-based underwater image

enhancement. Detailed experimentation of underwater image enhancement had done

using the generated UIEB dataset. The applied image enhancement methods were

both qualitative and quantitative such as UDCP [28], Retinex-based [29], blurriness-

based [30], Red Channel [31], two-step-based [32], fusion-based [33], regression-based

[34], histogram prior [35] and GDCP [36]. These experiments demonstrate the ef-

ficiency of the proposed Water-Net and also specify the generated dataset can be

useful for training CNNs. The results of the proposed Water-Net compared with
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traditional CNNs: considering MSE, it gave the lowest from other CNNs with the

value of 0.7976, in the PSNR metric it had the highest value of 19.1130 and, the

SSIM also had the highest of 0.7971, respectively. On the other hand, Water-Net

had 2.57 of the highest average score and 0.728 of the lowest standard deviation

amongst all CNNs.

Research Gap: By observing this study, we have found two research gaps, such

as the current models following inaccurate image generation algorithms that im-

plicitly limit the progress of underwater image enhancement. And, some users did

not understand the physical model of underwater images. So, they might ignore

the presence of the backscatter effect in long distances. Using inaccurate image

recognition algorithms keeps image classification and other computer vision areas

standstill.

2.1.2 Weak Contrast Image Enhancement - AEIHE

Many photo capturing devices have developed in the last decades, such as dig-

ital, mobile, and security cameras. And these cameras are usually used by humans

for personal use. Contrast improvement is the main factor of computer vision used in

various domains such as healthcare, military and satellite images, etc. Lack of image

enhancement laid to illumination, limited user experience, and poor-quality devices.

Histogram equalization (HE) has been currently used to tackle such issues. It’s an

image enhancement technique, which improves the quality of the image. Adaptive

entropy index histogram equalization (AEIHE) system initiated to enhance the qual-

ity of an image [37]. Initially, AEIHE splits the image into three sub-parts to increase

its local feature. Each sub-part of the image used a different area. The clip limit

depends on the richness of their feature and their design. Then, a new parameter

named Entropy-Index has applied to confirm the highly-rich areas of the sub-part

while preserving its design. AEIHE was measured to be a brilliant HE-based method

for image enhancement. AEIHE was evaluated based on the results of qualitative

and quantitative analysis. AEIHE was successfully formed good quality images with

promising enhancements, information details, and richness, and superbly preserved

design with fewer effects from noise, undesirable objects, and over-enhancement.

Research Gap: Non-real-time captured images such as healthcare and the personal

camera do not depend on time while enhancing images. But focus on the making of

the best results. Although, current techniques for real-time enhancement applica-

tions can quickly generate results. In many cases, these techniques have been unable

to produce optimal results and demonstrate poor performance. Whereas methods for

non-real-time applications may take high enhancing time yet can generate the best

results in some cases. AEIHE is designed for non-real-time applications and focuses

upon gaining accurate resultant images that are real and pleasant to the human eye
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with contrasted local details, fewer noise effects, and preserved structure.

2.1.3 Weak Contrast Images - Enhancement

A modified CNN architecture was proposed in [15] to achieve improvement in

poor contrast images. DND, SIDD, and RENOIR are the three publicly available

datasets used for noise reduction. Then, the authors observed pixel distribution

attributes of the RGB channels of poor contrast images. And, the histogram distri-

bution was given, which had used to fix the size of the kernels of the CNN. Afterward,

a multilayer convolutional neural network was created and fed the original image

as input. The model gave a noisy image output. The results demonstrate that the

proposed algorithm achieved a higher peak signal-to-noise ratio (PSNR) and an ad-

vanced structural similarity index (SSIM) than other image contrast approaches.

Research Gap: However, we have found that the proposed methodology can only

improve contrast in extreme conditions.

2.1.4 Summary: Underwater Image Enhancement

Note that the performance of image enhancement methods differs from one

field to another heavily depending on its objective. Some existing works used tradi-

tional image enhancement techniques that imposed many challenges such that can

only improve contrast in extreme conditions [15], and avoid the existence of the

backscatter effect in long distances [14]. However, our experiments show that the

enhancement technology increases the vision of images for the human eye, removing

noise and blurring, improving contrast, and revealing details. We use the Contrast

Limited Adaptive Histogram Equalization (CLAHE) [38] for image enhancement as

a method.

2.2 Underwater Image Classification

2.2.1 Low-resolution Image - Fish Recognition

In [16] the researchers proposed a model that predicts fish species from low-

resolution images. The features extraction wasn’t simple from fuzzy images. Ad-

vanced deep learning technologies had used to extract discriminative features from

underwater captured images such as Network in Network (NIN) [39] and PCANet

[40]. After that, they trained a linear SVM model to classify different fish species.

The researchers trained the linear SVM classifier individually for each deep learning

model using libSVM library [41]. The linear kernel had used to train the model since

the task is not a binary classification problem. Experiments carried out on Fish-OR

and Fish-SR datasets. The researchers take traditional dense sift (Dsift-Fisher) fea-

tures [42] and Gabor features [43] to predict using the image of the FishCLEF2015
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dataset as comparison methods. Then, the SVM model had trained using both fea-

tures. The deep methods achieved much higher performance than the traditional

ones. The results show that the proposed methodology gained accurate outputs for

fish classification.

Research Gap: The results argue that small images may lose too much information

when expanding to large images or converting to gray-scale.

2.2.2 Fish Image Generation and Classification

Scientific studies on fish species have a crucial role in underwater life. Fish

images are first collected by different vehicle systems and then interpreted manually

by researchers. The field of computer vision has enhanced to a great extent due to

the rise of deep learning algorithms. Underwater image classification is a difficult

task than open-air classification. Usually, traditional CNN needs big data with

high features to attain better evaluations since fish images have low features and

small datasets available. In [17], authors prepared three types of fish datasets that

expand the training data to assure the quality and quantity. For each of the few-

shot classes, a translation model had been used to generate high-quality images.

It achieved better performance in fish image classification. The results show that

adding more fake images to training data may increase higher-classification accuracy.

VGG16 and ResNet50 were used to achieve better performance.

Research Gap: The researcher can achieve better results by applying more CNN

architectures with more fake images.

2.2.3 Fish Species Classification

This research [18] attempted to recognize underwater images of fish species

using image classification, deep learning, and convolutional neural networks. The

dataset used for the proposed methodology was Fish4Knowledge [44] of 27,142 im-

ages. In the first step, the noise had removed from the dataset. Then, a computer-

vision-based tool had applied for data preprocessing. The preprocessing tool had

used to remove the underwater dirt, non-fish objects, and obstacles in the images.

Preprocessing had done to enhance feature recognition and training of the CNN

model. After that, classification for fish labels had done using deep learning algo-

rithms. The purpose of training an algorithm was to tune a network that minimizes

the error rate between the actual and predicted outputs. Max pooling layer is used

for well-separated frames to divide the input image. Different activation functions

were applied and compared for getting a better evaluation, such as ReLU, Tanh, and

Sigmoid. The proposed method of classification of fishes gave 96.29% of accuracy

that was the highest compared to current and other traditional approaches used for

this application.
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Research Gap: Due to the effect of background noise and other underwater stuff,

the proposed algorithm couldn’t achieve 100% accuracy as some pictures couldn’t

predict correctly. The proposed system can improve by further implementing image

enhancement techniques to tackle the lost features issue.

2.2.4 ResFeats: Underwater image classification

Underwater images depend on an advanced image capturing devices. Most of

the photos captured by these systems do not get annotated due to fewer resources.

So, the researchers’ data wasn’t much to train a deep learning model. Currently, the

deep learning community mainly focuses on implementing pre-trained techniques

and transfer learning to classify images. In [19] ResFeats (image features) proposed

to measure how accurately the features had extracted from the different convolu-

tional layers of a pre-trained deep residual network on ImageNet. The researchers

combined ResFeats extracted from various layers to attain favorable deep features.

Also, it had proved that ResFeats gradually performed better than other CNN coun-

terparts. The experimental results show the performance of ResFeats with improved

classification accuracies on RSMAS, Benthoz15, MLC, and EILAT datasets.

Research Gap: The ResFeats method may not achieve better classification accu-

racy due to the complex nature of underwater images and a wide range of classes,

such as benthic and fish.

2.2.5 Underwater Image Classification using ML

Over the last few years, an underwater study has increased significantly.

Presently, Side Scan Sonar (S3), Remotely Operated Vehicle (ROV) and, others

are existing data collection devices used in underwater research. These devices pro-

vide data about the ocean surface, objects, and species. So, choosing an effective

and appropriate feature is a difficult task. It is hard to classify underwater images

because of the small number of datasets. Also, it’s a difficult task due to low light

intensity. Machine learning-based model had applied in this paper [20], called the

Bag of Features model to tackle the mini dataset issue. The dataset images of seven

classes had collected from shallow water using ROV. Speeded-Up Robust Features

(SURF) algorithm had used to extract the features from the dataset. Machine learn-

ing algorithms such as Support Vector Machines (SVM) were used as a classifier in

the Bag of Features model to maximize accuracy and obtained 93% from the ex-

periments. Finally, this model gives better performance for the underwater image

dataset.

Research Gap: Executing different deep learning algorithms such as convolutional

neural networks may increase the classification performance of the proposed method.
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2.2.6 Underwater Image Classification using DL

Many computer-vision-based technologies had introduced to predict fish labels

accurately. In [21], DeepCNN, DeepCNN-SVM, and DeepCNN-KNN frameworks

proposed that were performed better than current methods for underwater fish clas-

sification in terms of accuracy, precision’ recall, and f1-score. The proposed method

DeepCNN-KNN achieved an accuracy of 98.79%.

Research Gap: There is also a chance to increase the accuracy by preprocessing

and augmenting the dataset and applying other deep learning methodologies such

as transfer learning to enhance the performance of the proposed method.

2.2.7 Underwater Classification using Monocular Image

Underwater captured images become the main issue for robotic applications

due to the high intensity of absorption. The main problem requires a depth map

for various applications. Lack of large datasets is one of the main issues to train

and validate the model. Some methods suggested for result measuring depends on

the physical approach and deep learning model. By analyzing the advantages and

disadvantages of each type of model, the objective of [22] is to obtain an efficient

depth map for input RGB images. The proposed work provided a wide range of

scenarios for underwater captured images. The authors adapted the model-based

advanced technique to raw images to measure dept maps from compressed images.

The learning-based method shows better results in both cases. So, the proposed

framework correctly predicts the water type of the case images and correctly selects

the best technique to measure the depth map.

Research Gap: The dataset collected in this study is from the same water condition

doesn’t allow us to evaluate the model in different water conditions.

