Zynqg-7000 SOC based device for Remote Data
Monitoring and Processing

By

SHUJA UL MULK
01-133162-068

ABDULLAH ABDUL KHALIQ
01-133162-002

HAROON HAIDER
01-133162-080

Supervised by
DR ATIF RAZA JAFRI

{Session 2016-20}

A Report is submitted to the Department of Electrical Engineering.
Bahria University, Islamabad.
In partial fulfillment of requirement for the degree of BS (EE)

S - - =
s
/ _prs‘f‘;,rjwr» s

Certificate

We accept the work contained in this report as a confirmation to the required standard for
the partial fulfillment of the degree of BS (EE).

Head of Department Supervisor

Internal Examiner Extemal Examiner

Zynq 7000 SOC based device for remote data monitoring and processing Page 1

Dedication

We would like to dedicate this project to God All-powerful who is our maker likewise our
solid column, our wellspring of astuteness, information and comprehension. God All-
powerful has been the wellspring of our quality all through this project and under the
shadow of His wings just have we taken off. We would likewise devote this work to our
supervisor; Dr Atif Raza Jafri who has been extremely strong from the beginning and
empowered every one of us from the earliest starting point and without his help and
support we could always have been unable to complete what we had begun. To our family
and friends who may have been influenced in any capacity conceivable by this mission.
Much thanks to you. Our adoration for all of you can never be evaluated.

Zynq 7000 SOC based device for remote data monitoring and processing Page 2

Acknowledgements

In the Name of Allah, the Most Merciful, the Most Compassionate all praise is to Allah,
the Lord of the worlds; and prayers and peace be upon Mohammad His messenger. First
and foremost, we must acknowledge our limitless thanks to Allah, the Ever-Magnificent;
the Ever-Thankful, for His help and bless. We are totally sure that this work would have
never become truth, without His guidance. We owe a deep debt of gratitude to our
university for giving us an opportunity to complete this work. We are grateful to some
people, who worked hard with me from the beginning till the completion of the present
research particularly my supervisor Dr. Atif Raza Jafri, who has been always generous
during all phases of the project, and we highly appreciate the efforts expended Mr.
Roman Shah .We would like to take this opportunity to say warm thanks to all our
beloved friends, who have been so supportive along the way of doing our thesis. We also
would like to express our wholehearted thanks to our family for their generous support
they provided us throughout our entire life and particularly through the process of
pursuing our education.

Zynq 7000 SOC based device for remote data monitoring and processing Page 3

Abstract

Field programmable gate array (FPGA) based system on chip provides flexibility, fast
processing and compatibility whereas systems like 8051 microcontroller are time
inefficient and increase cost of the system. Monitoring remote sensor data and processing
the data using FPGA is used in time critical applications where fast processing and
compactness is required. FPGA can be used numerous fields, for example, digital image
processing and audio, aerospace and defense, automotive, medical and consumer
electronics. FPGA can perform continuous signal processing quicker than universally
useful programmable processors just as they offer rapid interfaces to other framework
segments. During the framework configuration phase of FPGA, the various tasks are
doled out to usage in either Programmable Logic or Processing System which is called
task partitioning. This stage is significant in light of the fact that the presentation of the
general framework will rely upon tasks being doled out for usage in the most fitting
innovation which is equipment or programming. This proposed project offers real time
data sensing, analog to digital conversion, processing the digital data, and displaying the
data into a graphical user interface.

Zynq 7000 SOC based device for remote data monitoring and processing Page 4

Table of Contents

(O] 1) oF (PP 2
DEAICALION. ...t e 3
ACKNOWIEAQEMENTS. ...t 3
ADSTFACT. ..o 4
Table Of CONTENTS.ttt 5
LEST OF FIQUIES......eteiieieee ettt bbb b nne s 8
LISE OF TADIES.....c.eceeiee e 9
INErOTUCTION. ... e 10
Project Background/OVerview.oooiuiiiiiiiii i 11
Problem DesCription:.c.uiti ettt e 11
ProJect ObJECtIVES:ttt 12
e 0] [To Yoo o PSP 12
Literature REVIBW. ... e 13
Requirement SPecifiCations.o.iiiiiii e 15
EXISHNG SYStOIM. . .ttt e 16
Proposed Sy StemM:. . .vei et 16
Requirement SPeCIfIcationsS:uiuiirit it 16
LT 022 TN 17
SYSEEIM DS gN . ..ttt 19
SyStemM ATCRITECTUIE: ettt e et e e enes 20
Desi@N CONSIAINES:ttt ettt et e eaeees 21
Design Methodology:........oouiei i 22
High Level Desi@n:......couiniiiii i e 23
Low Level Desi@n:.oieiiiii e e e e 25
Database DeSIZI:. .. .ouuie ittt 27
L] 4 27
System ImMplementation..... ..ot 28
System ATChItECTUIe: it e e e e 29
Tools and Technology Used:..........oiiiiiiii e 30
Development Environment/Languages Used:..............ccoviiiiiiiiiiiiiiiiiiiieene, 30
Processing Logic/Algorithms:.........o.oiiiiiii e 31
1. Machine Learning........c.ooiuiiiiiiiiiii i e e e e 31
2. AlgOorithm for COmMPAaSS........ouiiei it 32
APPlICAtioN ACCESS SECUITLY .. utttet ettt ettt et e e e e e e e e e e aeeenaenns 34
Database SECUITLYttt 34
System Testing and Evaluation.....................oii i 36
COMPONENES TSN .. ue ettt ettt et et et e e et e e e et et ettt e e teeeeeenes 38
1. Temperature LIM35 SENSOT. ...cuuiieiietteie et et eie e eeeeeeeanans 38
2. Compass PMOd CIMPS2. ...t 41
3. PLand PS Interfacing.........c.coouiiniiiiiiiiii e e 43
Software performance teStiNg:........c.ouueuitit ittt 44
USabIlity oSNttt ettt et e et e e e e 44
InStallation tEStINE:ttt ettt 45
Exception handling............oooiiiiiii i e 45
CompPatibility tEStINE: . ..ttt 46
Graphical user INterface teSting:......o.viieiiitt i 46

Zynq 7000 SOC based device for remote data monitoring and processing

Page 6

List of Figures

Figure 3. 1 Use case Methodology..........ouvniieiniiiiiii e 17
Figure 4. 1 FPGA architectural Design flow......... ..o 21
Figure 4. 2 Architectural OVEIVIEW.cooii it e, 23
Figure 4. 3 Architectural Module Based OVErVIEW...........cccooeviiiiiiiiiiiiiiiiee, 25
Figure 4. 4 Internal structure of LM35., 26
Figure 5. 1 Slave master configuration 12C Protocol..................coooiiiiiiiiin.. 29
Figure 5. 2 Timing Diagram.........ouineiiiiii e e 33
Figure 5. 3 Access control for Data Security...........ocooiiiii i 35
Figure 6. 1 Types of System teSting..........c.oveiniiriieii e 37
Figure 6. 2 Temperature Sensor LM35., 38
Figure 6. 3 Accuracy vs. TeMPETature.viueiniirit ettt ettt eteeeeeeeanenen 39
Figure 6. 4 Connection of XADC with LM35...... ..ot 40
Figure 6. 5 CMPS2 pin Configuration..............cooevuiuiiiieniiiiiiieeieeeeeeanne 41
Figure 6. 6 CMPS2 SchematiC.........c..oiuiiiiiiii e 41
Figure 6. 7 Connection of FPGA (port JC) with CMPS2...........ooiiiiiiiiiiiin, 43
Figure 6. 8 PL and PS Interfacing.............coooiiuiiiiiiiiiiiiieii e 43
Figure 6. 9 Xilinx-SDK-Features-Including-the-System-Performance-Analysis-

K010 Lo) S 44
Figure 6. 10 ROOM TeMPETAtUIEC.ueneeeitiateeie ettt e et e e eaeneeas 47
Figure 6.11 Rise in TemMPerature.ovueiuiruiitiii it 47
Figure 6. 12 Variation in compass dir€CtioN.cvverininiiretieiteiiniaeeeneanananenn 48
Figure 6. 13 Graphical User Interface...............cooiiiiiiiiiiiiiii e, 49
Figure 6. 14 Compass Output on RealTerm.............ccoooiiiiiiiiiiiiiiiiiiieee, 49

Zynq 7000 SOC based device for remote data monitoring and processing Page 7

List of Tables

Table 3. 1 Use case Methodology..........oouiiniirie e 18
Table 6. 1 Desi@n ParameEterS.c.ueeeteett ettt ettt e et e e et e e a e eie e nneeeneennenns 38
Table 6. 2 Specifications for temperatures: —55°C < T <150°C.....ccovviiiiiiiiiiiiiininnnn. 39
Table 6. 3 Specification of CMPS2..... ..o, 42

Zynq 7000 SOC based device for remote data monitoring and processing Page 8

Chapter # 1

Introduction

Zynq 7000 SOC based device for remote data monitoring and processing Page 9

Project Background/Overview

Field-Programmable Gate Array (FPGASs) have become one of the key computerized circuit
execution media in the course of the most recent decade. A vital piece of their creation lies in
their engineering, which administers the idea of their programmable rationale usefulness and
their programmable interconnect. FPGA architecture dramatically affects the gadget's speed
execution, efficiency, and power utilization. As of late, FPGA's have gotten progressively
significant and have discovered their way into system design. Along these lines, the longing
rises for an implies that permits data processing along with monitoring.

Processing the data using FPGA is used in time critical applications where fast processing
and compactness is required. FPGA can be used numerous fields, for example, digital image
processing, audio, aerospace and defense, automotive, medical and consumer electronics.
FPGA can perform real time signal processing quicker than universally useful programmable
processors just as they offer rapid interfaces to other framework segments. FPGA can
perform real time signal handling quicker than universally useful programmable processors
just as they offer fast interfaces to other framework parts. End-showcase applications that
require multi-usefulness, rapid signal processing and real time response drive the requirement
for more astute frameworks with more elevated levels of embedded system performance.
Applications, for example, high frequency trading, aviation, video and broadcast, surveillance
have a few basic necessities, for instance;

e Advanced decision and control handling.

e Complex client or control framework interfaces.

e High-performance, low-latency signal processing.

e Compact and highly efficient.

The concept of this project is, analog real time data sensing to digital conversion, processing
the digital data, and displaying the data into a graphical user interface.

Problem Description:

Microcontrollers have a specific instruction set, certain operations you can perform, like
adds, subtracts, binary arithmetic, and in higher-end ones, floating point math. If you want to
do something very involved with a microcontroller, you can, but it needs to be built out of
those basic instructions. That’s what compilers do. As you might expect, when you want to
do something complicated in a microcontroller, and it needs to be achieved by doing many
lower-level operations, this is slow. Slow compared to an FPGA, that is, where the logic can
be expressly tailored to your application. So an FPGA can do a huge FFT, for instance, an
operation that requires a ton of multiply operations, much faster than a microcontroller can.
400 million samples per second was achievable 10 years ago. FPGAs are also good at using a
processor internally (many “soft” processors are available with known instruction sets) and
offloading the toughest computation to hardware accelerators that also reside on-chip. As we
usually don’t have to go across board traces, these systems can be much faster (and use less
power) than the equivalent multi-chip solution. Many operations are much faster than what a
microcontroller can do like a 1024-bit data path.

As microcontrollers run at a slower clock speed, and possibly use more power, the FPGA’s
provide a gateway to solution of all these problems which is being faster and compact.

FPGAs are much more flexible than microcontrollers. FPGA allows you to process parallel
task in same time. A FPGA is great at doing precisely the same task, again and again. For
example, processing video, audio, RF signals, routing Ethernet packets or simulating fluid
flow. Any circumstance where you have a ton of a similar sort of information being tossed at

Zynq 7000 SOC based device for remote data monitoring and processing Page 10

you truly quick and you need to manage it all similarly or you need to run a similar
calculation more than once, FPGA starts to lead the pack in all angles. The FPGA doesn't
generally have 'undertakings' that start and stop, its whole occupation is to do something very
similar to whatever information it gets, for whatever length of time that it is on. It doesn't
switch gears, it doesn't do whatever else. It will do something very similar more than once, as
quickly as possible, until the end of time.

Algorithm used in existing systems for data processing and transmission works in a way that
sensors collect the data and this data gets transmitted to a processing hub where this data is
processed and meaningful data is extracted. A new algorithm is proposed in which the data is
processed right after the sensors and then gets transmitted to user using ethernet or wi-fi
module where live data can be seen on GUI, increasing effectiveness of system.

Project Objectives:

e To explore the resources of Zyng 7000 programmable System on Chip for using its
processing system (PS) and programmable logic parts (PL)

e Interfacing different Analog, Discrete and Digital Sensors 12C, SPI, UART Serial and
Analog interfaces.

e Integrating different signal processing cores to process acquired data from the sensors.

e Transmitting the useful data to a remote terminal thorough Ethernet (UDP and/or
TCP/IP Protocol) or through UART (for direct connectivity)

e Making a GUI to display useful information.

Project Scope:

The main scope of this project is to implement different sensors like compass and
temperature at a remote location and take real time useful data only, along with a camera that
would initially have the capability of detecting vehicles where in later stage it can be used to
get information like the registration plates of the vehicle. This data is processed at the remote
location on the device and the useful data would be displayed on a graphical user interface.
The transmission of data takes place using Ethernet protocol for remote locations and through
UART for direct connection. The architecture of the FPGA device allows it to work in
parallel where it is possible to use the programmable logic and programmable system side by
side.

Zynq 7000 SOC based device for remote data monitoring and processing Page 11

Chapter#2

Literature Review

Zynq 7000 SOC based device for remote data monitoring and processing Page 12

In this chapter, review of work carried out is presented in the form of literature survey. This

chapter also covers the comprehensive general and specific literature survev on FPGA based
designs for processing and monitoring on data using FPGAs.

Karen Pamell and Roger Brvner [1] of Xilinx have given a white paper Comparing and
Contrasting FPGA and Microprocessor Svstem Dlesign and Development. Programmable
Logic Devices offer a cost effective altemative to custom microprocessors due to their
generic nature with the added benefits of short time-to-market, no NEE costs, off-the shelf
availabilitv_ abilitv to control inventory in peak and trough times, and abilitv to reduce total
cost of ownership over the lifetime of an end product.

F.ene Mueller and Jens Teubner [2] addresses the potential of FPGASs as co-processor for data
intensive operations in the context of multi-core svstems. The tvpe of data processing
operations are illustrated where FPGAs have performance advantages (through parallelism
and low latency) several wavs are discussed to embed the FPGA into a larger svstem so that
the performance advantages are maximized.

Color space conversion is very important in manv tvpes of image processing applications
including video compression. This operation consumes up to 40% of the entire processing
power of a highly optimized decoder. Therefore, techniques which efficiently implement this
conversion are desired. F. Bensaali and A Amira [3] describe four different scalable
architectures for efficient implementation of two such color space converters using an FPGA
based system.

5. Velusamy et al. [4] have presented the design of a svstem that monitors the temperatures at
various locations on the FPGA. This svstem is composed of a controller interfacing to an
arrayv of temperature sensors that are implemented on the FPGA fabric. Such a system can be
used to implement dynamic thermal management.

Atibi mohamed, Benrabh Mohamed, Atouf Issam, Boussaa Mohamed, Bennis Abdellatif [5]
presents the idea of implementation of a vehicle detection system in the FPGA platform. This
system 1s based on two algorithms, an image processing algonthm that combines an
algorithm for detecting areas of interest through the shadow of the vehicle, and an image
descriptor like features tvpe, And another classification algorithm named artificial neural
network which aims to detect the presence of the wehicles in these zones. To evaluate the
results obtained, which showed that the proposed svstem is a fast and robust vehicle detector,
a hardware implementation was performed in the FPGA embedded platform.

Sanjav Singh, Anil K Saini and Ravi Saini [6] descnibes the design and implementation of
camera interface module required for connecting analog camera with Xilinx ML310 (Virtex—
3FXT) FPGA board having no video input port. Digilent VDEC]1 video daughter card is used
for digitizing the analog video into digital form. The necessarv control logics for video
acquisition and video displav are designed using VHDL and Verilog, simulated in ModelSim,
and svnthesized using Xilinx.

Zynq 7000 SOC based device for remote data monitoring and processing Page 13

Chapter # 3

Requirement Specifications

Zynq 7000 SOC based device for remote data monitoring and processing Page 14

Innovation is the aggregate of aptitudes, strategies, and procedures utilized in the creation of
merchandise or benefits or in the achievement of destinations, for example, logical
examination. And it’s an entity which always keeps evolving with the passage of time using
effective methods and algorithms. The following comparison features the correlation of
existing and proposed frameworks just as clarifies the useful and non-practical necessities of
the proposed system;

Existing System:

The pattern toward computerized transmission is demonstrated to be an after effect of
expanding prerequisites for exactness, dependability, high data rates, and long ways. In this
way, information handling and transmission procedures seem, by all accounts, to be
converging quickly, both in view of the benefits of digital communication systems and in
light of the anticipated weight and volume decreases for PC hardware. Numerous
enhancements in transmission effectiveness will result from this converging of methods,
strikingly in the zones of information compaction and PC controlled versatile interchanges.
Meanwhile most systems tend to extract the information using sensors or other information-
collecting devices and then transfer all the information to a processing hub where the
collected data is processing using specific algorithms as per requirement. But transmission of
all the raw data from sensors to processing hub doesn’t seem to be an effective option in
some scenarios where the processing, power and cost effectiveness is the main priority.

Proposed System:

General patterns in the methods intended to improve this transmission viability are accounted
for and a few promising advancements are underscored. One of the proposed techniques is to
filter out the raw data before transmission. So, the data will be collected on the sensors end
and a processing device will be connected and provided with certain algorithm as per the
sensors and requirement of application. The collected raw data will be processed and only the
filtered and meaningful data will be transmitted to the GUI. This system provides multiple
advantages over the existing system since you no longer have a need to send the collected
data to processing hub rather your data is getting processed and only filtered data is getting
transmitted, increasing effectiveness of system.

Requirement Specifications:

To implement the proposed system and its algorithm, four different sensors were chosen
which includes sensors for temperature, humidity, compass and camera to detect a certain
phenomenon in the video captured by the camera. So, there are four main function
requirements which are as fallow;

Detection of temperature

Detection of humidity in air

Detection of direction in which device moves

Detection of number plate in the video captured by camera

Project is not just limited to these certain functions above mentioned rather it’s vastly
devised, and any sensor can be implemented, and an algorithm can be designed accordingly
as per the user’s requirements to filter out the meaningful data. This meaningful data can later
be sent to graphical user interface where user can monitor live feed of this meaningful data
using ethernet or wi-fi as per user’s requirement or data can be transferred directly through
UART.

Zynq 7000 SOC based device for remote data monitoring and processing Page 15

In this chapter, non-functional requirements are of great importance and need to be
highlighted since these are the main improvements in proposed system which increases the
effectiveness of system.

e For the compass, local magnetic field strength can be calculated in a £16 Gauss range
where the heading accuracy is of 1° and up to 0.5 mG of the resolution.

e The relative humidity of the environment can be determined with till 14 bits of
resolution and result in an accuracy of £2%.

e The temperature can be detected with an accuracy of 0.5°C definite accuracy (at
25°C) within temperature range of —55°C to 150°C.

e Camera is fed with algorithm to detect the number plates of a vehicle in live time
without having any significant delay.

Use cases:
Since it’s a one platform based device so every sensor will be connected in one place. Once
the user described functional requirements are met and fed onto the platform, user needs to do
the following;

e Place the device as per the requirement of user and the meaningful place for sensors

to work.
e User connects the device to internet and goes to relevant Graphical user interface.
e Live data will be shown on graphical user interface.

USE CASE METHODOLOGY

Place the device as per Live data monitoring on
sensor operation Graphical user interface

— it

Connect device to
internet through Ethernet

Figure 3. 1 Use case methodology

Zynq 7000 SOC based device for remote data monitoring and processing Page 16

Title

Zvng-7000 50C based device for Remote Data Monitoring and

Processing
Version No. 1.0
Actors Administrator

Description

This is the Use Case used for monitoring the data on GUI

Trigger

User enters the credentials

Main Success Scenario

Step Action

Place device as per requirement of user and meaningful place
for sensors to work.

M

User connects the device to intemet and goes to relevant
Graphical user interface.

%

Live data will be shown on graphical user interface.

Special
Requirements

Requires credentials to monitor the data

Assumptions

MNone

Pre-conditions

Needs proper svnchronization among sensors and stable intemet

Post-conditions

N/A

User interface Project FYP
Business Rules ™N/A

NIA
Issues MN/A

Table 3. 1 Use case methodology

Zynq 7000 SOC based device for remote data monitoring and processing Page 17

Chapter # 4

System Design

Zynq 7000 SOC based device for remote data monitoring and processing Page 18

System Architecture:

The proposed framework, as shown in Fig. 1, is composed of three subsystems, which are as
follow;

e Data from temperature sensor (LM35) and conversion from analog to digital

e Data from compass sensor (CMPS2) and processing it to extract direction

e Graphical user interface

As the proposed framework above mentioned has both, the analog signals and digital signals,
so there is a need to map the system in such a way that Field programmable gate array device
supports mixed analog and digital signal. Lately, modern series of devices of Field
programmable gate array like Zybo Z7-10 series are released which supports both analog and
digital signals data collection and processing. A special internal analog to digital connector is
provided which is capable of converting analog data to digital in real time and can be
processed accordingly.