2.2.8 Multi-label Underwater Image Classification

In this study [23], researchers trained a multi-label image classification model

on the underwater image datasets using ResNet50, which is a pre-trained CNN ar-

chitecture. In the first stage, the dataset only provided single-label images. The

data set had split into subsets such as 80% used for training and 20% was used for

validation and testing. The performance reported on the test data. Additionally,

the model ran on video transects data to evaluate the measurement of the models to

operate in a functional environment. The collected transects weren’t well-adjusted

amongst classes. They delivered different scenes of the dataset, especially for the

midwater data. The proposed model trained for 15 species and clustered depending

on the number of pictures for each class. And the amount of almost 1,000 images

per class. The dataset had generated in the form of 33,064 sets of images. This
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model had trained for a single-label classification problem and has been able to clas-

sify multi-label classification problems using a Top-N scoring method. The relative

accuracy and unrecognized classes had proved as part of this method. By applying

the above-stated scoring method, the researchers found Top 1 accuracy of 85.7% and

Top 3 accuracy of 92.9% on the FathomNet test data. Then the performance of the

algorithm was tested using a midwater transected dataset. The FathomNet train-

ing set had a combination of many focused and zoomed-in images. These images

were enhanced using a limited spatial resolution of objects in the midwater transect

footage. So, the proposed algorithm performed poorly due to differences between

the iconic imagery (e.g., FathomNet or benthic training data) and differences in

resolution and scale of labels (e.g., midwater transect data). Another experiment

had done by training a model of 15 benthic classes out of 17. Firstly, the researchers

limited the number of training images to 700. Then, removed this threshold to

include the classes available in the midwater transect dataset. This experiment re-

sulted in a dataset with a total of 33,064 images. The authors found Top 1 accuracy

of 72.4% and Top 3 accuracy of 92.8% on the test data. A quickly recognizable

difference between the midwater and benthic outcome was the comparisons between

Top 1 and Top 3 accuracy metrics. There was a noticeable increment in the benthic

dataset moving to Top 3 accuracy due to the multi-concept nature of deep-water

taken images in FathomNet. While midwater dataset images had considered being

commonly single-concept.

Research Gap: The label assigned to a benthic image was not the main idea from

the dataset. So, this created several issues but also revealed interesting areas in

multi-label image classification.

2.2.9 DUICM: Deep Underwater Image Classification Model

The aim of the deep underwater image classification model [24] (DUICM) was

to apply a convolutional neural network (CNN) on underwater images. It helped

train and classify the turbid images for the chosen features from the Benchmark

Turbid Image Dataset. The dataset had further converted into two more versions,

raw and enhanced image datasets. The accuracy had checked concerning activation

functions, no. of epochs, and confusion matrix. The DUICM gave a 97% accuracy

rate on the enhanced version and offered 69% on the raw version dataset. The ac-

curacies show for ReLU as an activation function.

Research Gap: The model can be more effective by adding more layers and ap-

plying them to large datasets.
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2.2.10 Underwater Mine Classification using Transfer Learning

CNN’s designed and trained for an underwater mine classification using SAS

data in [25]. This work determined the efficiency of using CNNs for UXO recognition

when SAS had fewer training data. Transfer learning allowed better classification

results compared to training from scratch. These discoveries can be assured to

minimize training data requirements in a broad range of remote-sensing issues char-

acterized by limited data.

Research Gap: By reviewing, we found that transferring high-frequency SAS-

image CNNs to low-frequency SAS images has not been done yet. Also, the relative

benefit of transfer learning as a function of training dataset size requires a larger

dataset than the existing one.

2.2.11 Summary: Underwater Image Classification

As compared with the existing work, our proposed method has the following

advantages:

• The dataset used in this study contains images from different water conditions

such as shallow, mid, and deep-water, which allow us to evaluate the model

in, unlike water conditions.

• Implementing an image enhancement method such as CLAHE tackles the lost

features issue.

• The proposed model performs more effectively by adding more layers (using

pre-trained CNN architectures) and applying them to a large dataset.

• The model achieves more precise predictions on both the enhanced and the

original versions.

2.3 Dataset: Labeled Fishes in the Wild

2.3.1 Labeled Fishes in the Wild

A new underwater image dataset, “labeled fishes in the wild,” was collected

from ROV survey imagery. The dataset has been made available for object detec-

tion, fish species classification, and fish tracking. The dataset had developed using

images of Sebastes and other species captured from ROV cameras during rockfish

surveys, mainly in the southern California Bight between 2000 and 2012. Automa-

tion of fish recognition benefits NOAA by lessening the number of personnel hours

needed for video surveys [45].
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Research Gap: Recognition of fish species and tracking of detected fish to auto-

mate counting had been missing from the proposed method.

2.3.2 Real-Time Fish Recognition using CNN

The CNN-based real-time fish recognition method proposed in this paper [46].

The YOLO detector was acquired for fish recognition and trained the network using

a custom dataset named Fishes in the Wild. The model offered 93% classification

accuracy, 0.634 IOU between the actual and predicted bounding boxes, and 16.7

frames per second of fish recognition. The proposed network outperformed the HOG

models showed a much faster processing speed. It indicated that neural networks

efficiently classify low-resolution, noisy, and blurred underwater images.

Research Gap: The model predicts all fish as a ‘positive’ class instead of fish

species. Annotating images by species can be helpful to classify, observe, and detect

fish for certain species.

2.3.3 Summary: Labeled Fishes in the Wild

The labeled fishes in the wild dataset had applied in object detection and

other computer vision tasks. In our experiments, for the first time, we have done

image classification on the fish species using labeled fishes in the wild dataset.
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CHAPTER 3

RESEARCH METHODOLOGY

This chapter discusses the implementation details of approach. Initially we

discuss the challenges faced for which we employ proposed approach followed by the

details associated with intended framework.

3.1 Current Method

The existing system has based on multi-label underwater taken images. The

CNN structure of the DUICM model includes five layers:

–Layer 1: Input image of size 64x64, every image size generating 32 features map

of size 64x64 and 32 number of filters.

–Layer 2: Using 64 number of filters and image size of 5x5 generating 64 features

map of size 26x26.

–Layer 3: Applied ReLU activation function in this layer, which holds 96x96x32

size of the input image.

–Layer 4: It is a max-pooling layer using a pooling window of 2x2. Which reduces

spatial dimensions 10x10.

–Layer 5: The last layer has 128 neurons and is a fully connected layer. Softmax

activation/transfer function applied in this layer.

The complete workflow of the current model (DUICM) using CNN as shown in Fig.

3.1.

The current model uses CNN for underwater image classification using turbid

dataset. As shown in the Fig. 3.1 that how the model works. The model is evaluated

with two types of images: Raw underwater taken images and Enhanced underwater

images. Performance measures of all the 5 epochs are shown in Table 3.1 for Raw

Underwater Images.

Performance measures of all the 5 epochs are shown in Table 3.2 for Enhanced

Underwater Images.

15



Figure 3.1: CNN framework of DUICM model.

Table 3.1: Performance Evaluation (RUI)

S.No Epoch Loss Accuracy

1 1/5 0.8156 0.5021

2 2/5 0.6978 0.5189

3 3/5 0.6321 0.6312

4 4/5 0.5629 0.6578

5 5/5 0.3215 0.6938

The results show the better accuracy by comparing Raw and Enhanced ver-

sions, where the enhanced images have better accuracy of 97.37% than Raw Under-

water Images (RUI). Table 3.3 shows the comparison of activation functions that

have with better accuracy. For both Raw and Enhanced Underwater Images, ReLu

activation function gives better accuracy as compare to Softmax.

3.2 Proposed Methodology

The accuracy of enhanced underwater images is 97.37%, and for raw images,

the accuracy is 69.38% in the current work. However, the main focus of our pro-

posed work is to increase the accuracy of the original version without losing the

enhanced version’s accuracy. In the proposed model, we have been applying CNN

architectures such as VGG, ResNet, Xception, and DenseNet to find better results.

The current CNN model only has five layers. It has been mentioned in the future
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Table 3.2: Performance Evaluation (EUI)

S.No Epoch Loss Accuracy

1 1/5 0.2255 0.7966

2 2/5 0.1365 0.8397

3 3/5 0.0356 0.8963

4 4/5 0.0468 0.9541

5 5/5 0.0723 0.9737

Table 3.3: Comparison between ReLu and Softmax activation functions

Activation Normal Image Accuracy Enhanced Image Accuracy

ReLU 69.38% 97.37%

Softmax 54.01% 86.23%

work of base paper to test with larger layers models. Therefore, we are using pre-

trained models that consist of 16 to 121 layers. It has also been mentioned in future

work to apply models on larger datasets. For this purpose, we are using a larger

dataset named Labeled Fishes in the Wild (LFITW) that has 1400+ underwater

taken images instead of the Benchmark Turbid Image Dataset, which has only 82

underwater captured photos. The workflow of our proposed model has shown in

Fig. 3.2.

Our proposed system is composed of various layers. The dataset preparation to

results analysis is performed at these layers, based on different architectures. These

layers include data preprocessing and augmentation, implementation of CNN archi-

tectures, development of application using trained weights, and the results analysis

and comparison. The description of these layers and the proposed architecture has

provided in the following subsections. Accuracy is the evaluation measure used for

result comparison.

3.3 Dataset

The Benchmark Turbid Image Dataset in the existing model is very small,

consisting of 82 turbid images. The images are both in a raw and enhanced form.

So, in this paper, we will be using Labeled Fishes in the Wild Dataset that contains

1475 annotated frames from different videos. The purpose of using the dataset is
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Figure 3.2: The proposed methodology for underwater image classification.

that we require a large dataset for underwater classification, and there are fewer

available datasets. We selected the dataset with 1475 frames from several videos.

The proposed method is only limited to underwater taken images and deep-water

classification. There are a lot of datasets available for open-air image classification,
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but the work done in the underwater world is much lesser than open-air imagery

data. We are using the Labeled Fishes in the Wild [27] dataset in our proposed

method. The dataset consists of images of fish, invertebrates, and the seabed. The

images were collected using a camera-operated remotely operated vehicle (ROV)

for fisheries researches. This dataset provides fish and other sea animal detection,

multiple animal target tracking, evaluation of aquatic animals in stereo image pairs,

and fish species classification. Another point to consider is that we need a dataset

for testing the application. For this cause, we have chosen images from Fish Species

Image Data (FSID) [47]. The FSID contains approximately 4000 images from 468

species of fish.

3.4 Image Enhancement - Adaptive Histogram Equalization

Adaptive histogram equalization (AHE) is a decent image enhancement tech-

nique for natural, underwater, dark, blurred, and other images. The automatic

process and efficient performance of all contrast presented in the image features

make it eligible for the proficient image enhancement technique. AHE has the ad-

vantages of being static and reproducible and requiring the examiner to observe

only a single case image. The basic Histogram Equalization (HE) enhancement has

based on the pixels in an area surrounding its contextual location. But the simple

HE method is too slow, and the contrasted image has undesirable features under

certain circumstances. AHE increases its speed on various processors and splits the

image into different tiles, then implements HE into these tiles [48, 49, 50].

3.4.1 Contrast Limited Adaptive Histogram Equalization - CLAHE

CLAHE is a form of AHE in which the contrast enhancement is limited to

control the noise amplification problem. CLAHE is an algorithm for local contrast

improvement that uses histograms processed over various tile areas of the image [38].

The CLAHE model has three main parts: tile creation, histogram equalization, and

bilinear interpolation. In the first step, the case image has divided into different

tiles. Then histogram equalization is then processed on each tile using a pre-defined

clip limit. In the end, the tiles have joined together using bilinear interpolation to

create an improved contrasted image [50, 51].

3.5 Convolutional Neural Network

Convolutional Neural Network (CNN) has had state-of-the-art evaluations in

the last few decades in the areas of image classification, object detection, voice recog-

nition, natural language processing, and so on. Reducing the number of parameters

19



in Artificial Neural Network (ANN) is the main advantage of CNN. The most im-

portant thing about CNN tasks is that they should not have spatially dependent

features. Another vital CNN functionality is feature abstraction when input prop-

agates to the deeper layers. i.e., in image recognition, the edge might be spotted

in the first layers, and then the simpler figures in the second layers, and then the

higher-level features such as faces in the third layers [52]. A standard CNN consists

of one or more blocks of convolution and pooling layers, after those single or multiple

fully connected layers and an output layer at the end as shown in Figure 3.3.

Figure 3.3: Workflow of a classical CNN.

3.5.1 Convolutional Layer

The central part of CNN is a convolutional layer. Images have a common

fixed nature, which means the formation of one edge of the image is the same as any

other edge. Therefore, a feature learned in one part can match the parallel shape in

another. In a high dimensional image, we take a small region and proceed through

all the edges in the high dimensional image (Input). During the process at edges, we

convolute them into a single place (Output). Each small region that proceeds over

the input or large image and learns different portions of an input image is known

as the filter (Kernel). The kernels are later updated based on the backpropagation

method [53]. The standard convolutional procedure has depicted in Figure 3.4.
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Figure 3.4: Workflow of a convolutional layer.

3.5.2 Pooling Layer

Pooling means downsampling of an image. It gets a small section of the

convolutional layer’s output as input and down-samples it to generate a solo output.

There are various sub-sampling methods such as max pooling, average pooling,

global average pooling, global max pooling, etc. Pooling minimizes the number of

parameters to be computed [54]. Figure 3.5 shows operations of max and average

pooling, which are the most famous pooling techniques.

Figure 3.5: The pooling layer, also known as sub-sampling layer.
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3.5.3 Fully Connected Layer

Fully connected layers are the last part of CNN as represented in Figure 3.6.

This layer aims to take inputs from all neurons in the preceding layer and executes

operation with each neuron in the current layer to generate output [55].

Figure 3.6: The fully-connected layer of a classical CNN.

3.6 Transfer Learning

Transfer learning using pre-trained CNN means applying an already trained

model to a new task. It states that what learned in one configuration has been

used to enhance optimization in another configuration [56]. Nowadays, it is very

famous in deep learning because it can also train deep neural networks with small

data. Transfer learning can be applied when there is a new dataset smaller than

the dataset used to train the pre-trained architecture [57]. Many problems in the

field of data science haven’t millions of labeled data points available to train such a

difficult model. Transfer learning is a useful method in which a model is trained and

developed for one dataset and then re-used on a second related dataset. Without

transfer learning, we train many models for each dataset separately. In the case of

transfer learning, we use a pre-trained model again for a similar dataset [58]. Figure

3.7 demonstrates the key benefit of transfer learning.

Currently, three main techniques successfully employ CNNs to transfer learn-

ing [58, 56], such as:
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Figure 3.7: The concept of with and without transfer learning.

Strategy 1: Train the whole model from scratch. i.e., you only use the architecture of a

pre-trained model and train it according to your dataset.

Strategy 2: Fine-tune the pre-trained convolutional networks to your dataset. Freeze the

initial layers and continue backpropagation and update the parameters of

layers.

Strategy 3: Freeze the convolutional base and use CNN as a feature extractor only. Af-

ter that, throw away the classification part. Then, use additional machine

learning algorithms such as SVM, KNN, etc., for the classification.

Table 3.4 shows the possibilities of when to use which strategy based on the

dataset similarity and size [59]. Here, the similarity means how much our dataset

is similar to the pre-trained model’s dataset, and size indicates the volume of our

dataset.

Table 3.4: When to use which strategy of pre-trained networks

Quadrant# Dataset Size Dataset Similarity Strategy#

Quadrant 1 Large Different Strategy 1

Quadrant 2 Large Similar Strategy 2

Quadrant 3 Small Different Strategy 2

Quadrant 4 Small Similar Strategy 3

We are applying the second strategy of pre-trained networks to our dataset,

which is most likely to our proposed problem.
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3.7 CNN Architectures

There are many traditional and latest pretrained CNN architectures used for

image processing tasks such as LeNet [60], AlexNet [61], VGG [62], Xception [63],

ResNet [1], DenseNet [64], etc. In our proposed work, we apply five of CNN models

for underwater image classification such as VGG16, VGG19, ResNet50, DenseNet121

and Xception.

3.7.1 VGGNet

Simonyan and Zisserman proposed a model by configuring AlexNet [61] deeper

and named it as VGGNet. The researcher applied 3x3 filters in all the layers with

the stride of 1 and made the network deeper keep other parameters unchanged.

They have introduced six different CNN configurations such as VGG11, VGG11-

LRN, VGG13, VGG16, VGG16 (Conv1x1), and VGG19 with 11, 11, 13, 16, 16,

19 weighted layers. The max-pooling applied in the pooling layer and 2x2 pooling

size with a stride of 2. The ReLU function had used as an activation function in

the activation layer and a SoftMax activation function in the dense layer. VGG16

network has approximately 138 million, and the VGG19 has 14.71 million param-

eters respectively [62]. We use VGG16 and VGG19 in our proposed model. The

architecture of VGG16 and VGG19 as shown in Figure 3.8.

3.7.2 ResNet

Deep networks are hard to train because of the notorious vanishing gradient

problem. However, this problem had tackled by normalized initialization. The

deeper model demonstrates bad performances not because of overfitting but on both

train and test errors. That specifies that loss reduction of the deeper model is too

hard. The authors applied a pre-trained model with extra layers to execute identity

mapping to control this issue. In such a manner, the performance of the pre-trained

network and the deeper network should be the same. They have proposed a deep

residual network to solve the degradation issue and named their model as ResNet

[1]. The authors added residual mapping:

(H(x) = F (x) + x) (3.1)

Instead of desired underlying mapping (H(x)) into their network as illustrated in

Figure 3.9.
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Figure 3.8: A visualization of VGGNet architecture.

ResNet is staking the residual blocks together. Add skip connections to a plain

network to convert it into a residual network. Each ResNet block is two layers deep

(used in small residual networks such as ResNet18, 34) or three layers deep (used in

large residual networks like ResNet 50,101,152).

3.7.3 DenseNet

Dense Convolution Networks (DenseNet) was presented by Huang et al. [64],

which introduces Dense block in traditional CNN. A layer in a Dense block takes
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Figure 3.9: (a) Plain layer (b) Residual Block [1]

input from the concatenation of the output of all the previous layers. Each layer in a

dense block reuses the results of all preceding layers, minimizing vanishing gradient

problems and stabilizing feature propagation. DenseNet layers use a small number

of filters, and they add a small set of new feature maps. DenseNets are similar to

ResNets, but instead of sum, DenseNet concatenates the output feature maps of the

layer with the incoming feature maps.

Figure 3.10: The standard structure of a Dense block with three layers.

Figure 3.10 demonstrates a Dense network with three dense blocks. The non-

linear conversion functions in a Dense block are a composite function of ReLu, batch

normalization, and 3x3 convolution operation. Also, the 1x1 bottleneck layer is used

in DenseNet to reduce the spatial dimensions.
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3.7.4 Xception

Xception is the extreme version of Inception [65]. It is even better than

Inception-v3 [66], with an updated depth-wise separable convolution. A classic con-

volutional network in which convolutional layers examine correlations across both

space and dept. In Xception, the input image has split into many compressed

parts. It maps the spatial correlation for each output separately. Then executes 1x1

depth-wise convolution to find a cross-channel correlation. The depth-wise separable

convolution has followed by point-wise convolution. Depth-wise convolution is the

channel-wise (n x n) spatial convolution. The amount of (n x n) spatial convolution

depends on the number of channels, i.e., five channels = 5 (n x n) spatial convolu-

tions. Point-wise convolution is the 1×1 convolution to change the dimension [63].

Figure 3.11 represents the workflow of Xception.

Figure 3.11: The structure of Xception architecture and dept-wise separable

convolutions.

3.7.5 CNN Architectures: an overview

The pre-trained networks trained on more than a million images from the

ImageNet database contest into the 1000 different classes [61]. Configuration of

various CNN architectures shown in Table 3.5 with advantages and disadvantages

of each network.
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Table 3.5: A typical architectures in convolutional neural networks

Model Year Layer# Param# Merits and Demerits

VGG16/VGG19 2014 16/19 138/143m

It learns more complex features

at a lower cost using multiple

non-linear layers but is slow to

train, and the pre-trained weights

are sizeable in terms of disk and

bandwidth [67].

ResNet50 2015 50 25.6m

It tackles the vanishing gradient

issue using identity mapping, and

the skip level connections make

dimensionality complex between

different layers [68].

DenseNet121 2016 121 8m

Reinforce feature propagation,

lessen the number of parameters,

reduce the vanishing-gradient

problem, etc. The extreme

contacts reduce computation-

efficient and make more prone to

overfitting [69].

Xception71 2017 71 23m
More efficient regarding computa-

tion time [70].

3.8 Evaluation Measurement

When we are training a model in deep learning, we have to choose a correct

classification problem, label encoding, activation and loss functions, and accuracy

metrics [71].

3.8.1 Classification Problem and Label Encoding

First, we have to understand the classification problem we are solving. There

are three main classification types in machine learning, such as binary classification,

multi-class classification, and multi-label classification.

Binary Classification

A binary classification is for one or two target classes. For example, (i) Is it

Man in the image? (ii) Is it Man or Woman in the Image? A floating number of 0.0

for Man and 1.0 for Woman label in the case of binary classification.
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Multi-class Classification

When we have more than two classes, only one target assign to an input, i.e.,

Which car is in the image: BMW, Mercedes, Range Rover, Audi? For this problem,

one-hot encoding can be an appropriable solution as shown below:

BMW = [1 0 0 0]

Mercedes = [0 1 0 0]

Range Rover = [0 0 1 0]

Audi = [0 0 0 1]

Also, we can use a vector array of integers for multi-class classification problem:

BMW = [1]

Mercedes = [2]

Range Rover = [3]

Audi = [4]

Multi-label Classification

If we have more than two classes, multiple classes assign to an input. For ex-

ample, Which car is in the image: BMW, Mercedes, Range Rover, Audi? Multi-hot

encoding will be used for these kinds of tasks, as shown below:

BMW = [1 0 0 0]

BMW,Mercedes = [1 1 0 0]

Range Rover = [0 0 1 0]

Audi,Mercedes = [0 1 0 1]

In our case, the Fishes in the Wild dataset contains many images that are

either single or multiple fishes. Therefore, we have labeled these images using multi-

hot encoding or multi-label classification techniques.