Additionally, architecture of FPGA being used is also of significant importance as it provides
multiple flexibilities to user for the operation of modules connected to device. As of standard
architecture of FPGA, Zybo Z7-10 comes comprising of 3 parts;

e Configurable Logic Blocks

e Programmable Interconnects

e Programmable I/O Blocks

Above mentioned terms allow FPGA to operate not only with the internally connected
modules as well as the externally connected modules. Configurable logic blocks allow FPGA
to implement logic functions required to perform an operation and it consists of flip-flops,
transistors, look up tables and multiplexers whereas Programmable interconnects implements
the routing between different configurable logic blocks since each logic block that is
configurable is connected to a switch matrix in order to access the main routing structure. For
sake of connectivity with externally connected modules, multiple input/output connectors are
provided allowing user to connect multiple connectors to Zybo Z7. For the case of FYP, we
have used 2 externally connected modules which are as fallow;

e Analog temperature sensor (LM 35)

¢ Digital compass (CMPS2)

Data extracted from these two sensors is processed with different mechanism based on if the
data is analog or digital and if the application is time critical or not. The usage of
programmable logic or the processing system on choice in the Zybo Z7 provides the
flexibility to process different operations depending on user’s requirements, we used these
sensors and processed their extracted data accordingly which fits best to our needs. Finally,
the FPGA building configuration stream involves

e design entry
logic synthesis
design implementation
device programming
design verification

Zynq 7000 SOC based device for remote data monitoring and processing Page 19

l— | Design Verification
Design Entry -
Behavioral
L + Simulation
Synthesis
¢ Functional
Simulation
‘ Implementation
¢ Static Timing
: Analysis
Device
Programming

Figure 4. 1 FPGA architectural Design flow

Design Constraints:

Despite the fact that limitations are there to impact the FPGA configuration tools including
the synthesizer, place & route tools however they likewise permit a person to determine the
execution plan prerequisites and guide the tools toward meeting these necessities. The tools
organize their activities dependent on the advancement levels of synthesis, timing, all out
quantities of pins utilized, and rationale gave to the tools by an individual or a group. The
four sorts of requirements are as decrepit;

. Synthesis

. Inputs/Outputs
. Timing

. Area

The constraints of the synthesis impact even the micro details of the synthesis of Hardware
Descriptive Language (HDL) code to Register Transfer Level (RTL). There is a scope of
synthesis constraints and their specific circumstance, configuration and use normally
fluctuate between various apparatuses.

Input/output limitations which are otherwise called pin task limitations are utilized to dole out
a sign to a particular connector on the input/output end.

Timing requirements are alluded for the timing attributes of the structure. Timing imperatives
influences all inward timing related interconnections, delays for rationales, look-up tables and
between flip-flops. Timing limitations can be worldwide or way explicit relying upon
modules and their activity.

Area limitations are utilized to outline necessary hardware within various assets inside the
FPGA. It comes extremely convenient when a manual enhancement of gadget is required
since programmed directing and placing may utilize a greater number of assets than required.
Furthermore, comparatively, area limitations indicate the area either alluding to another

Zynq 7000 SOC based device for remote data monitoring and processing Page 20

relative structure component or to a particular fixed asset required for the logic inside the
FPGA.

Since Zybo Z7-10 has more than enough resources on Programmable Logic part and on the
other hand there is dual core ARM processor attached to the device, there is no as such
limitation of resources for the processing of extracted data from sensors which can change as
per the application of device. Secondly, dealing with a real time acquisition of data from
sensors and operating it has pros and cons. This provides a lot of user convenience. The
challenge with real time acquisition of date from sensors is the requirement to use different
input/output formats like UART, Analog to digital and 12C. The synchronization between the
interface that is designed and both (processing unit and memory) must be deliberately
considered. In conclusion, the GUI configuration is viewed as the center of the observing and
showing of data handling. The presentation module utilized in the proposed project relies
upon the Red-Green-Blue (RGB) mode. In this way, so as to display a shading to a spot in the
main presentation module, three clock pulse are required from the FPGA. In like manner,
there is a requirement for exact synchronization.

Design Methodology:

This project offers a complete hardware system that is reconfigurable and is capable of
acquiring data which is obtained through sensors and presents through graphical user
interface (GUI). The FPGA does a significant work in this project. The FPGA will in the long
run have, in our last form, every single basic segment required for the data acquiring and data
processing in one chip. The FPGA not simply controls the entire process that a client needs
yet in addition also process the data that is taken from sensors. Playing out specific
algorithms or undertakings that an individual need or some other sign preparing activity upon
the gathered information from sensors would be possible utilizing the FPGA. Additionally,
the input and the output drivers of device, for example, the showcase controller (module) can
be implanted in the main FPGA design. The proposed framework will accomplish minimal
cost, quick processing and compact size by the reconciliation of major practical units on a
chip. It will accomplish fast processing by effective usage of FPGA resources and upon need
it can also use the Processing System (PS) of Zybo board in case there are non-time critical
operations.

Two terms being used in above needs to be highlighted here. FPGA mainly for processing
can use 2 types of resources which are as follow;

e Processing System (PS)

e Programmable Logic (PL)

Programming system will be backed up by the processor where as Programmable logic will
be backed up by the resources of FPGA. Even though processor performs a task quite faster
than FPGA but the real difference is the Pipelining and use of resources in parallel. Consider
it like if we want to execute 5 tasks then processor will execute each task in sequential
manner and will execute each task one by one while on the other hand FPGA will execute
these tasks in parallel manner and all 5 tasks will get executed at the same time in parallel.
Now this phenomena and resources of Zybo Z7-10 provides the flexibility to an individual to
choose if an operation should be performed by FPGA resources or Processor. It also provides
the flexibility to optimize a system so if there is a time critical application then the task can
be performed using FPGA resources otherwise processor can execute the task as well
depending upon the need of individual. Language used in case of FPGA is Verilog which is a
Hardware Descriptive Language while for processor C++ is used in our case.

Zynq 7000 SOC based device for remote data monitoring and processing Page 21

High Level Design:
System design is divided into 3 main parts which are as fallow;

e Extracting data from Analog sensors and processing them
e Extracting data from Digital sensors and processing them
e Monitoring data on GUI.

COMPASS TEMP
SENSOR SENSOR

ZYNQ
ZYBO Z7-10

ETHERNET

Figure 4. 2 Architectural Overview

Logical View:

In this case, 2 sensors are being used. Temperature (LM35) sensor is an analog sensor so
there is a need to extract that information in analog form and then converting it into digital so
it can be processed under required algorithms. On the other hand, we have used Compass
sensor (CMPS2) which is a digital sensor and its pre-built to return the value in digital. Now
after the algorithms are applied and useful and meaningful data is extracted which in this case
is direction from CMPS2 and temperature from LM35 and the data is sent to the Graphical

User Interface.

Zynq 7000 SOC based device for remote data monitoring and processing Page 22

Process View:

Procedure of framework is direct and straightforward. Sensors are put which get the
information according to their usefulness and the information is changed accordingly from
analog to the digital form. The data is processed under certain algorithms depending upon the
sensor and then useful information is extracted. Finally this data is transmitted to a GUI.

Performance:

Performance is going to be very important for this project. For everything to run smoothly for
the project, the gateways will have to be able to synchronize the extraction and processing of
data in live time. Additionally, if there is any problem and data doesn’t synchronize then it
can cause delay in extraction of data. Similarly, if internet module doesn’t work properly then
it can delay problems as well.

Module:

Coding is done separately for both sensors and depending upon the application if its time
critical or not, the Programmable logic or Processing system resources were chosen. We will
discuss both sensors separately. In case of temperature sensor only internal Analog to digital
converter was used and backed by programmable logic, Verilog coding was done accordingly
and depending upon the reference voltage and temperature sensed voltage, a value was
generated showing the temperature surrounding the sensor. On the other hand, for Compass
both Verilog and C++ were used. It was taken in the sense that all the required hardware
should be described with the Verilog and what to do with this hardware was defined in C++
in the software development kit.

Security:

Since security isn't the essential focal point of the project, just the basic security tools can be
applied like in the graphical user interface where a username and password can be added as a
feature when accessing data.Additionally, comparing the Zybo against other microcontrollers,
FPGA provides a dedicated module built in for encryption of data which can come handy
dealing with a defense related application.

Portability:

This system ought to have the capacity that once it is together, the whole system ought to
have the option to genuinely be moved starting with one area then onto the next. That is
actually the whole point of system on chip (SOC) so every feature should be available on one
chip. This is the reason why it can be useful in the remote areas where the system can be
taken and using the ethernet the data can be transmitted and monitored by a concerned
department.

Reusability:

Characteristic of system to be 1 chip based device provides many advantages. One of them is
reusability, since the system is just plug_and_play so it can be used on multiple sites without
having any problem or issues.

Resource utilization:

Having resources of FPGA as well as processing power of processor, multiple modules can
be used at the same time on device and resources of Zybo can be put to use. Even if the
system is overloaded, further optimization can be done which will free a few more resources
to be used.

Zynq 7000 SOC based device for remote data monitoring and processing Page 23

Low Level Design:
There are a number of intemally and extemallv connected modules in the project but for
digital and analog data processing we will discuss 2 modules mainlv which are as follow;

o CMPS2 with built-in ADC

* LM35 with intemnal ADC

Q Bhe
o

6 Pin 12C Internal Analog to
Connector Digital Converter

Internal
Memory

Processing Unit with
Applied Algorithm

Input/Output
Modules

Figure 4. 3 Architectural Module Based Overview

The Digilent Pmod CMPS2 is a 3-axis anisotropic magneto-resistive sensor. With Memsic's
MMC34160PJ, the local magnetic field strength in a 16 Gauss range with a heading
accuracy of 1° and up to 0.5 mG of resolution. It features low noise and data communication
protocol used for it is 12C with fast mode. So it will be allowing data transfer of about
400kHz. For the case being, we will be using C++ language and below mentioned steps will
be implemented using C++. Here is the series of commands to acquire a set of magnetometer
data from the Pmod CMPS2 via pseudo I2C code:

1. Power on the Pmod CMPS2 and wait for 10 mS before further operation.

2. Provide a START condition and call the device ID with a write bit I2CBegin(0xAQ)

because the device ID is 0x30.
3. Wait to receive an ACK from the Pmod CMPS2.
4. Send the Internal Control Register O (address 0x07) as the register to communicate
with 12CWrite(0x07).

5. Wait to receive an ACK from the Pmod CMPS2.
Write the command to take a measurement by setting bit 0 high followed by a STOP
bit 12CWrite(0x01).
7. Delay at least 7.92 mS by default to allow the Pmod CMPS2 to finish collecting data.
8. Provide a START condition and call the device ID with a write bit I2CBegin(0xAO0).
9. Wait to receive an ACK from the Pmod CMPS2.
10. Send the Status Register (0x03) as the register to read 12CWrite(0x03).
11. Provide a START condition and call the device ID with a read bit I2CBegin(0xAl).
12. Wait to receive an ACK from the Pmod CMPS2.
13. Cycle the SCL line to receive the Status Register data on the SDA line.

o

Zynq 7000 SOC based device for remote data monitoring and processing Page 24

14. Provide a START condition and call the device ID with a write bit I2CBegin(0xA0);

15. Wait to receive an ACK from the Pmod CMPS2.

16. Send the first register address corresponding to Xout LSB (0x00) as the register to be
read 12CWrite(0x00).

17. Provide a START condition and call the device ID with a read bit I2CBegin(0xAl).

18. Wait to receive an ACK from the Pmod CMPS2.

19. Convert the readings into usable data.

20. Wait 1/3 of the acquisition time (by default 2.64 ms) before performing another
measurement

If the above procedure is analyzed then its nothing but following 12C protocol and sending
bits and receiving bits as per the rules defined for 12C.