3.8.2 Activation Function

The neural network has neurons that operate using weight, bias, and their

respective activation function. The weights and biases of the neurons would update

based on the error rate at the output. This task is known as backpropagation. Acti-

vation functions have a key role in backpropagation since the gradients are provided

together with the error to update biases and weights [72]. There are several layer

activation functions available in deep learning. We are discussing three of them as

Sigmoid [73], Softmax [74] and ReLU [75, 76]. ReLU applies as an activation func-

tion in the hidden layers of pre-trained CNN architectures. Our proposed work is a

multilabel binary classification problem. Therefore we implement the sigmoid and

29



softmax functions in the output layers.

Sigmoid Activation Function

In this activation function, the result is either 0 or 1 and commonly used in

the output layer of binary classification tasks. Results can be easily predicted using

a threshold i.e., if the value is less than 0.5 then it would be 0 otherwise 1. The

formula of sigmoid activation function is given below:

σ(x) =
1

1 + e−x
(3.2)

Softmax Activation Function

Softmax is similar to the sigmoid function but is useful when we are trying to

do multiclass or multilabel classification problems. The output of the input vectors

would lie between 0 and 1, and would also divide by the total number of outputs.

Softmax function formula is given below:

Softmax(x)i =
exp(xi)∑
j exp(xj)

(3.3)

ReLU Activation Function

ReLU has commonly been used as an activation function in the hidden layers

of neural networks. It gives an output of 1 if the value is positive otherwise is 0.

ReLU is less computationally expensive and learns much faster than other activation

functions because it contains simpler mathematical operations. The formula of ReLU

has given below:

ReLU = max(0, X) (3.4)

3.8.3 Loss Function

Loss functions are an approach to measuring how far a predicted value is from

the actual value. There are no suitable loss functions to algorithms in machine

learning that can use in all circumstances. Many loss functions are available in

regression and classification tasks. We are discussing the ones used in our proposed

classification task.

Binary Crossentropy

Binary cross-entropy is a loss function that computes the cross-entropy loss

between actual and the predicted output. Binary cross-entropy can use in two

conditions: (i) If there are only two classes labeled as 0 and 1. There should be
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only a floating-point value per prediction for each instance. (ii) If there are equal

to or more than two classes with multi-hot encoded labels. There should be only a

floating-point value per label for each instance [77].

Categorical Crossentropy

It also computes the cross-entropy loss between actual outputs and the pre-

dicted outputs. Categorical cross-entropy can be used in a condition if there are two

or more labeled classes [78].

3.8.4 Confusion Matrix

A confusion matrix has considered one of the best evaluation tools for classifi-

cation tasks. It can use in binary classification as well as for multiclass classification

tasks. A confusion matrix represents the performance of a classification model. The

standard structure of the confusion matrix has shown in Figure 3.12.

Figure 3.12: Confusion matrix or the table of confusion.

The confusion matrix has four main attributes used to state the measurement

metric of the model, such as:

TP (True Positive): Number of correct predictions when the actual class

was positive.
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TN (True Negative): Number of correct predictions when the actual class

was negative.

FP (False Positive): Number of incorrect predictions when the actual class

was positive.

FN (False Negative): Number of incorrect predictions when the actual class

was negative.

The accuracy, precision, recall, and F1 score are characteristics of an evalua-

tion metrics of a model. These characteristics are measured based on the TP, TN,

FP, and FN [79, 80].

3.8.5 Accuracy Metrics

In the proposed method, we measure our models based on accuracy metrics.

Accuracy

The accuracy metric is a calculation of how near the predicted value is to

the actual value of the quantity. If an error is low, the evaluation is correct. The

accuracy metric evaluates the rate of accurate predictions over the total number of

samples measured [81]. The formula for accuracy metric is:

Acc =
(TP + TN)

(TP + TN) + (FP + FN)
(3.5)

Binary Accuracy

Binary accuracy evaluates how often predictions be similar to binary labels.

The binary accuracy can be used as a measurement metric in two types of tasks as

binary classification and multi-label classification. The metric encoded actual labels

in one-hot or multi-hot vectors. Also, it creates two local variables that measure the

rate with which the predicted label matches the actual label. This rate is known

as binary accuracy, in which a static task divides the total variable by the count

variable [82].

Categorical Accuracy

The Categorical accuracy evaluates how often predictions be similar to one-

hot labels. The metric has commonly used in a multi-class classification problem

as an evaluation metric. Also, it creates two local variables that measure the rate

with which the predicted label matches the actual label. This rate is known as

Categorical accuracy, in which a static operation divides the total variable by the

count variable [82].
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CHAPTER 4

DATA ANALYSIS, RESULTS & FINDINGS

This chapter, gives the evaluation of this work. We discuss the dataset used for

this study followed by experimental settings and finally we discuss the experimental

results for the proposed approach.

4.1 Experimental Setup and Dataset

All networks were implemented using the TensorFlow framework and trained

by Tesla P100-PCIe GPUs. The experiments had done in both desktop-based and

cloud-based environments. The tools and technologies used for the groundwork of

the proposed work have displayed in Table 4.1. These tools have a significant value

while implementing image classification problems.

In this work, we applied classification algorithms for fish species recognition.

We labeled the images into three classes as Rockfish, Starfish, and Tilefish. The

average image size is 0.14mp and, 415x361 is the median image ratio. From the

selected 767 images, 289 are from the Tilefish class, which is approximately 38%.

There are 181 images of Starfish and 170 Rockfish images, which are 23% and 22%

respectively. The remaining 17% of 127 images are multi-labeled such as 118 images

of Rochfish+Starfish, and nine images of Rockfish+TileFish. Figure 4.1 presents

the percentage and comparative analysis of the contribution based on the number

of images.

For this purpose, we have selected 767 images and manually annotated them

by applying a multi-label classification technique using an online tool [83]. A total

of 894 annotations have been done for above mentioned three classes. The class

balance of the annotated labels have shown in Table 4.2.

Further, the dataset was converted into two versions of 767 images, i.e., (i)

Raw or the original form, and (ii) Enhanced form. Table 4.3 presents various data

preprocessing and augmentation techniques on behalf of raw and enhanced versions.
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Table 4.1: Most used tools and technologies in the proposed research

Tool Technology Environment Objective

Keras Python Both
A Python API that offers an inter-

face for ANNs.

Tensorflow Python Both

It is an end-to-end python library for

machine learning and artificial intel-

ligence.

Numpy Python Both

It is a python library used for work-

ing with arrays and provides com-

prehensive mathematical functions.

Pandas Python Both
It is a python library used for data

manipulation and analysis.

Jupyter Anaconda Desktop
A web-based interactive computing

platform.

VS Code Microsoft Desktop
A code editor for debugging ad-

vanced web and cloud applications.
Origin OriginLab Desktop Used for data visualization.

MS Visio Microsoft Desktop
Used for making and designing

graphs.

Colab Google Cloud

Allows us to write and execute ar-

bitrary python code through the

browser.

P100 GPU Tesla Cloud

Can process many pieces of data at

once and make them useful for clas-

sification.

Table 4.2: The class balance of the dataset

Class Annotations

Rockfish 297

Starfish 299

Tilefish 298

The enhanced version is done Contrast Limited Adaptive Histogram Equalization

(CLAHE) [38, 50, 51]. It’s an image contrast method for low-resolution photos.

We applied CLAHE on Fishes in the Wild dataset. A sample image has shown

in Figure 4.2.

The Fishes in the wild dataset consists of 767 images labeled with 894 annota-

tions for Raw and Enhanced versions each. We have done 121 experiments using five
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Figure 4.1: An analysis of fish species.

Table 4.3: Data Preprocessing

Raw Enhanced

Auto-orient Applied Applied

Auto-adjust contrast Not applied Using adaptive equalization

Augmentations Not applied Not applied

No. of Images 767 767

Annotations 894 894

Figure 4.2: Before and after applying the CLAHE method.

CNN architectures on the datasets. For this task, we have applied VGG16, VGG19,

ResNet50, DenseNet121, and Xception71. Some hyper-parameters have not changed

since they remain constant in every experiment. Constant parameters have shown
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in Table 4.4.

Table 4.4: The constant parameters

Parameter Value

dept 3

weights (Pretrained) imagenet

include top false

trainable false

optimizer adam

Dept refers to the number of channels in an input image. In our case, we are

using colored images with three channels as Red, Green, and Blue (the dept would

be 1 in case of a Grayscale image). Similarly, we are using pre-trained CNN models

that trained on ImageNet[10] database. Include top is a hyperparameter that has

included the ImageNet classifier at the top. But we created our model and changed

it to false for all experiments to not include the ImageNet classifier. Trainable is

a Boolean hyperparameter. Configuring “trainable=false” converts all the layer’s

weights to non-trainable. This process is known as “freezing” the layer.

4.2 VGG16 as a Model

We have done 16 experiments on the original or raw version as shown in Table

4.5. Experiment 12 gives more precise results than other experiments. Firstly, we

split data into 70% for training and 30% for testing. Then, we assigned 320x320x3

to the initial input shape and then set the sigmoid activation function at the output

layer. This experiment has trained in one hour and 17 minutes, and 36 seconds, and

tested in 788 milliseconds in which the number of train batches was nine and test

batches were four per iterations. In the end, it gives 95.38% of accuracy and 0.1411

of loss.

Similarly, 13 experiments have been applied on the raw version using VGG16.

Details for each experiment have listed in Table 4.6. Experiment 10 provides higher

accuracy than other implementations. Dataset has split into 80% and 20% for train

and test. We feed 128x128x3 as input and use the sigmoid activation function at

the output layer. We manually set the batch size to 64. Experiment 13 takes

10 minutes to train and 3 seconds to test. The Auto-tuned method provides ten

batches for train and three batches for the test. It offers 96.10% accuracy and

0.1197 loss and correctly predicted 8 out of 10 images in 3 seconds. Also, we applied

the Categorical Crossentropy loss function instead of the Binary Crossentropy loss

function in experiment 8. But, it increases an error rate as compared to other
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Table 4.5: VGG16 on raw version

Exp Input
Split Batch

Activation Epochs
Time

Loss Accuracy
Train Test Size Train Test Train Test Predict

1 64x64x3 80% 20% 64 10 3 Sigmoid 100 2m 37s 42ms 5s 0.2164 0.9199

2 64x64x3 80% 20% 64 10 3 Sigmoid 300 3m 22s 45ms 5s 0.1782 0.9134

3 256x256x3 80% 20% 128 5 2 Sigmoid 100 5m 34s 144ms 6s 0.2810 0.9069

4 128x128x3 80% 20% 64 10 3 Sigmoid 200 3m 20s 96ms 4s 0.1868 0.9069

5 320x320x3 80% 20% 64 10 3 Sigmoid 200 11m 4s 483ms 3s 0.2071 0.9242

6 320x320x3 70% 30% 64 9 4 Sigmoid 500 28m 3s 784ms 7s 0.1609 0.9380

7 128x128x3 80% 20% 64 10 3 Softmax 200 4m 11s 99ms 5s 0.2237 0.8961

8 128x128x3 80% 20% 64 10 3 Softmax 200 5m 4s 102ms 5s 0.5015 0.9004

9 128x128x3 80% 20% 64 10 3 Sigmoid 500 6m 44s 99ms 5s 0.1776 0.9177

10 128x128x3 80% 20% 64 10 3 Sigmoid 1000 11m 8s 102ms 5s 0.2002 0.9177

11 320x320x3 70% 30% 64 9 4 Sigmoid 1000 52m 10s 796ms 8s 0.1420 0.9524

12 320x320x3 70% 30% 64 9 4 Sigmoid 1500 1h 17m 36s 788ms 4s 0.1411 0.9538

13 320x320x3 70% 30% 64 9 4 Sigmoid 100 21m 38s 3ms 1s 0.3033 0.8701

14 64x64x3 80% 20% 64 10 3 Sigmoid 500 4m 7s 42ms 5s 0.1812 0.9091

15 32x32x3 85% 15% 64 11 2 Sigmoid 500 4m 40s 26ms 5s 0.2424 0.9080

16 352x352x3 80% 20% 64 10 3 Sigmoid 100 8m 12s 588ms 8s 0.2651 0.9380

implementations, as shown in Table 4.6. It causes too many wrong predictions, such

as correctly predicting 4 out of 10 images.

Table 4.6: VGG16 on enhanced version

Exp Input
Split Batch

Activation Epochs
Time

Loss Accuracy
Train Test Size Train Test Train Test Predict

1 64x64x3 80% 20% 64 10 3 Sigmoid 100 5m 7s 93ms 4s 0.2170 0.9221

2 64x64x3 80% 20% 64 10 3 Sigmoid 300 7m 52s 96ms 4s 0.1886 0.9329

3 256x256x3 80% 20% 128 5 2 Sigmoid 100 4m 56s 93ms 3s 0.2513 0.9134

4 128x128x3 80% 20% 64 10 3 Sigmoid 200 3m 20s 96ms 4s 0.1622 0.9394

5 320x320x3 70% 30% 64 9 4 Sigmoid 200 11m 23s 1s 4s 0.1978 0.9221

6 320x320x3 70% 30% 64 9 4 Sigmoid 500 26m 50s 1s 3s 0.1507 0.9408

7 128x128x3 80% 20% 64 10 3 Softmax 200 4m 0s 93ms 3s 0.1871 0.9177

8 128x128x3 80% 20% 64 10 3 Softmax 200 3m 20s 96ms 3s 0.4427 0.9177

9 128x128x3 80% 20% 64 10 3 Sigmoid 500 5m 49s 99ms 3s 0.1263 0.9567

10 128x128x3 80% 20% 64 10 3 Sigmoid 1000 10m 3s 96ms 3s 0.1197 0.9610

11 128x128x3 80% 20% 64 10 3 Sigmoid 6000 52m 33s 96ms 3s 0.2781 0.9481

12 128x128x3 80% 20% 64 10 3 Sigmoid 2000 19m 32s 99ms 2s 0.1440 0.9567

13 128x128x3 80% 20% 64 10 3 Sigmoid 1500 14m 41s 99ms 4s 0.1291 0.9567

4.3 VGG19 as a Model

Fourteen tests have been implemented on the raw version using the VGG19

network. Experiment 13 provides 95.02% accuracy with a loss of 0.1777. We divide

the dataset to 80% for training and 20% for testing. We set the other parameters

like input shape to 256x256x3, batch to 64, train batches to 10 and test batches

to 3, and fixed sigmoid at the output layer. It takes 36 minutes and 16 seconds to

train in 1000 iterations and 378ms to test using Tesla P100 GPU on Google Colab.

Correctly predicts 6 out of 10 images because of over-fitting. We fixed the number

of epochs to 100 and tried again. It has given the same accuracy as experiment 13

with better loss and prediction. It predicted 8 out of 10 correctly. In experiments

4 and 5, we fix softmax activation at the output layer, but it gives 90% and 91%
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accuracies. The offered accuracies are too low as compared to experiment 13. Table

4.7 shows all the details of each experiment that has been done on the raw version

dataset using VGG19.

Table 4.7: VGG19 on raw version

Exp Input
Split Batch

Activation Epochs
Time

Loss Accuracy
Train Test Size Train Test Train Test Predict

1 224x224x3 80% 20% 64 10 3 Sigmoid 100 4m 39s 308ms 4s 0.2433 0.9026

2 224x224x3 80% 20% 64 10 3 Sigmoid 500 15m 50s 306ms 3s 0.1798 0.9351

3 224x224x3 80% 20% 64 10 3 Sigmoid 1000 30m 21s 306ms 4s 0.1739 0.9372

4 128x128x3 80% 20% 64 10 3 Softmax 100 2m 43s 114ms 3s 0.2370 0.9113

5 128x128x3 80% 20% 64 10 3 Softmax 500 6m 37s 120ms 3s 0.2232 0.9048

6 128x128x3 80% 20% 64 10 3 Sigmoid 100 2m 38s 111ms 3s 0.2318 0.9091

7 128x128x3 80% 20% 64 10 3 Sigmoid 500 6m 35s 117ms 3s 0.1896 0.9221

8 128x128x3 80% 20% 64 10 3 Sigmoid 1000 12m 15s 120ms 3s 0.1963 0.9199

9 64x64x3 80% 20% 64 10 3 Sigmoid 100 2m 5s 48ms 3s 0.2353 0.8896

10 320x320x3 80% 20% 64 10 3 Sigmoid 100 7m 16s 579ms 5s 0.2607 0.9004

11 256x256x3 80% 20% 64 10 3 Sigmoid 100 5m 42s 375ms 7s 0.2598 0.9048

12 256x256x3 80% 20% 64 10 3 Sigmoid 500 19m 31s 381ms 3s 0.1854 0.9416

13 256x256x3 80% 20% 64 10 3 Sigmoid 1000 36m 16s 378ms 3s 0.1777 0.9502

14 256x256x3 80% 20% 64 10 3 Sigmoid 10000 5h 49m 47s 375ms 5s 0.4404 0.9307

We did nine experiments on the enhanced version of the dataset. Experiment

7 gives more accurate results than other assessments. All the hyperparameters are

the same as experiment 13 of the raw version. But, the only difference is the number

of epochs, such as 500 epochs in the enhanced version. The evaluation takes 18m

46s to train the model. In the end, it gives 0.1163 test loss and 96.10% test accuracy.

Table 4.8 shows all experiments records.

Table 4.8: VGG19 on enhanced version

Exp Input
Split Batch

Activation Epochs
Time

Loss Accuracy
Train Test Size Train Test Train Test Predict

1 224x224x3 80% 20% 64 10 3 Sigmoid 100 4m 30s 315ms 3s 0.1959 0.9394

2 224x224x3 80% 20% 64 10 3 Sigmoid 500 15m 50s 318ms 3s 0.1222 0.9567

3 224x224x3 80% 20% 64 10 3 Sigmoid 1000 30m 50s 306ms 3s 0.1194 0.9437

4 256x256x3 60% 40% 64 8 5 Sigmoid 100 6m 28s 805ms 1s 0.2157 0.9251

5 256x256x3 60% 40% 64 8 5 Sigmoid 500 19m 9s 800ms 4s 0.1411 0.9511

6 256x256x3 80% 20% 64 10 3 Sigmoid 100 5m 41s 375ms 3s 0.1921 0.9394

7 256x256x3 80% 20% 64 10 3 Sigmoid 500 18m 46s 375ms 3s 0.1163 0.9610

8 256x256x3 80% 20% 64 10 3 Sigmoid 800 29m 3s 372ms 3s 0.1105 0.9567

9 256x256x3 80% 20% 64 10 3 Sigmoid 1000 35m 56s 372ms 3s 0.1108 0.9524

4.4 ResNet50 as a Model

ResNet50 gives poor results on behalf of comparison with other CNN archi-

tectures. The best experiment for the raw version is experiment 7, with 87.88%

accuracy. One thing we noted is that increasing the input shape reduces the accu-

racy. So, we feed 100x100x3 as input, set the batch size to 64, and sigmoid activation

function at the output layer. The model has trained in 9 minutes and 16 seconds

38



Table 4.9: ResNet50 on raw version

Exp Input
Split Batch

Activation Epochs
Time

Loss Accuracy
Train Test Size Train Test Train Test Predict

1 512x512x3 70% 30% 64 9 4 Sigmoid 100 11m 48s 1s 684ms 4s 0.3981 0.8240

2 512x512x3 80% 20% 64 10 3 Sigmoid 100 11m 21s 4s 4s 0.4003 0.8116

3 320x320x3 80% 20% 64 10 3 Sigmoid 100 5m 41s 3s 435ms 4s 0.4175 0.8052

4 320x320x3 80% 20% 64 10 3 Sigmoid 500 21m 48s 3s 435ms 4s 0.3359 0.8571

5 320x320x3 80% 20% 64 10 3 Sigmoid 1000 42m 11s 435ms 4s 0.3118 0.8571

6 448x448x3 80% 20% 64 10 3 Sigmoid 1000 1h 18m 47s 798ms 4s 0.3044 0.8636

7 100x100x3 80% 20% 64 10 3 Sigmoid 1000 9m 16s 93ms 4s 0.3149 0.8788

8 256x256x3 80% 20% 64 10 3 Sigmoid 1000 29m 27s 385ms 4s 0.3179 0.8485

after 1000 iterations. The model correctly predicted 7 out of 10 species in 3 seconds.

Table 4.9 presents all eight evaluations applied on a raw version using ResNet50.

We performed 16 experiments on the enhanced version dataset using the

ResNet50 model. In experiment 4, we implemented Flatten() class in the output

layer instead of GlobalAveragePooling2D() and assessed the poorest result of our

thesis as shown in Table 4.10. The accuracy we attained is 55.19% and a loss of

6.2860. The model has predicted 3 out of 10 accurately. However, the best exper-

iment is 16, which gives 93.29% of accuracy. The model has trained in 53 minutes

and 6 seconds, and it predicted 7 out of 10 species in 5 seconds. Table 4.10 shows

all the results comprehensively.