On the other hand, LM35 is different from the compass application. This sensor doesn’t have
a built-in converter that can convert analog data to digital data so we have to manually
convert analog output to digital. In the case of analog sensor we have put a use to built in
module of Zybo Z-10 also known as internal ADC. We have multiple channels available for
ADC module and a reference can be provided to ADC and depending upon that voltage
difference LM35 will be giving us temperature values accordingly. Out of 4 channels we
have used AD14 channel of internal ADC and connected it with LM35 along with Vcc and
Ground. Now for every 10mV voltage difference, it’s going to count as 1 degree centigrade,
and voltage reference is provided on the second row of pins of ADC of Ja connector so the
voltage difference can be calculated. Internal structure of LM35 is as follow;

Al

1.38 Verar
|

‘I"'.'It':h

Veur= 10 my/C
A25R2

R2

Figure 4. 4 Internal structure of LM35

Zynq 7000 SOC based device for remote data monitoring and processing Page 25

For the coding part, internal ADC channels can be used using the following commands

M wvauxn6 Ga [71).
/" wauxph Ga [3].

/' wauxn7 Ga [2]).
/| vauxpT Ga [17).

M wauxnl5 (ja [6]).
[wvauxpla Ga [2].

/! wauxnl4 ja [41.
/' wauxpld Ga [OT)

M wauxnl4 Ga [17).
M wauxpld Ga [OT)

Database Design:

The files are individually held by its own format and managed by the software vivado itself
as per their operation. Verilog files are stored in “.v”’ format and once a user completes the
design flow for FPGA, user can access these different files in the folder specified by the user
itself. Additionally, for the block designing, once each block is places and properly routed
and HDL wrapper is done creating then a bit file is generated which later is launched for
software development kit and C++ code is fed in as per the functionality required.

GUI Design:

Graphic user interface is designed in order to transmit the date for a user to understand. The
platform that we have used for the GUI design is PyQt5. It is a python 3 module that allows
for rapid development of GUI applications using its built in program Qt-Designer. There are
multiple basic options to start off with like adding labels, buttons and checkboxes and the
interface is totally customizable. For our project we initially installed all the necessary
libraries required and then imported the installed libraries in python followed by the coding.
The Qt-Designer tool is used to graphically design the interface which creates a “.ui” file and
this file can then be converted into a python code using command prompt and generate a
“py” file which can then edited to add logic to the buttons and import data from the FGPA
board in our case. The data obtained from temperature sensor is passed to the GUI through
UART Protocol whereas for the compass, 12C Protocol is used. The data obtained from
compass CMPS2 is already directly stored in PS whereas the temperature sensor LM35 data
is in PL which first needs to be transferred to PS and then it is passed onto the GUI.

Both the temperature and compass data can be displayed using PyQt5 but the limitation with
PyQt5 is that it can only show the data in real time so we used another app called “RealTerm”
to display the date of compass which allows us to have a backlog of the entire dataset.
RealTerm is designed for the purpose of monitoring and capturing the date while storing a
history of previous values obtained. RealTime also allows us to add a time stamp which can
be used if a user wants to view the recorded data from a previous particular point in time.
This program could have also been used to display the temperature data but we used
transmitted the temperature data in real time and the compass data is transmitted through this
program so both the functionalities are illustrated and could be used according to the need.

Zynq 7000 SOC based device for remote data monitoring and processing Page 26

Chapter # 5

System Implementation

Zynq 7000 SOC based device for remote data monitoring and processing Page 27

System Architecture:

The Zynq Zybo Z7-10 is a feature-rich, ready-to-use embedded software and digital circuit
development board The Zynq family is based on the Xilinx All Programmable System-on-
Chip (AP SoC) architecture, that tightly integrates a dual-core ARM Cortex-A9 processor
along with Xilinx 7-series Field Programmable Gate Array (FPGA) logic. The Zybo Z7
surrounds the Zyng with a large set of multimedia and connectivity peripherals in order to
create a formidable single-board computer, even before taking into consideration the
flexibility and power added by the FPGA. Attaching additional hardware is made easy by the
Zybo Z7's Pmod connectors, allowing access to Digilent's catalog of over 70 Pmod peripheral
boards, including motor controllers, sensors, displays, and six Pmod ports are available to put
any design on an easy growth path.

Connecting these different Pmod’s require a protocol in order to transmit the data like in
order to connect Pmod CMPS2: 3-Axis Compass, 12C protocol was used. Initially we’ll look
into the detail as how i2c protocol works in order to communicate the sensor with the board.
I2C requires a mere two wires, like the asynchronous serial, but those two wires can support
up to 1008 slave devices. Also, unlike SPI, 12C can support a multi-master system, that
means allowing more than one master to communicate with all devices on the bus although
the master devices can't talk to each other over the bus and they must take turns using the bus
lines. Data rates fall between asynchronous serial and SPI; most 12C devices can
communicate at 100 kHz or 400 kHz.

The Pmod CMPS2: 3-Axis Compass works as a slave in this project while the Zyng Zybo
Z710 board works as a master. For every 8 bits of data to be sent, one extra bit of
acknowledgement must be transmitted.

SDA = ® > SDA

Master 1 Slave 1
SCL 2 > SCL
SDA =< ! > SDA

Master 2 Slave 2
SCL & > SCL

Figure 5. 1 Slave master configuration 12C Protocol

Zynq 7000 SOC based device for remote data monitoring and processing Page 28

The temperature sensor LM35 is connected to the internal XADC port of the board. The on-
board Pmod expansion connector labeled “JA” is wired to the auxiliary analog input pins of
the PL. Depending on the configuration, this connector can be used to input differential
analog signals to the analog-to-digital converter inside the Zynq (XADC). Any or all pairs in
the connector can be configured either as analog input or digital input-output. In analog input
mode, the voltage on these pins must be limited to 1V peak-to-peak. In digital mode, the
regular VCCO-dependent limits apply. The Dual Analog/Digital Pmod on the ZYBO differs
from the rest in the routing of its traces. The eight data signals are grouped into four pairs,
with the pairs routed closely coupled for better analog noise immunity. Pins 1 and 7, pins 2
and 8, pins 3 and 9, and pins 4 and 10 are paired up. Furthermore, each pair has a partially
loaded anti-alias filter laid out on the PCB. The filter does not have capacitors C94-C97. In
designs where such filters are desired, the capacitors can be manually loaded by the user. The
coupled routing and the anti-alias filters might limit the data speeds when used for digital
signals. The XADC core within the Zynq is a dual channel 12-bit analog-to-digital converter
capable of operating at 1 MSPS. Either channel can be driven by any of the auxiliary analog
input pairs connected to the JXADC header. The XADC core is controlled and accessed from
the PL via the Dynamic Reconfiguration Port (DRP). The DRP also provides access to
voltage monitors that are present on each of the FPGA’s power rails. The LM35 temperature
sensor when connected to the XADC port works by every 10 millivolt change in voltage
brings about a change of 1 degree Celsius that is detected by the sensor.

Tools and Technology Used:
1. Technology for Connecting Sensors:
e Vivado HIx Edition

e Ise Design Suite
e Software Development Kit
2. Tools for Connecting Sensors:
e Verilog
o C++
3. Technology for Graphical User Interface:
e Python
4. Tools for Graphical User Interface:

e PyQt5

Development Environment/Languages Used:
1. For Block design (Development Environment)

e Vivado HIix Edition
2. For communicating Zybo Z7-10 board with sensors (Development Environment)
e Vivado Hix Edition
3. For communicating Zybo Z7-10 board with sensors (Languages Used)
e Verilog,
e C Language

4. For Graphical User Interface (Development Environment)
e PyQt5

Zynq 7000 SOC based device for remote data monitoring and processing Page 29

5. For Graphical User Interface (Languages Used)

Processing Logic/Algorithms:

e Machine Learning:
1. Background:
Machine learning can be classified into two main categories that are supervised and
unsupervised. Supervised machine learning mainly relies on the labeled input data in order to
learn a function that will give a correct output with unlabeled data whereas an unsupervised
machine learning will use input data without labels, for instance without any
supervisor(label) that would tell when it is correct or when it is supposed to self correct. In
this project supervised machine learning algorithm is adopted for the purpose of training the
data in Matlab for a disease in order to learn the principles of machine learning and how it
can be used for further implementations depending on the need. Supervised machine learning
in simple words can be understood with an example of a father (label) who shows different
animals to his son (computer) everyday and by some time his son learns to differentiate
between different species of animals, however at certain instances where two objects are alike
the computer might not correctly recognize them but this could be corrected with more
intensive training on a larger set of data.

2. K Nearest Neighbor Algorithm in Matlab :

The K nearest neighbour (Knn) algorithm was implemented in Matlab. Knn mainly assumes
that things that are similar depending on certain features are always in close proximity. This
means that similar things will always be near each other and this is what this algorithm relies
upon for being true. This refers to calculating distance between points and creating a class of
things that are near to each other based on there features. The Eucilidean distance approach
was adopted for calculating the distance. As our approach was to get data for classification,
therefore considering the current pandemic (covid-19), we opted for a similar data with
feautures like body temperature, age and then apply machine learning which could be later
used by cameras to detect possible positive carriers, we used data provided by “kaggle”, a
website for data science community, for diabetes disease since our aim on the software part
was to apply the algorithm and see the results for accuracy however different data sets can be
added depending on the type of model needed. In our approach we divided the given data in
ratio of 70% for training data and 30% for testing data. As odd values are preffered for
selecting the value of k nearest neighbour therefore we selected K=3 although recommended
value for K for better accuracy is 10. As value of K when it decreases to 1, the system would
not make a lot of computations therefore the system would be less stable but if the value of K
increases from 1 towards 10 the system would be more stable but there would be a lot of
computations. The standard formula for accuracy in Knn is:

(TP +TN)/(TP + TN + FP + FN).

where TP, FN, FP and TN represent the number of true positives, false negatives, false
positives and true negatives, respectively

In true positive where the actual class and the predicted class is also the same, for instance the
actual class of patient was positive and the predicted class was also detected as positive, this
will be true positive and opposite for true negative where actual was negative and the
prediction was also negative. The sum of these two will be divided by total sum of true

Zynq 7000 SOC based device for remote data monitoring and processing Page 30

positive and true negative along with false positive and negative. False positive means actual
sample was positive and it was detected as negative, the opposite would apply to false
negative. In results the accuracy for our algorithm came out to be as 69.73%/.