Table 4.10: ResNet50 on enhanced version

Exp Input
Split Batch

Activation Epochs
Time

Loss Accuracy
Train Test Size Train Test Train Test Predict

1 256x256x3 80% 20% 64 10 3 Sigmoid 100 4m 30s 291ms 4s 0.3190 0.8766

2 256x256x3 80% 20% 64 10 3 Sigmoid 500 15m 35s 297ms 3s 0.2444 0.9113

3 256x256x3 80% 20% 64 10 3 Sigmoid 1000 29m 47s 300ms 4s 0.2225 0.9177

4 256x256x3 80% 20% 64 10 3 Sigmoid 100 4m 23s 294ms 5s 6.2860 0.5519

5 256x256x3 80% 20% 64 10 3 Softmax 100 5m 3s 294ms 4s 0.3267 0.8550

6 256x256x3 80% 20% 64 10 3 Softmax 500 15m 36s 297ms 4s 0.2494 0.8896

7 320x320x3 80% 20% 64 10 3 Sigmoid 500 22m 27s 335ms 4s 0.2184 0.9113

8 128x128x3 80% 20% 64 10 3 Sigmoid 500 6m 59s 108ms 4s 0.3416 0.8528

9 128x128x3 75% 25% 64 9 3 Sigmoid 1000 11m 31s 141ms 4s 0.3308 0.8594

10 416x416x3 80% 20% 64 10 3 Sigmoid 100 8m 23s 711ms 4s 0.2563 0.9026

11 512x512x3 80% 20% 64 10 3 Sigmoid 100 11m 32s 1s 4s 0.2543 0.9091

12 608x608x3 80% 20% 64 10 3 Sigmoid 100 15m 29s 1s 464ms 3s 0.2451 0.9113

13 800x800x3 80% 20% 64 10 3 Sigmoid 100 29m 59s 2s 523ms 6s 0.2636 0.9134

14 992x992x3 80% 20% 64 10 3 Sigmoid 100 42m 53s 3s 5s 0.2829 0.8983

15 608x608x3 80% 20% 64 10 3 Sigmoid 500 1h 12m 42s 1s 470ms 5s 0.2027 0.9286

16 512x512x3 80% 20% 64 10 3 Sigmoid 500 53m 6s 1s 5s 0.2080 0.9329

4.5 Xception71 as a Model

In this section, we are discussing the second most precise results. Table 4.11

shows that 11 experiments have been done on the raw version using Xception71.

In experiment 4 and 5, we can see that small input shape such as 128x128x3 has

given poor performances regarding accuracy. Experiments 9, 10, and 11 offered the

same accuracy of 97.11%. However, 10 and 11 are over-fitted models, as we can see
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the error rates. So, experiment 9 is considered the more accurate assessment. The

hyperparameters had configured in such a manner that assigned 256x256x3 to input

shape, split data into 70%/30% for train/test, set the batch size to 64, and fixed

sigmoid function at the output layer. It trained in 5 min and 52 seconds. Here, the

prediction rate is 90% (9 out of 10 correctly).

Table 4.11: Xception71 on raw version

Exp Input
Split Batch

Activation Epochs
Time

Loss Accuracy
Train Test Size Train Test Train Test Predict

1 256x256x3 80% 20% 64 10 3 Sigmoid 100 5m 50s 387ms 7s 0.1518 0.9610

2 256x256x3 80% 20% 64 10 3 Sigmoid 500 20m 37s 381ms 4s 0.2273 0.9654

3 416x416x3 80% 20% 64 10 3 Sigmoid 100 11m 35s 993ms 7s 0.1207 0.9610

4 128x128x3 80% 20% 64 10 3 Sigmoid 100 2m 36s 126ms 4s 0.1441 0.8528

5 128x128x3 80% 20% 64 10 3 Sigmoid 500 7m 2s 126ms 4s 0.2215 0.9437

6 288x288x3 80% 20% 64 10 3 Sigmoid 100 6m 15s 486ms 2s 0.1521 0.9567

7 288x288x3 80% 20% 64 10 3 Sigmoid 500 26m 19s 486ms 4s 0.2194 0.9610

8 224x224x3 80% 20% 64 10 3 Sigmoid 100 4m 35s 303ms 2s 0.1389 0.9589

9 256x256x3 70% 30% 64 9 4 Sigmoid 100 5m 52s 616ms 4s 0.1315 0.9711

10 256x256x3 70% 30% 64 9 4 Sigmoid 500 19m 27s 612ms 6s 0.1917 0.9711

11 256x256x3 70% 30% 64 9 4 Sigmoid 1000 37m 34s 608ms 3s 0.2426 0.9711

Experiment 1 and 2 shows the same results of 98.70% accuracy. If we look

at training duration, experiment 1 takes 5 minutes 12 seconds on 100 epochs to

train. And experiment 2 takes 20 minutes and 54 seconds on 500 epochs. Similarly,

experiment 1 has a 0.0621, and experiment 2 has a 0.0700 testing error rate. So,

analyzing these experiment 1 has been considered the best model in Xception71.

The other details of all experiments are in Table 4.12.

Table 4.12: Xception71 on enhanced version

Exp Input
Split Batch

Activation Epochs
Time

Loss Accuracy
Train Test Size Train Test Train Test Predict

1 256x256x3 80% 20% 64 10 3 Sigmoid 100 5m 12s 384ms 4s 0.0621 0.9870

2 256x256x3 80% 20% 64 10 3 Sigmoid 500 20m 54s 375ms 4s 0.0700 0.9870

3 416x416x3 80% 20% 64 10 3 Sigmoid 100 10m 58s 984ms 4s 0.0662 0.9762

4 128x128x3 80% 20% 64 10 3 Sigmoid 100 2m 44s 123ms 4s 0.1096 0.9632

5 128x128x3 80% 20% 64 10 3 Sigmoid 500 6m 57s 123ms 4s 0.1764 0.9654

6 288x288x3 80% 20% 64 10 3 Sigmoid 100 6m 42s 484ms 4s 0.0646 0.9740

7 288x288x3 80% 20% 64 10 3 Sigmoid 500 26m 59s 489ms 3s 0.0752 0.9740

8 224x224x3 80% 20% 64 10 3 Sigmoid 100 4m 35s 306ms 2s 0.1089 0.9589

9 256x256x3 70% 30% 64 9 4 Sigmoid 100 5m 53s 616ms 2s 0.0763 0.9683

10 256x256x3 70% 30% 64 9 4 Sigmoid 500 19m 27s 616ms 4s 0.0784 0.9726

11 256x256x3 70% 30% 64 9 4 Sigmoid 1000 37m 29s 612ms 3s 0.0922 0.9740

4.6 DenseNet121 as a Model

DenseNet121 offers the most accurate predictions for raw and enhanced ver-

sions. Table 4.13 shows 12 implementations based on raw dataset using DenseNet121.

The last experiment provides best results than other executions of DenseNet121 also

other CNN architectures. Firstly, the dataset has divided into 80% and 20% for train
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and test. Then, fixed batch size to 64 and set sigmoid function at the output layer.

After that, we feed 448x448x3 as an initial input shape to the network. It takes 2

minutes and 14s for 50 epochs to train the model and 720 milliseconds for one epoch

to test the model. Each epoch contains ten batches for training and three batches

for testing. The best model gives 97.84% accuracy and 0.0873 of loss. Finally,

DenseNet121 accurately predicted 9 out of 10 raw images in 6 seconds.

Table 4.13: DenseNet121 on raw version

Exp Input
Split Batch

Activation Epochs
Time

Loss Accuracy
Train Test Size Train Test Train Test Predict

1 256x256x3 80% 20% 64 10 3 Sigmoid 100 4m 54s 270ms 7s 0.0927 0.9675

2 256x256x3 80% 20% 64 10 3 Sigmoid 500 15m 23s 270ms 5s 0.1267 0.9697

3 512x512x3 80% 20% 64 10 3 Sigmoid 100 11m 23s 909ms 6s 0.0846 0.9675

4 512x512x3 80% 20% 64 10 3 Sigmoid 500 44m 38s 906ms 7s 0.0799 0.9762

5 320x320x3 80% 20% 64 10 3 Sigmoid 100 6m 9s 399ms 7s 0.0833 0.9762

6 320x320x3 80% 20% 64 10 3 Sigmoid 500 20m 55s 399ms 7s 0.1073 0.9762

7 192x192x3 80% 20% 64 10 3 Sigmoid 100 3m 55s 180ms 7s 0.1017 0.9567

8 224x224x3 80% 20% 64 10 3 Sigmoid 100 5m 32s 222ms 7s 0.0855 0.9697

9 224x224x3 80% 20% 64 10 3 Sigmoid 500 12m 44s 225ms 7s 0.1211 0.9654

10 128x128x3 80% 20% 64 10 3 Sigmoid 100 3m 26s 117ms 7s 0.0985 0.9654

11 448x448x3 80% 20% 64 10 3 Sigmoid 500 38m 4s 723ms 6s 0.0886 0.9784

12 448x448x3 80% 20% 64 10 3 Sigmoid 50 2m 14s 720ms 6s 0.0873 0.9784

Experiment 4 using DenseNet121 on enhanced version offers 99.35% accuracy,

which has the most precise result among all the experiments. The hyperparameters

are similar to experiment 12 of DenseNet121 on the raw version. The only difference

is the number of epochs such that experiment 12 on raw images trained in 50, and

experiment 4 on enhanced version takes 500 iterations for train, as we can see in

Table 4.14 with other details of the model.

Table 4.14: DenseNet121 on enhanced version

Exp Input
Split Batch

Activation Epochs
Time

Loss Accuracy
Train Test Size Train Test Train Test Predict

1 128x128x3 80% 20% 64 10 3 Sigmoid 100 3m 15s 114ms 7s 0.079 0.9697

2 128x128x3 80% 20% 64 10 3 Sigmoid 500 7m 3s 108ms 6s 0.1062 0.9675

3 448x448x3 80% 20% 64 10 3 Sigmoid 100 9m 13s 720ms 7s 0.0438 0.9913

4 448x448x3 80% 20% 64 10 3 Sigmoid 500 38m 4s 720ms 6s 0.0277 0.9935

5 448x448x3 80% 20% 64 10 3 Sigmoid 1000 1h 13m 9s 738ms 7s 0.0280 0.9935

6 416x416x3 80% 20% 64 10 3 Sigmoid 100 8m 39s 645ms 8s 0.0442 0.9913

7 416x416x3 80% 20% 64 10 3 Sigmoid 500 25m 43s 642ms 7s 0.0292 0.9913

8 256x256x3 80% 20% 64 10 3 Sigmoid 100 4m 54s 267ms 7s 0.0528 0.9827

9 256x256x3 80% 20% 64 10 3 Sigmoid 500 15m 33s 282ms 7s 0.0458 0.9870

10 256x256x3 80% 20% 64 10 3 Sigmoid 1000 29m 20s 279ms 7s 0.0551 0.9870

11 64x64x3 80% 20% 64 10 3 Sigmoid 100 3m 21s 111ms 7s 0.1682 0.9242

4.7 Results Comparison

In this section, we have summarized all the best results based on each CNN

architecture. Also, comprehensively analyzed the best models results of raw and

enhanced versions, respectively.
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4.7.1 Best Model - Raw/Original Images

Table 4.15 presents the most accurate evaluations for raw images of Fishes in

the Wild dataset. Among these, model 5 performed more precisely. It predicts 9

out of 10 image samples with 97.84% accuracy as we discussed in 4.6. Model 3 using

ResNet50 gives the lowest of 87.88% accuracy.

Table 4.15: Raw Version of FITW Dataset

Model CNN Architecture Experiment Correct Predictions Binary Accuracy

M1 VGG16 12 8 out of 10 95.38%

M2 VGG19 13 6 out of 10 95.02%

M3 ResNet50 7 7 out of 10 87.88%

M4 Xception71 9 9 out of 10 97.11%

M5 DenseNet121 12 9 out of 10 97.84%

Figure 4.3 shows training and validation accuracy rates of model 5 concerning

the raw version. After 50 epochs, the training rate reaches 99% and the validation

rate to 97.84%. If we look at experiment 11 in Table 4.13, we achieved the same

accuracy in 500 epochs, but that increases the error rate between training and

validation scores and may cause overfit of the model. So, in experiment 12, we fixed

the number of epochs to 50 and gained better performance regarding the error rate.

The loss rates of training and validation of model 5 concerning the raw version

have displayed in Figure 4.4.

Figure 4.5 shows the confusion matrix for each class based on the raw version.

We can see that model 5 classifies 146 correctly out of 154 predictions for Rockfish

and Starfish. The best model has been classified 149 accurately for Tilefish out of

154 predictions.

The classification report of Model 5 has shown in Table 4.16. We can see the

different attributes such as precision, recall, and F1-score and their values.

4.7.2 Best Model - Enhanced Images

The well-performed evaluations for enhanced images of the dataset are present

in Table 4.17. Model 5 gives better accuracy of 99.35%. It predicts 9 out of 10 as
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Figure 4.3: Model 5 (accuracy w.r.t raw version)

Table 4.16: Model-5 (Classification Report - Raw version)

Class Precision Recall F1-score

Rockfish 0.97 0.91 0.94

Starfish 0.95 0.91 0.93

Tilefish 0.95 0.97 0.96

mentioned in 4.6. ResNet50 offers the lowest of 93.29% accuracy, as we can see in

Model 3 in Table 4.17.

The training and validation accuracy rates of model 5 concerning the enhanced

version have represented in Figure 4.6. As we can see, it gives 99.99% accuracy for

training and 99.35% for testing after 500 epochs.

Figure 4.7 represents that there isn’t enough gap between our train and test

loss. So, this is the best fit model concerning the enhanced version of the dataset.

Figure 4.8 shows the confusion matrix for each class based on the enhanced
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Figure 4.4: Model 5 (loss w.r.t raw version)

Figure 4.5: Model 5 - (Confusion Matrix w.r.t raw version)

version. We can see that model 5 classifies 151 correctly out of 154 predictions

for Rockfish, 144 out of 154 for Starfish, and 152 accurately for Tilefish out of 154

predictions.

The classification report of Model 5 has shown in Table 4.18. We can see the

different attributes such as precision, recall, and F1-score and their values.

4.7.3 Samples Predictions

Table 4.19 presents ten samples predictions using the best models. We can

see the actual and predicted values for both enhanced and raw versions.
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Table 4.17: Enhanced Version of FITW Dataset

Model CNN Architecture Experiment Correct Predictions Binary Accuracy

M1 VGG16 10 6 out of 10 96.10%

M2 VGG19 7 6 out of 10 96.10%

M3 ResNet50 16 7 out of 10 93.29%

M4 Xception71 1 7 out of 10 98.70%

M5 DenseNet121 4 9 out of 10 99.35%

Figure 4.6: Model 5 (accuracy w.r.t enhanced version)

Table 4.18: Model-5 (Classification Report - Enhanced version)

Class Precision Recall F1-score

Rockfish 1.00 0.95 0.97

Starfish 0.95 0.89 0.92

Tilefish 0.98 0.98 0.98

4.7.4 Model Summary

The complete architecture of our model for raw and the enhanced datasets

has shown in Table. 4.20. The model consists of four layers such as input layer,
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Figure 4.7: Model 5 (loss w.r.t enhanced version)

Figure 4.8: Model 5 - (Confusion Matrix w.r.t enhanced version)

functional layer, pooling layer, and output layer. We feed 448x448x3 as initial input

to the model that the model gives 14x14x1024 shape as an input to pooling layer.

The global average pooling technique has been applied in the pooling layer. In the

end, the model does classify for three species as shown in the dense layer. There

are 7,040,579 parameters in the proposed algorithm, of which 3,075 are in a dense

layer and trainable parameters, and non-trainable parameters of 7,037,504 are in a

functional (DenseNet121) layer.
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Table 4.19: Ten samples predictions using best models

Raw (Model 5) Enhanced (Model 5)

Actual Label(s) Predicted Actual Label(s) Predicted

Starfish Starfish Tilefish Tilefish

Starfish, Rockfish Starfish Tilefish Tilefish

Tilefish Tilefish Tilefish Tilefish

Tilefish Tilefish Rockfish Rockfish

Rockfish Rockfish Starfish, Rockfish Starfish, Rockfish

Starfish, Rockfish Starfish, Rockfish Rockfish Starfish

Tilefish Starfish, Rockfish Tilefish Tilefish

Rockfish Rockfish Rockfish Rockfish

Rockfish Rockfish Rockfish Rockfish

Starfish Starfish Starfish Starfish

Table 4.20: Model Summary

Layer Output Shape Parameters

Input 448x448x3 0

DenseNet121 14x14x1024 7037504

Pooling 1024 0

Dense 3 3075

4.8 Application Results

The application has been developed in Python integrated with the trained

weights on the LFW dataset [27]. Firstly, we give input images from Fish Species

Image Dataset [47]. Then, we use the weights of the trained CNN model to measure

the probabilities of each class. We tested the application using ten sample images,

and the good news is all of them gave correct results. The ten sample images

consist of two images of Rockfish, Starfish, Tilefish, Rockfish+Starfish, and Rock-

fish+Tilefish each. The experimental results of the application with probabilities of

each class as given in Table. 4.21.
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Table 4.21: Application Results

Input Image Rockfish Starfish Tilefish

0.936 0.0399 0.0655

0.948 0.00823 0.377

0.325 0.829 0.0417

0.384 0.936 0.00866

0.166 0.00257 0.979

0.479 0.00191 0.969

0.626 0.602 0.0312

0.509 0.36 0.106

0.924 0.00616 0.724

0.789 0.000711 0.974
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CHAPTER 5

DISCUSSION AND CONCLUSION

We compared our proposed model with some existing methods that used dif-

ferent datasets for underwater image classification. The evaluation metrics accuracy

values computed from the various underwater classification tasks has shown in Ta-

ble 5.1. The chosen related works are based on raw/original underwater images and

selected from the last six years.

Table 5.1: Comparison of proposed method with existing works (Raw/Original

Images)

Method Year Accuracy Reference

FRLUI 2016 75.63% [16]

UICMLT 2019 93.00% [20]

Few-shot 2020 36.30% [17]

FathomNet 2020 92.80% [23]

DUICM 2020 69.38% [24]

Proposed method 2022 97.84% -

Similarly, we compared our proposed model for the enhanced version datasets

with some existing underwater image classification methods. The accuracy metrics

computed from the various enhanced underwater classification tasks has shown in

Table 5.2. We selected some of the best works from the last six years.

We compare our experiments with the latest methods for underwater image

classification. In [16], Sun et al. used a model that learns the features from relatively

low-resolution images by applying deep learning methods and the super-resolution

approach. The researchers used LifeCLEF 2015 [84] dataset for experiments on both

the original and enhanced versions. Another method named Few-shot [17] had been

proposed for underwater image classification and had been implemented on three

types of fish datasets that expand the training data to assure quality and quantity.
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Table 5.2: Comparison of proposed method with existing works (Enhanced

Images)

Method Year Accuracy Reference

FRLUI 2016 77.27% [16]

UFSC 2017 96.29% [18]

UFSRDLT 2019 98.79% [21]

Few-shot 2020 42.40% [17]

ResFeats 2020 99.10% [19]

DUICM 2020 97.37% [24]

Proposed method 2022 99.35% -

For each of the few-shot classes, a translation model had been used to generate

high-quality images. The model [24] (DUICM) aim was to apply a convolutional

neural network (CNN) on Benchmark Turbid Image Dataset [14]. The dataset had

further converted into two more versions, raw and enhanced image datasets. A ma-

chine learning-based method had applied in [20], called the Bag of Features model,

to tackle the mini dataset issue, and a multi-label image classification model on the

original/raw underwater image datasets using ResNet50 in [23]. In [18] attempted to

recognize underwater images from Fish4Knowledge dataset [44] using deep learning,

and convolutional neural networks. ResFeats [19] were introduced to measure how

precisely the features extracted from the various layers of a ResNet on the ImageNet

dataset. Different classification techniques were used in [21] and were performed bet-

ter for underwater image classification.

The proposed method performed much better than existing systems. We have

used five configured CNNs such as VGG16, VGG19, ResNet50, Xception71, and

DenseNet121. The DenseNet121 offered more accurate results as compared to other

architectures. We configured the DenseNet121 by dividing the dataset into 80% and

20% for train and test. Then, set the batch size to 64 and fixed the sigmoid function

at the output layer. After that, we assigned the initial input shape to 448x448x3.

Achieved 97.84% accuracy after 50 epochs for raw image dataset and gained 99.35%

accuracy after 500 iterations for the enhanced version.

We have shown that the proposed model performed well on low-resolution and

high-resolution images. The DenseNet is classified well compared to other CNNs in

classification problems considering underwater image problems such as blur, distinct

nature, light scattering, absorption, saturation, and low-light illumination problem.
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The DenseNet has reinforced feature propagation, less number of parameters, and

reduces the vanishing-gradient problem [69]. Less accuracy and more wrong predic-

tions appear in other architectures, while DenseNet predicts well in low-resolution

and enhanced versions since it uses features of all complexity levels. We have ap-

plied the adaptive histogram equalization for image enhancement which reduces

many underwater problems and makes images clearer to classify. The experiment

on the enhanced dataset offers 1.51% more accuracy than the original version and

has more precise predictions.

There are some points as given below, shows the uniqueness of this study:

• Usually, the labeled fishes in the wild dataset had used in object detection

tasks. In this study, we have done fish species classification using underwater

images, which can’t be found in traditional studies, as we can see from Section

2.3.

• We have applied the CLAHE method on underwater images to improve illu-

mination problem.

• Using a large dataset instead of a small dataset increased performance in both

forms, such as original and enhanced.

• Using pre-trained models is a much more suitable technique than traditional

ones to go deeper with layers. It also performed well in predictions, and it

saves time during model creation by applying a transfer-learning approach

instead of making deep models from scratch.

• By enlarging the initial input size in DenseNet from 224x224x3 to double size,

i.e., 448x448x3, we have achieved the most successful results in both forms of

the dataset.

• Mainly, the proposed model gives good results for unenhanced images too.