The algorithm for Pmod CMPS2: 3-Axis Compass works in the following wav:

1.

14.

15.
16.

Power on the Pmod CMPS2 and wait for 10 mS before further operation.

Provide a START condition and call the device ID with a write bit

I12CBegin (0xA0Q); //device ID 0x30 with a write (0) bit

Wait to receive an ACK from the Pmod CMPS2.

Send the Intemal Control Eegister 0 (address 0x07) as the register to communicate with
I[2CWrite (0x07); //address 0x07 corresponds to Control Eegister ()

Wait to receive an ACK from the Pmod CMPS2.

Write the command to take a measurement by setting bit 0 high followed bv a STOP hit.
I2CWrite (0x01); //Ox01 initiates a data acquisition

Delav at least 7.92 mS by default to allow the Pmod CMPS2 to finish collecting data.
Provide a START condition and call the device ID with a write bit

12CBegin{0=xA0); //device ID 0x30 with a write (0) bit

Wait to receive an ACK from the Pmod CMPS2.

. Send the Status Register (0x03) as the register to read

. Provide a START condition and call the device ID with a read bit

[2CBegin (0xA1); //device ID 0x30 with a read (1) bit

2. Wait to receive an ACK from the Pmod CMPS2.
3. Cycle the SCL line to receive the Status Register data on the SDA line. Keep reading the

Status Register by repeating steps 8 through 13 until bit 0 is set to 'l’, indicating that the
data on all 3 axes as available to be read.

Provide a START condition and call the device ID with a write bit

[12CBegin (0xA0); //device ID 0x30 with a write (0) bit

Wait to receive an ACK from the Pmod CMPS2.

Send the first register address comresponding to Xout LSB (0x00) as the register to be
read.

[2CWrite(0x00); //address 0x00 as the first register to be read

17. Provide a START condition and call the device ID with a read bit

[2CBegin(0xA1); //device ID 0x30 with a read (1) bit

18. Wait to receive an ACK from the Pmod CMPS2.
19. Cycle the SCL line to receive the data bits from the X, Y, and Z registers in the SDA

line, providing an ACK between each data byte. The Pmod CMPS2 address pointer
automatically moves to each consecutive byte. End the communication by sending a
NACK followed by a STOP command.

[2CReadMultiple (6); /read six bytes, sending an ACK to the slave device between each
bvte received and a NACK after the last byte

20. Convert the readings into usable data.

Data Conversion:

1). Calculate the real Gauss value for the X and Y axes from the amount of LSBs returned

where the LSB value by default is 0.48828125 mG, resulting in 2048 LSBs per Gauss.
xGaussData = xDataLSB * 0.48828125mG

Zynq 7000 SOC based device for remote data monitoring and processing Page 31

xGaussData = yDataLSB * 0.48828125mG
i1). Calculate the direction D by first checking to see if the X Gauss data is equal to 0 to
prevent divide by 0 zero errors in the future calculations. If the X Gauss data is 0, check
to see if the Y Gauss data is less than 0. If Y is less than 0 Gauss, the direction D is 90
degrees; if Y is greater than or equal to 0 Gauss, the direction D is O degrees.
iii). If the X Gauss data is not zero, calculate the arctangent of the Y Gauss and X Gauss data
and convert from polar coordinates to degrees.
D = arctan (aussData xGaussData) *180
iv). If the direction D is greater than 360 degrees, subtract 360 degrees from that value.
V). If the direction D is less than O degrees, add 360 degrees to that value.
vi). The compass heading can then be determined by the direction value D:
If D is greater than 337.25 degrees or less than 22.5 degrees — North
If D is between 292.5 degrees and 337.25 degrees — North-West
If D is between 247.5 degrees and 292.5 degrees — West
If D is between 202.5 degrees and 247.5 degrees — South-West
If D is between 157.5 degrees and 202.5 degrees — South
o If D is between 112.5 degrees and 157.5 degrees — South-East
e If D is between 67.5 degrees and 112.5 degrees — East
o If D is between 0 degrees and 67.5 degrees — North-East

Wait 1/3 of the acquisition time (by default 2.64 ms) before performing another
measurement.

SDA

SCL

s Slunsta 'J L‘

oAt

v 4

THaGH
e

Figure 5. 2 Timing Diagram

Application Access Security:

There are two types of application access security: physical and logical. Physical application
access security means that the system is to be protected physically from someone trying to
destroy it in any way. Logical application access security protects the system by the help of
firewalls from different viruses and third party intruders who try to gain access of the system
remotely.

This system is to be placed in a remote location in order for the data to be retrieved and
processed hence for the physical protection of the system it would be placed in a glass box
with a keypad lock that would secure the system from different situations to some extent.
Since the logic is implemented on vivado and the language used is verilog mainly so there is

Zynq 7000 SOC based device for remote data monitoring and processing Page 32

no logical security implemented, which can be considered one of the constraints of the
system.

Database Security:

Access control is one of the essential administrations that anv data management should have.
Its mainly the data that protected data from unapproved read and the write tasks. Access
control characterize ensure that all correspondence to the database and other framework
objects are as per the policies defined. Result in an error can be as significant which can make
issue in a frameworks activity and at some point might bring it to stop. Through controlling
access rights may likewise helps in decreasing the dangers that mayv decisively affect the
security of the database on the fundamental servers. For instance, 1f anv table is erased or gets
to is altered inadvertentlv the outcomes can be roll backed or for some specific rules,
however bv applving the access control their deletion can be restricted.

A fundamental securitv prerequisite is that vou should kmow wour clients. You should
distinguish them before vou can decide their benefits and access rights thus that vou can
review their activities upon the information. Client can be validated from numerous points of
view before thev are permitted to make database. Database validation incorporates both ID
and confirmation of clients. This is the essential prerequisite to guarantee security since the
ID procedure characterizes a lot of individuals that are permitted to get to information. To
guarantee securitv, the person is validated and it keeps the information (sensitive) secure and
from being changed bv unapproved client. Hacker can adopt various strategies like detour
confirmation, default password when they intend to bargain client data and validation. In this
undertaking the graphical Ul can be utilized as safetv effort where it can require a usemmame
and secret phrase from the client so as to get to which can be advantageous such that they
would have no entrance to the realtime information regardless of whether thev have
effectivelv introduced a malware in the framework. This would hold back anv client who isn't
confirmed from the chance of review the information. Anvwav this is each other requirement
of the undertaking as it was past the targets of the task to include an element of security in the
graphical Ul

Access Control

Encryption Malware

Influence Policy User Identification

Figure 5. 3 Access control for Data Security

Zynq 7000 SOC based device for remote data monitoring and processing Page 33

Chapter # 6

System Testing and
Evaluation

Zynq 7000 SOC based device for remote data monitoring and processing Page 34

Svstem testing and Evaluation

System testing is the process of assessment which checks the original or current status of a
system in comparison with the expected results to chart its future direction. The outcomes are
assessed to evaluate progress of plan, execution, legitimacy, and so on.

Test and Assessment includes assessing an item from the part level, to independent
framework, integrated svstem. and, if it is appropriate, svstem-of-svstem and enterprise.
Figure 1 features the wvarious sorts of testing necessitated that should be assessed so as to
assist us with checking that the framework meets its predefined prerequisites.

Compability
Testing

Figure 6. 1 Types of system testing

Zynq 7000 SOC based device for remote data monitoring and processing Page 35

Components testing:

Part testing is otherwise called module testing. It mainly finds the bugs and errors in the
module and confirms the working of programming. The hardware implementation has been
discussed in Chapter 4 and Chapter 5 showing the complete design of the system and
integration of the different sensors but before the integration of a sensor It is important to
perform tests on individual components separately in order to understand the working and
limitations. Testing of the sensors are done separately demonstrating the working principle of
each sensor, their capabilities and limitations. Two sensors are being integrated with the
FPGA which are as follow:

e Temperature LM35 sensor.

e Compass manufactured by Digilent called Pmod CMPS2.

e PL and PS intergration

Temperature LM35 sensor:

Temperature LM35 sensor is a coordinated simple temperature sensor whose electrical ouput
is relative to Degree Centigrade. The sensitivity of the sensor LM35 is 10 mV/degree Celsius.
As temperature starts increasing then the output voltage also increases.

+1|.|'5
(4Vto 20V)

LM35 | QUTPUT

OomV + 10.0 mv/*C

Figure 6. 2 Temperature LM35 sensor.

PARAMETER VALUE
Accuracy at 25°C 0.5°C
Accuracy from =55 *C fo 150°C +1*C
Temperature Slope 10 mVrPC

Table 6. 1 Design parameters

1) Accuracv of LM35

Precision is characterized as the error that is between the output voltage and 10 mv/~C times
the case temperature of the gadget, at indicated states of voltage, current, and temperature
{communicated in °C). The accuracv determinations of the LM35 are given as for a basic
transfer function (linear) which implies that the wvoltage (output) is linear to temperature.
There will be an increase of 10mV (0.01V) for each 1°C increase in temperature.

Zynq 7000 SOC based device for remote data monitoring and processing Page 36

LM35A

PARAMETER TEST CONDITIONS TYP TESTED DESIGN| UNIT
LimiT™ LIMIT®
T=25C +0.2 +0.5
T=-10°C +0.3
Accuracy °C
T= TMAX +0.4 +1
T-= TMlN +0.4 +1

Table 6. 2 Specifications for temperatures: —55°C < T <150°C

20
[
5 M35 _|
;5' 1.0 "*-:-..:-"""'*
& [tveica LM3SA
= [| J
5 0.5
LM35A T
——
; -1.0 ~ ———
- ™ | —
-1.5 -
LM35
=75 =25 25 75 125 175

TEMPERATURE (*C)

Figure 6. 3 Accuracy vs. Temperature

2) Data Conversion :

LM33> is a precession Integrated circuit Temperature sensor whose output voltage varies
based on the temperature around it. It can easily be interfaced with anv Microcontroller that
has ADC function or anv development platform like FPGA in our case

If the temperature is 0°C, then the output voltage will also be OV . There will be rise of 0.01V
(10mV) for everv degree Celsius nse in temperature. The voltage can converted into
temperature using the below formulae.

Where:

VOUT=10mV/FC =T

* VOUTis the LM35 output voltage
+ T is the temperature in “C

Zynq 7000 SOC based device for remote data monitoring and processing

Page 37

3) LM35 and FPGA Interfacing

Pmod 2x6
Y

ADI14 el 76) P,
AD7 02 80 .
ADI15 03 90 ®Soror M35
AD6 0410 o B (o
GND 0 511 &HGND)}

o 612 &
VCC3V3 VCC3V3

JA
XADC PMOD LM35

Figure 6. 4 Connection of XADC with LM35

Connect LM35 to FPGA’s Internal ADC as shown in circuit diagram. The +Vs for LM35 can
be taken from the VCC3V3 pin of XADC. Also the ground pin of LM35 can be connected to
GND pin of XADC. Connect OUTPUT (the analog out of LM35) to AD14 input pin of ADC.

The internal ADC of the ZYBO Z7 is a 16 bit ADC which contains 4 channels so a total of
65536 (2°16) values can be measured. The AD14 pin of the ADC get an analog value from
the LM35 and the converts the voltage level by diving the analog value by 65536 and a
voltage level is measured. Since LM35 detects a change of 1°C with 0.01V (10mV), the

answer obtained is then multiplied by 1000 to convert the voltage level from Volts to

millivolts. Finally to observe a change for degree Celsius, the answer in millivolts is divided
by 10 to get the corresponding temperature as shown in the following portion of the Verilog

code.

wire [9:0] Temp C;

ila © your_ instance name (
.clk(clk), // input wire clk

.probel(Temp C) // input wire [9:@]

)5

.probe@(pwm_dutye), // input wire [15:0]

assign Temp C = pwm_dutye * 'diee /'de5536;

probe®@
probel

Zynq 7000 SOC based device for remote data monitoring and processing

Page 38

Compass Pmod CMPS2:

The 3-axis compass accompanies a 6-pin Pmod connector with [2C interface and a go
through Pmod have port for the chaining. Fegular applications incorporate an electronic
compass, GPS route, and position detecting.

12C pull-up can be
jumpered in and out

6-pin Pm(?d Female header
header with 12C for daisy chaining
interface

other 12C devices

MEMSIC MMC34160P)
magnetic sensor

Figure 6. 5 CMPS2 pin Configuration

x6

PP

SCL
SDA
GND
VCC

SCL
SDA
GND
VCC

PP

Ve = vEC

IC1
= S VDD scL fe :

_LC.I ‘chz ‘Lc-3 ‘Lc_q IL VDA sDA |t sDA
onp | 1F [1F T 1000 1000F

W

VSA CAP
MMC34160PT

oo
=T 0

12C Address: 01100008

Figure 6. 6 CMPS2 Schematic

Zynq 7000 SOC based device for remote data monitoring and processing Page 39

1) Accuracv

The magnetic field strength around can be calculated in a =16 Gauss range with a heading
exactness of 1° and up to 0.5 mG ofresolution. The figures appeared undemeath depicts the
determinations of the compass.

Total RMS Noise 16 bits at 7.92 ms/S

Total RMS Noise 16 bits at 4.08 ms/S 2.0 mG
Total RMS Noise 14 bits at 2.16 ms/S 4.0 mG
Total RMS Noise 12 bits at 1.20 ms/S 6.0 mG
Max Output Data Rate 16 bits at 7.92 ms/S 125 Hz
Max Output Data Rate 16 bits at 4.08/S 250 Hz
Max Output Data Rate 14 bits at 2.16 ms/S 450 Hz
Max Output Data Rate 12 bits at 1.20 ms/S 800

Field Range for Each Axis

Power Supply Voltage 1.62
Output Resolution 12 14 16 bits

Alignment Error -3 1 +3 Degrees

Table 6. 3 Specification of CMPS2

2) Data Conversion

The conversion of data is discussed in detail in Chapter 5 which shows the techniques used to
determine the direction D. The direction is declared as per the calculation of D which is
shown below:

o IfDis greater than 337 25 degrees or less than 22 5 degrees — North
o IfDis between 292 5 degrees and 337.25 degrees — North-West

o IfDis between 2475 degrees and 292 5 degrees — West

[fDis between 202.5 degrees and 247.5 degrees — South-West

[fDis between 157.5 degrees and 2025 degrees — South
[fDis between 1125 degrees and 1375 degrees — South-East
[fDis between 67.3 degrees and 112 5 degrees — East

[f D is between () degrees and 67.5 degrees — North-East

Zynq 7000 SOC based device for remote data monitoring and processing Page 40

3) CMPS2 and FPGA interfacing

Pmod 2x6

GND
VCC3V3

o7
o 8
o9
Q10
o1l
012

le

2@

3('\

a(\

5 G
6 @

DIGI

PORT JC
Figure 6. 7 Connection of FPGA (port JC) with CMPS2

PL and PS interfacing:
As the sensors were interfaced with the board, in case of compass the data was already in Ps
part of board while for temperature it was in PL. In order to transmit the data using any
protocol we needed to bring the processed data first to PS part of the system and then it
would be able to transmit successfully. For the said condition, in our initial block design we
added a custom XADC ip which is basically an analog to digital converter that transmits 10
bits of data through AXI GPIO to the processing system in case of temperature. Meanwhile
for compass the Pmod_cmps2 ip was attached with AXI I2C to the processing system that
reads the data and then writes it to any computer application. The baud rate selected from
transmission was 115200 and transmission to the gui was done using UART. The following
block design shows the integration of both modules together.

PmodCMPS2_0

LENT ©°

processing_system?_0

- AXLITE G prmoa out + ||
S e 2C_interrupt
0 3_axi_aressin 126 .
PmodCMPS2_v1_0
ck_0.0 [D—
ja_0_o10)
axi_gpio_0

4 s_axi

0 3_zu_aresein

5 _anl_adk
- gmo_io_ife:o] -

M_AXI_GPO_ACLK

T IRG_F2P(15:0]

PmodCMPS2

COMPASS CMPS2

FIXED IO

DDR 4 "
FIXED 1O 4 ||_.I o 10
ZYN - usainn_o 4[| esign_1_
Q. M_AXI_GPD - it &0 dat 1 0(80]
AL ja_01:0] bed_0f3:0]
FCLK_RESETO_N F

ZY¥NG7 Processing System

rst_ps7_0 50M

AXIGPIO

sowest_sync_cl
ead_reset_in
ant_resst in
mi_debug sys_rst

dem_locked

mb_reaet

bus_struct resef]0:0]
penpheral_resetiiud]
nierconnect_aresetnj0: 0] 4§

design_1_v1_0

ps7_0_axi_perph

-
LDDDR

> 1ed_0_0[3:.0]

i+ s00_axi
ACLK

ARESETHN

S00_ACLK

penpheral_aresstnjl:d]

Processor System Reset

MOD_ACLK

MO1_ACLK

MO1_ARESETH

MOZ_ACLK
MOZ_ARESETN

S00_ARESETH .E. BADO_AXI o
WS MO1_AXI
MOO_ARESETH gl mo2_Ax

AX| Interconnect

Zynq 7000 SOC based device for remote data monitoring and processing

Page 41

Software performance testing:

Performance testing is the process of determining the speed, responsiveness and stability of a
computer, network, software program or device under a workload. To address the need for
performance analvsis and benchmarking techniques, the Xilinx Software Development Kit
{SDK) has been enhanced with a System Performance Analysis (SPA) toolbox to provide
earlv exploration of hardware and software svstems. Specificallv, a Zvng-7000 SoC designer
is presented with insights into both the PS and the PL to understand the interactions across
such a complex, heterogeneous svstem. You can observe system performance at critical
stages of a design flow, enabling vou to refine the performance of vour system.

Xilinx SDK
Persfgfrtr?;ce Software System Drivers/
: Profiling Tools Debugger Libraries
Analysis (SPA)
System
— Performance

Modeling (SPM)

Monitor
Framework

User Interface/
Visualizations

Figure 6. 8 Xilinx SDK Features Including the System Performance Analysis Toolbox

Usability testing:

Usability testing shows how simple is it to utilize and user friendlv a product framework is
for genuine clients. This testing for the most part centers around the client's simplicitv to
utilize the application, adaptability in taking care of controls and the capacity of the
framework to meet its destinations. Usability testing decides if are applications are valuable,
findable, open, usable and attractive. The point of this testing is to fulfill clients and it
predominantly focuses on the accompanving boundaries:

The svstem effectiveness
Efficiency

Accuracy

Friendliness

Zynq 7000 SOC based device for remote data monitoring and processing Page 42

Before one performs a usability test, it must be clear who their target audience is and the
testing procedure varies accordingly. Our project targets a very specific group of people like
Aerospace and Defense sector, large scale industries, Security systems and Medical
Electronics who demand long term availability, a fast and efficient system with massively
parallel data processing. The programming used in FPGA is not as simple as C/C++
programming used in processor based hardware and FPGA’s are not the first option for the
usage of general public since FPGA’s are expensive and not easy to use, it makes them less
user-friendly and to be used by professionals. FPGA’s come into play where a very fast data
processing system is required and some specific applications of an FPGA include digital
signal processing, bioinformatics, medical imaging, voice recognition and many more.

Installation testing:
Installation testing is done to look at if the software has been effectively installed with all the
characteristic highlights and that the item is filling in according to desires. Installation testing
helps in the distinguishing even the smallest errors. It is otherwise called Execution testing.
Installation testing is done to guarantee the given points underneath:
e To make sure that the software would perform well as desired after the installation is
done.
e To make sure the security properties of the software are not lost after the installation.
e To make sure that the software does not consume the hardware resources abnormally
high making the system slower, after the installation.
e To check whether the software is able to create its own directory in the primary drive
of the system, if not customized by the user.
e To check whether the user is allowed to see the progress of the installation is visible
through the GUI.
e The installer should have a specified option which should uninstall the software the
same way it was installed.
e To make sure that not only the software but the packages and libraries should also
work after the installation

Exception handling

In safety critical systems, nothing is allowed to go unknown or unacknowledged, every
possible condition (behavior) must be accounted for, and the hardware and software must
deal with every possible behavior. The Zyng-7000 All Programmable SoC with its double
ARM Cortex A9 processors, and double Neon gliding point units have a table of addresses
where the execution is coordinated when something occurs, and interrupts the currently
running process on one or the other CPU, and then goes to the interrupt handling code
segment on that CPU.2 When serviced (finished handling the condition), the CPU returns to
where it had been when it was interrupted and continues from there.

For exceptions, one needs to deal with all seven possible exceptions in a manner that allows
the system to continue or recover, or take specific actions to behave properly. The exceptions
are as follow:
e Reset.
Undefined Instruction.
Undefined Software Interrupt.
Execution from an Undefined Address
Operating on Data from an Undefined Address.
IRQ Interrupt.
Fast Interrupt Exception.

Zynq 7000 SOC based device for remote data monitoring and processing Page 43

http://en.wikipedia.org/wiki/Exception_handling

Compatibility testing:

Compatibilitv testing is a part of non-functional testing conducted on application software to
ensure the application's compatibility with different computing environment. The platform
that we have used is Vivado 20182 by Xilinx Sensors designed by digilent are all
compatible with the ZYNQ Zvbo Z7 board which is connected to a PC and a hardware
descriptive language is used to run the hardware through the software. The FPGA board is
connected via a USB to the computer and Vivado 2018.2 is supported by Windows XP Pro
and higher versions.

Graphical user interface testing:

The Graphic user interface is designed in Python for displaying the useful information. The
tool used for making the GUI is PyQt5 which is a cross-platform GUI toolkit. The data is
collected from the sensors and is processed on the FPGA board which can either be
transmitted through an Ethernet connection or the date can directly be displayed on the GUI
using UART protocols.