An advanced classification approach has been proposed in this study to clas-

sify underwater captured images in different conditions. The Fishes in the Wild

dataset we selected for implementation. In the preprocessing step, the dataset has

prepared by removing unnecessary data and annotated in a multi-label classification

form. Considering class balance issues, we have limited the number of classes in the

dataset to Rockfish, Starfish, and Tilefish. Then, the dataset has converted into two

versions, i.e., the original and the contrasted dataset. The original version contains

underwater images without enhancement. The contrasted version used CLAHE as

an approach for enhancing images. We applied the transfer learning approach in the

implementation part: the second strategy of pre-trained networks to our dataset,
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which is most likely to our proposed problem. The already trained networks im-

plemented in the proposed work are VGG16, VGG19, ResNet50, Xception71, and

DenseNet121. The DenseNet121 gives 97.84% accuracy on the raw version, and on

the enhanced version, it offers 99.35% accuracy, which has the most accurate result

among all the architectures. The DenseNet model gives good results for unenhanced

images since it uses features of all complexity levels. A total of 121 experiments had

done on the above-mention five of CNNs. Tesla P100 GPU had used for all of the

experiments. The results compared with existing methods shows that the proposed

model performed better on low-resolution and high-resolution images. The main

advantage of the proposed model is that it performed well while predicting fish

species in the original underwater dataset. The DenseNet uses features of all com-

plexity levels, so it overcomes many challenges while classifying underwater images

such as blur images, distinct nature images, light scattering problems, absorption,

saturation, and low-light illumination problems. In the future, the model should ap-

ply to different underwater datasets. Alternatively, use various data augmentation

methods to deal with data scarcity and insufficient data diversity.
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APPENDIX A

1- Connecting to Google Colab

#cell

from google.colab import drive

drive.mount(’/content/gdrive’)

#cell

!nvidia-smi

#cell

!ln -s /content/gdrive/My\ Drive/ /mydrive

#cell

%cd /mydrive/Multi-label\ Classification/FITW

2- Preprocessing

#cell

import warnings

warnings.filterwarnings("ignore")

import tensorflow as tf

import numpy as np

import tensorflow_datasets as tfds

from tensorflow import keras

import matplotlib.pyplot as plt

import os

import PIL

import PIL.Image

import pandas as pd

import pathlib, datetime

#cell

df=pd.read_csv("Raw.csv")

df.columns = df.columns.str.replace(’ ’,’’)
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df.head()

#cell

#df[[’filename’,’Rockfish’, ’Starfish’, ’Tilefish’]].groupby([’Rockfish’,

’Starfish’, ’Tilefish’]).agg([’count’])

LABELS=["Rockfish", "Starfish", "Tilefish"]

data_dir = pathlib.Path("Raw")

filenames = list(data_dir.glob(’*.jpg’))

fnames=[]

for fname in filenames:

fnames.append(str(fname))

print(len(fnames))

ds_size= len(fnames)

print("Number of images in folders: ", ds_size)

number_of_selected_samples=2000

filelist_ds = tf.data.Dataset.from_tensor_slices(fnames[:number_of_selected_samples])

ds_size= filelist_ds.cardinality().numpy()

print("Number of selected samples for dataset: ", ds_size)

#cell

def get_label(file_path):

parts = tf.strings.split(file_path, ’/’)

file_name= parts[-1]

labels= df[df["filename"]==file_name][LABELS].to_numpy().squeeze()

return tf.convert_to_tensor(labels)

#cell

IMG_WIDTH, IMG_HEIGHT = 448 , 448

def decode_img(img):

#color images

img = tf.image.decode_jpeg(img, channels=3)

#convert unit8 tensor to floats in the [0,1]range

img = tf.image.convert_image_dtype(img, tf.float32)

#resize

return tf.image.resize(img, [IMG_WIDTH, IMG_HEIGHT])

#cell

def combine_images_labels(file_path: tf.Tensor):
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label = get_label(file_path)

img = tf.io.read_file(file_path)

img = decode_img(img)

return img, label

train_ratio = 0.80

ds_train=filelist_ds.take(ds_size*train_ratio)

ds_test=filelist_ds.skip(ds_size*train_ratio)

BATCH_SIZE= 64

#cell

ds_train=ds_train.map(lambda x: tf.py_function(func=combine_images_labels,

inp=[x], Tout=(tf.float32,tf.int64)),

num_parallel_calls=tf.data.AUTOTUNE,

deterministic=False)

ds_test= ds_test.map(lambda x: tf.py_function(func=combine_images_labels,

inp=[x], Tout=(tf.float32,tf.int64)),

num_parallel_calls=tf.data.AUTOTUNE,

deterministic=False)

#cell

def covert_onehot_string_labels(label_string,label_onehot):

labels=[]

for i, label in enumerate(label_string):

if label_onehot[i]:

labels.append(label)

if len(labels)==0:

labels.append("NONE")

return labels

#cell

def show_samples(dataset):

fig=plt.figure(figsize=(16, 16))

columns = 3

rows = 3

print(columns*rows,"samples from the dataset")

i=1

for a,b in dataset.take(columns*rows):

fig.add_subplot(rows, columns, i)

plt.imshow(np.squeeze(a))
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plt.title("image shape:"+ str(a.shape)+" ("+str(b.numpy()) +") "+

str(covert_onehot_string_labels(LABELS,b.numpy())))

i=i+1

plt.show()

show_samples(ds_test)

#cell

#buffer_size = ds_train_resize_scale.cardinality().numpy()/10

#ds_resize_scale_batched=ds_raw.repeat(3).shuffle(buffer_size=

buffer_size).batch(64, )

ds_train_batched=ds_train.batch(BATCH_SIZE).cache().prefetch(tf.data.

experimental.AUTOTUNE)

ds_test_batched=ds_test.batch(BATCH_SIZE).cache().prefetch(tf.data.

experimental.AUTOTUNE)

print("Number of batches in train: ", ds_train_batched.cardinality().numpy())

print("Number of batches in test: ", ds_test_batched.cardinality().numpy())

3- Create a Keras CNN model by using Transfer Learning

#We run each pretrained CNN architecture individually for each flow

of code from the start.

#1- VGG16

base_model = keras.applications.VGG16(

weights=’imagenet’, # Load weights pre-trained on ImageNet.

input_shape=(448, 448, 3), # expects min 32 x 32

include_top=False) # Do not include the ImageNet classifier at the top.

base_model.trainable = False

#2- VGG19

base_model = keras.applications.VGG19(

weights=’imagenet’, # Load weights pre-trained on ImageNet.

input_shape=(448, 448, 3), # expects min 32 x 32

include_top=False) # Do not include the ImageNet classifier at the top.

base_model.trainable = False
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#3- RESNET50

base_model = keras.applications.ResNet50(

weights=’imagenet’, # Load weights pre-trained on ImageNet.

input_shape=(448, 448, 3), # expects min 32 x 32

include_top=False) # Do not include the ImageNet classifier at the top.

base_model.trainable = False

#4- XCEPTION71

base_model = keras.applications.Xception71(

weights=’imagenet’, # Load weights pre-trained on ImageNet.

input_shape=(448, 448, 3), # expects min 32 x 32

include_top=False) # Do not include the ImageNet classifier at the top.

base_model.trainable = False

#5- DENSENET121

base_model = keras.applications.DenseNet121(

weights=’imagenet’, # Load weights pre-trained on ImageNet.

input_shape=(448, 448, 3), # expects min 32 x 32

include_top=False) # Do not include the ImageNet classifier at the top.

base_model.trainable = False

#cell

number_of_classes = 3

#cell

inputs = keras.Input(shape=(448 , 448 , 3))

x = base_model(inputs, training=False)

x = keras.layers.GlobalAveragePooling2D()(x)

initializer = tf.keras.initializers.GlorotUniform(seed=42)

activation = tf.keras.activations.sigmoid #None

# tf.keras.activations.sigmoid or softmax

outputs = keras.layers.Dense(number_of_classes,

kernel_initializer=initializer,

activation=activation)(x)

model = keras.Model(inputs, outputs)
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#cell

model.compile(optimizer=keras.optimizers.Adam(),

loss=keras.losses.BinaryCrossentropy(), # default from_logits=False

metrics=[keras.metrics.BinaryAccuracy()])

#cell

history=model.fit(ds_train_batched, validation_data=ds_test_batched, epochs=50)

#Evaluate the model

ds= ds_test_batched

print("Test Accuracy: ", model.evaluate(ds)[1])

#Predictions

ds=ds_test

predictions= model.predict(ds.batch(batch_size=767).take(1))

print("A sample output from the last layer (model) ", predictions[0])

y=[]

print("10 Sample predictions:")

i = 0

for (pred,(a,b)) in zip(predictions,ds.take(767)):

pred[pred>0.5]=1

pred[pred<=0.5]=0

print("predicted: " ,pred, str(covert_onehot_string_labels(LABELS, pred)),

"Actual Label: ("+str(covert_onehot_string_labels(LABELS,b.numpy())) +")")

y.append(b.numpy())

i=i+1

print(i)

from sklearn.metrics import classification_report

print(classification_report(y, predictions, target_names=LABELS))

4- Plotting Graphs

#ACCURACY

plt.plot(history.history[’binary_accuracy’])
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plt.plot(history.history[’val_binary_accuracy’])

plt.title(’Model Accuracy’)

plt.xlabel(’Epoch’)

plt.ylabel(’Accuracy’)

plt.legend([’train’, ’val’], loc=’upper left’)

plt.savefig(’raw/Accuracy_Exp12.png’, dpi=1200)

plt.show()

#LOSS GRAPH

plt.plot(history.history[’loss’])

plt.plot(history.history[’val_loss’])

plt.title(’model loss’)

plt.ylabel(’loss’)

plt.xlabel(’epoch’)

plt.legend([’train’, ’val’], loc=’upper right’)

plt.savefig(’raw/Loss_Exp12.png’, dpi=1200)

plt.show()

#Confusion Matrix

import seaborn as sn

import pandas as pd

import matplotlib.pyplot as plt

array = [[88, 2],[ 6, 58]]

#raw array = [ [[88, 2],[ 6, 58]], [[93, 3],[ 5, 53]], [[93, 3],[ 2, 56]] ]

#enh array([[[93, 0], [ 3, 58]], [[88, 3], [ 7, 56]], [[95, 1], [ 1, 57]]])

df_cm = pd.DataFrame(array, range(2), range(2))

# plt.figure(figsize=(10,7))

sn.set(font_scale=1.4) # for label size

sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}) # font size

plt.title(’Rockfish’, fontweight="bold")

plt.ylabel(’Actual Label’, fontstyle="italic")

plt.xlabel(’Predicted Label’, fontstyle="italic")

plt.savefig(’CM2/R-R.pdf’)

plt.show()

#plt.legend([’train’, ’val’], loc=’upper right’)

#plt.save()
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5- APPLICATION

from keras.preprocessing import image

img = image.load_img(’APP2/T2.jpg’, target_size=(448,448,3))

img = image.img_to_array(img)

img = img/255.

plt.imshow(img)

img = np.expand_dims(img, axis=0)

classes = LABELS #Get array of all classes

proba = model.predict(img) #Get probabilities for each class

sorted_categories = np.argsort(proba[0])[:-4:-1]

#Get class names for top 10 categories

#Print classes and corresponding probabilities

for i in range(3):

print("{}".format(classes[sorted_categories[i]])+"

({:.3})".format(proba[0][sorted_categories[i]]))
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