Limitations:

FPGAs are fast and much more flexible than microcontrollers and because to this high
processing ability the power consumption of FPGA is more and programmers do not have
any control on power optimization in FPGA whereas no such issues are in faced in ASIC. If
you have something very simple implemented in a microcontroller, and you want to do the
same in an FPGA, it will likely take you more time to get it running in an FPGA, will likely
need to run at a slower clock speed, and will possibly use more power. The temperature
sensor integrated with the FPGA board is a cheap and easy to use component but it cannot
operate in liquid which is a limitation and the Compass sensor runs electrically, so if
electricity fails the gyro will also fail thus making the system vulnerable in some conditions
along with that saving images directly to block ram for processing can be done only by
adding compressed images as the block ram in Zybo Z7-10 is 256kbytes, therefore it would
would be difficult to see the images later due to compression however if camera is integrated
for real time video capture it would be able to work at peak performance.

Zynq 7000 SOC based device for remote data monitoring and processing Page 44

http://en.wikipedia.org/wiki/Graphical_user_interface_testing

Evaluation and Results:

Temperature sensor LM35:

The figures shows below demonstrates the results obtained after implementing the verilog
coding in Vivado and tested in real time. As soon as the temperature sensor LM35 starts to
detect a rise in temperature the change in temperature is measured through the PMOD XADC
and the data is processed in the Programmable Logic (PL) part of the FPGA and the results
are obtained as shown below:

Wavefonn hwila‘l 5 e T 3 ?_.ﬁlx
Q| +\~=- [|» WG @[22 o [14| M |22]+]|l

o pwrn_duty0[15.0]
| > W Temp_C[9:0]

Updated at: 2Z020-Feb~-20 15:17:47

Figure 6. 9 Room Temperature

IR T T T
e i il

?Waverbnn hwiia1 o R T EE
+|=|E>|» BIC|a eW’“’-;TIHMHf: or | ol | e

l LA Status: Full (2048 out of 2048

| Name Value \
"> % pwm_duty0[15:0]
> ™ Temp.C[9:0]

Figure 6.10 Rise in Temperature

Zynq 7000 SOC based device for remote data monitoring and processing Page 45

http://en.wikipedia.org/wiki/Security_testing

Compass Pmod CMPS2:

When the connection is maintained and the compass is integrated with the FPGA. The SDK
tool in Vivado is used to display the Output of the compass. The conversion of data is done as
stated in “Data conversion” under Components testing to obtain the results. As the magnetic
sensor detects a change in motion, the data is processed and measured the change and it
displays the Degree with the direction as shown in the figure below:

=

ted to: Serial (COM?, 115200, 0, 8)
ree: 48; Y Direction: North East

z 50; Y Direction: North East
51; Y Direction: North East
|Degree: 50; Y Direction: North East
Degree: 49; Y Direction: North East
Degree: 50; Y Direction: North East
Degree: 51; Y Direction: North East
Degree: 51; Y Direction: North East

Degree: 51; Y Direction: North East

Degree: 49; Y Direction: North East
Degree: 49; Y Direction: North East
Degree: 50; Y Direction: North East
Degree: 51; Y Direction: North East

Degree: 51; Y Direction: North East

Degree: 50; Y Direction: North East
|

Degree: 49; Y Direction: North East
agree: 101; Y Direction: East

Figure 6. 11 Variation in compass direction

Zynq 7000 SOC based device for remote data monitoring and processing Page 46

Results shown on GUI:
The figure below shows the final outputs when all the sensors have been integrated together
and the processed data is transferred to the GUI whereas in figure 6.10 and 6.11, the outputs

shown were for 2 different induvial projects.

" Sensors Interfacing

Sensors data processing
start

|

Compass Temperature -l -l

Textiabel

Image Classification

: North VWesth
: Easth
: Northi

: North Westh
: Eastl

irection:

¥ Direction:

Direction:
D

North
North

Easth

North

: North

North

Easth
Westh

East(

: Northi
: North

West
Eastl

: Northi
tion:

Westh

Y Direction: North East(

Display | Pt Capture | Pins | Send | EchoPort| 12C | 12C:2 | 120Misc | Misc | \n| Clear| Freeze| 7|
QOO'UC End After len Files Status
Start: Overwite [Start: Append l] 9 gylet W [Log I hex Connected
Eile [C \Users\Sardar\Desklop\newtestfinal L] _J = Sies [~ Tiace| hex RXD (2)
—- 1 Duect Caplwe [v TXD (3)
Clear | Dump C15(8)
[T Capture as Hex f_u_m;Slamp o Delmiter S 0D (1)
@ None ¢ P
C o ¢ Yaonis| | € comee | | File | DSR (6)
" UniHex $pace ieshemlog v | Ring (9)
BREAK
Enor

Figure 6.13 Compass Output on RealTerm

Zynq 7000 SOC based device for remote data monitoring and processing

Page 47

Chapter # 7

Conclusion

Zynq 7000 SOC based device for remote data monitoring and processing Page 48

This work included planning and building up a system that furnishes clients valuable
information (useful data) just with a FPGA board Zyng Z7-10 as equipment that enables
clients to design and connect with different FPGA boards as well as cores. We showed that
the system is adaptable, in that it could suit different application necessities, for example,
various sources of inputs and coordination of various sensors on one board. We likewise
indicated that this system is versatile, in that it could oblige various equipment cores and
boards of FPGA. Utilizing an algorithm that was created to take information from sensors
and transmitting just the useful data, we examined different system designs to watch the
impacts of joining extra equipment segments (sensors) on execution times and furthermore
decide the size of the general system with these increases, which came out to be a compact
system. FPGAs separate themselves in profoundly parallelized tasks.. While present day
microprocessors execute operations on various cores with sequential and faulty directions,
not all capacities are appropriate to be worked by them, like digital signal processing and
time critical applications. As a bonus, FPGAs now allow System-on-chip based devices
where processor can be interconnected with FPGA resources allowing users to put right use
of these resources depending on different scenarios like if the application is time critical or
not. Additionally, FPGA offer more reliability, power and performance efficiency, security as
well as the feature of putting all the modules on a single chip provides multiple advantages
over microcontrollers. Keeping all this in mind, Zybo Z-10 was chosen which contains
enough resources for the application we desired.

For the purpose of learning, multiple modules were selected so a range of features on Zybo
board can be explored. Analog sensors as well as digital sensors were implemented using
different communication protocols including 12C. Additionally, sensors were implemented
and were operated using Programmable logic and processing system so the FPGA resources
and Processor resources can be put to use separately depending upon application requirement.

So, all in all, the proposed system would work in a set of principles. Firstly, data from sensors
will be extracted depending upon if the data is analog or digital. Secondly, applying specific
algorithms to extract useful information from the extracted data. And finally, meaningful data
will be transmitted and fed into Graphic user interface.This proposed system offers more
effectiveness since there is no need to send all the extracted data from sensors to be sent to a
processing hub where it can be processes and then fed into the Graphic user interface rather
the proposed system allows the user to filter the data right after the sensor so only the
meaningful data can be sent offering more efficiency as well as taking less time since
resources of FPGA were used.

As mentioned already in earlier chapters, the application of proposed system doesn’t just
limit to certain sensors rather the sensors used in project are more of a learning purpose
subjects. Any application can be made possible on the device which can be achieved by
developing a corresponding algorithm for that application and following the set of principles
proposed in the system. However the limitation of integrating different Pmods to the Zynq
Z7-10 board allows only six external hardware components to work at a given instance
together hence in order to incorporate more than six hardware components (sensors) an
additional FPGA board would be required.

Zynq 7000 SOC based device for remote data monitoring and processing Page 49

References

Zynq 7000 SOC based device for remote data monitoring and processing Page 50

[1] Karen Parnell, Roger Bryner. “Comparing and Contrasting FPGA and Microprocessor
System Design and Development”. Xilinx, WP213 (v1.1) July 21, 2004

[2] Rene Mueller and Jens Teubner. “Data Processing on FPGAs”. Systems Group,
Department of Computer Science, ETH Zurich, Switzerland, 2013

[3] F. Bensaali and A. Amira. “Design and Implementation of Efficient Architectures for
Color Space Conversion”. ICGST-GVIP Journal, 1(5), 2004, 37-47

[4] S.Velusamy, Wei Huang, J. Lach, M. Stan and K. Skadron. “Monitoring temperature in
FPGA based SoCs”. IEEE International Conference on Computer Design, 2005, 634 - 37.

[5] Atibi mohamed, Benrabh Mohamed, Atouf Issam, Boussaa Mohamed, Bennis Abdellatif.
“Implementation of a vehicle detection system in the FPGA embedded platform”. Journal of
Theoretical and Applied Information Technology”, 2017.

[6] Ms.Rachna Singh and Dr.Arvind Rajawat. “Interfacing the Analog Camera with FPGA
Board for Real-time Video Acquisition”. MECS, 2014, 32-38

[7] Ms.Rachna Singh and Dr.Arvind Rajawat. “ A Review of FPGA-based design
methodologies for efficient hardware Area estimation”. IOSR Journal of Computer
Engineering (IOSR-JCE),2013

Zynq 7000 SOC based device for remote data monitoring and processing Page 51

Appendices

Zynq 7000 SOC based device for remote data monitoring and processing Page 52

APPENDIX A: Verilog Implementation

Al. Design code for Compass

“timescale lps /1 ps

module PmodCANPS2

(AXI LITE IIC araddr,

AXI IITE IIC arready,
AXI LITE_IIC arvalid,
AXI LITE IIC awaddr,

AXI LITE IIC awready,

AXI LITE IIC awwvalid,
AXI LITE_IIC bready,
AXI LITE IIC bresp,
AXI LITE IIC bvalid,
AXI LITE TIC rdata,
AXI LITE TIC rready,
AXI IITE IIC rresp,
AXI LITE IIC rvalid,
AXI LITE IIC wdata,
AXT LITE 1IC wready,
AXI LITE_IIC wstrh,
AXI LITE_IIC wwalid,
I2C Interrupt,

Pmod out pinl0 1,
Pmod out pinl0 o,
Pmod out pinl0 t,
Pmod out pinl i,
Pmod out pinl o,
Pmod out pinl t,
Pmod out pin? 1,
Pmod out pin? o,
Pmod out pin? t,
Pmod out pin3 1,
Pmod out pin3 o,
Pmod out pin3 t,
Pmod_out_pind 1,
Pmod_out_pind o,
Pmod_out_pind t,
Pmod out pin7 i,
Pmod_out pin? o,
Pmod out pin7 t,
Pmod_out_pin8 i,
Pmod out ping o,
Pmod out pind t,
Pmod out pin9 i,
Pmod out pin9 o,
Pmod out pin9 t,

5 axi aclk,

5 axi aresetn);

input [§:0]AXI LITE IIC araddr;
output AXI LITE IIC arready;

Zynq 7000 SOC based device for remote data monitoring and processing

Page 53

mput AXT LITE TIC arvalid;
input [8:0]AXT_LITE IIC awaddr;
output AXI LITE TIC awready;
mput AXT LITE IIC awwalid;
mput AXT LITE IIC bready;
output [1:0]AXI ILITE IIC bresp;
output AXT IITE 1IC bvalid;
output [31:0]AXT LITE IIC rdata;
mput AXT LITE TIC rready;
output [1:0]AXI IITE_IIC rresp;
output AXT IITE IIC rvalid;
input [31:0]AXT LITE IIC wdata;
output AXI LITE IIC wready;
input [3:0]AXI LITE IIC wstrh;
input AXT LITE IIC wwvalid;
output I2C Interrupt;

input Pmod out pinl0 i;

output Pmod out pinl0 o;

output Pmod out pinl0 f;

input Pmod_out pinl_i;

output Pmod_out pinl_o;

output Pmod _out pinl t;

input Pmod_out pin2 i;

output Pmod_out pin? o;

output Pmod _out_pin? t;

mmput Pmod out pind i;

output Pmod _out pin3 o;

output Pmod _out_ pin3 t;

mmput Pmod _out pind i;

output Pmod _out pind o;

output Pmod _out_pind t;

mmput Pmod _out pin? i;

output Pmod _out pin7 o;
output Pmod _out_pin7 t;
mmput Pmod out pind i;
output Pmod _out pind o;
output Pmod _out_ pin8 t;
mmput Pmod out pin@ i;
output Pmod _out pin® o;
output Pmod _out_pin? t;
mmput s axi_acll;

Input s axi_aresein;

wire [31:0]5_AXT 1 RDATA;
wire 5 AXI 1 RREADY;
wire [1:0]5_AXI 1 RRESP;
wire 5 AXIT 1 REVALID;

wire [31:0]5_AXT 1 WDATA;
wire 5_AXIT 1 WREADY;
wire [3:0]5_AXT 1 WSTEDB;
wire 5_AXT 1 WVALID;

Zynq 7000 SOC based device for remote data monitoring and processing Page 54

wire axi iic 0 IIC SCL I:

wire axi_iic 0 IIC SCL O

wire am_m:_[l_]] C 8CL_T;
wireaxi_iic 0 IIC SDA T;

wire axi_iic 0 IIC SDA O

wire axi_iic 0 IIC SDA T;

wire [1:0]axi_1ic 0 gpo;

wire axi_iic 0 iic?intc irpt;

wire pmnd brldge 0 _Pmod_out PIN10 I;
wire pmod_bridge 0 Pmod_out PIN10_0O;
wire pmod_bridge 0 Pmod_out PIN10_T;
wire pmod bridge 0 Pmod out PIN1 I:
wire pmod bridge 0 Pmod out PIN1 O;
wire pmod bridge 0 Pmod out PIN1 T;
wire pmod bridge 0 Pmnd out_ PIN2 I
wire pmod bridge 0 Pmod out PIN2 O;
wire pmod bridge 0 Pmod out PIN2 T,
wire pmod_bridge 0 Pmod out PIN3 I:
wire pmod_bridge 0 Pmod out PIN3 O;
wire pmod bridge 0 Pmod out PIN3 T;
wire pmod bridge 0 Pmod out PIN4 I;
wire pmod bridge 0 Pmod out PIN4 O;
wire pmod bridge 0 Pmod out PIN4 T;
wire pmod bridge 0 Pmod out PIN7T I;
wire pmod bridge 0 Pmod out PINT O;
wire pmod_bridge 0 Pmod_out PIN7_T;
wire pmod_bridge 0 Pmod_out PINE I:
wire pmod_bridge 0 Pmod_out PINE_O;
wire pmod bridge 0 Pmod out PINE T;
wire pmod bridge 0 Pmod out PIN9 I:
wire pmod bridge 0 Pmod out PINS O;
wire pmod_bridge 0 Pmod out PIN9 T;
wire s axi aclk 1;

wire s_axi_aresetn 1;

wire [1:0]xlconstant 0 dout;

assign Pmod out pin? o =pmod bridge 0 Pmod out PIN3 O;
assign Pmod out pind t = pmod bridge 0 Pmod out PIN3 T;
assign Pmod out pind o =pmod bridge 0 Pmod out PIN4 O;
asmgn Pmod out pind t =pmod bridge 0 Pmod out PIN4 T;
assign Pmod_ | out pin? o = pmod bridge | 0 Pmud ot PINT_ O
assign Pmod out pin? t = pmod bridge 0 Pmod out PINY T;
assign Pmod out ping o =pmod bridge 0 Pmod out PINS O;
assign Pmod out pin8 t = pmod bridge 0 Pmod out PINS T;
assign Pmnd out pin? o =pmod bridge | 0 Pﬂ:u:rd ot PI“JE}I O;
assign Pmod out pin? t = pmod bridge 0 Pmod out PINO T
assign 5_AXI 1_ARADDR = AXI_LITE_IIC_araddr[8:0];
assign S_A_TG_I_ARVA]_.ID AXI LITE_IIC arvalid;

assign 5_AXI 1 AWADDE = AXI LITE IIC awaddr[8:0];
assign 5_AXI 1 AWVALID = AXI LITE_IIC awvalid;

Zynq 7000 SOC based device for remote data monitoring and processing

Page 55

assign 5 AXI 1 BEEADY = AXT LITE IIC bready;
assign 5 AXI 1 FEREADY = AX] LITE TIC rready;
assign 5 AXT 1 WDATA =AXT LITE IIC wdata[31:0];
assign 5_AXT 1 WSTEB = AXI 1ITE IIC wstrb[3:0];
assign 5_AXT 1 WVALID =AXT LITE IIC wwalid;
assign pmod_bridge 0 Pmod_out PIN10 I =Pmod_out_pinl0 i;
assign pmod bridge 0 Pmod out PIN1 I =Pmod out pinl i;
assign pmod bridge 0 Pmod out PIN2 1 =Pmod out pin? i;
assign pmod bridge 0 Pmod out PIN3 I =Pmod out pin3 i;
assign pmod bridge 0 Pmod out PIN4 I =Pmod out pind i;
assign pmod bridge 0 Pmod out PIN7 I =Pmod out pin7 i;
assign pmod bridge 0 Pmod out PINE I =Pmod out pin8 i;
assign pmod bridge 0 Pmod out PIN® I =Pmod out pin? i;
assign 5 axi aclk 1 =s axi aclk;
assign 5 axi aresen 1 =s axi aresein;
PmodCMPS2 axi 1ic 0 0 axi sic 0

(.gpolaxi_iic 0 gpo),

Adic2inte_irpt{axi_iic 0 iic2intc_irpt),

5_axi_aclk(s_axi aclk 1),

.5 axi araddr(S AXT 1 ARADDE],

.5 axi aresetn(s axi aresetn 1),

5 axi arready(S AXT 1 ARREADY),

5_axi_arvalid(S_AXT 1 ARVALIDY),

5_axi_awaddr(S_AXT 1 AWADDR),

.5_axi_awreadv(S AXI 1 AWREADTY),

5 axi_awvalid(S_AXT 1 AWWVAILIDY,

5 axi breadv(S AXI 1 BREADY),

5 axi bresp(S_AXI 1 BRESP),

.5_axi_bvalid(S_AXT 1 BVALILDY,

.5 axi rdata(5 AXI 1 RDATA),

5 axi rready(5_AXT 1 RREADY),

5 axi rresp(S_AXT 1 RRESP),

5 axi rvalidiS AXT 1 RVALID),

5_axi_wdata(S_AXI 1 WDATA),

5_axi_wready(S_AXI 1 WREADTY),

5_axi wstrb(S_AXT 1 WSTRE),

5 axi wvalid(S_AXT 1 WVALID),

-scl ifaxi e 0 IIC SCL I,

sel gfaxi e 0 IIC SCL_0O),

.scl t{axi uc 0 IIC SCL T3,

.sda jfaxi 1ic 0 IIC SDA T,

.sda_ofaxi iic 0 _IIC SDA 09,

.sda_t(axi_iic 0 IIC SDA T));
PmodCMPS2 pmod bridge 0 0 pmod bridge 0

(.n? I{axi_iic_0 _IIC SCL_Iy,

An2 Ofaxi_iic 0 IIC SCL_O),

An2 T(axi iic 0 IIC SCL T,

an3 I{axi iic 0 IIC SDA Ty,

n3 Ofan e 0 IIC SDA O,

An3 T(axi_iic 0 IIC SDA T,

An top 12c_gpio bus Oaxi iic 0 gpo),

An top 12c_gpio bus T{xlconstant 0 dout),

.outl I{pmod bridge 0 Pmod out PIN1 T},

.outl_O{pmod_bridge 0 Pmod out PIN1_0),

.outl_T(pmod_bridge 0 Pmod_out PIN1_T),

Zynq 7000 SOC based device for remote data monitoring and processing Page 56

.outl_I(pmod_bridge 0 Pmod_out PIN2 T,
.outl O(pmod bridge 0 Pmod out PIN2 O,
.outl T{pmod bridge 0 Pmod out PIN2 T),
out? I(pmod bridge 0 Pmod out PIN3 I,
out? O(pmod bridge 0 Pmod out PIN3 O},
out2 T{pmod bridge 0 Pmod out PIN3 T),
outd I(pmod bridge 0 Pmod out PIN4 I,
outd Ofpmod bridge 0 Pmod out PIN4 O,
outd3 Tipmod bridge 0 Pmod out PIN4 T),
coutd I{pmod bridge 0 Pmod out PINT I,
outd O(pmod bridge 0 Pmod out PINT O,
coutd T(pmod bridge 0 Pmod out PINTY T,
coutd I{pmod bridge 0 Pmod out PINE I,
coutd Ofpmod bridge 0 Pmod out PINS O,
coutd T(pmod bridge 0 Pmod out PINS T),
coutd I{pmod bridge 0 Pmod out PING T3,
coutd Ofpmod bridge 0 Pmod out PING O,
.outd_T(pmod bridge 0 Pmod_out_PING T),
.out?_I(pmod_bridge 0 Pmod_out PIN10 _I),
cout? O(pmod bridge 0 Pmod out PIN10 O],
cout? T{pmod bridge 0 Pmod out PINLO T7);
PmodCMPS2 xlconstant 0 0 xlconstant 0
(.dout{xlconstant 0 dout));
endmodule

A2. Design code for LM35 (Temperature Sensor)

“timescale lns/ 1ps

module top(
input clk,
input [1:0] ja,
output [3:0] led

reg [6:0] daddr = 0; // address of channel to be read

reg [1:0] ledidx = 0; // index of the led to capture data for
wire eoc; /' xade end of conversion flag

wire [15:0] dout; // xade data out bus

wire drdy;

reg [1:0] drdy =10; // delayed data readv signal for edge detection
reg [15:0] datal =0, // stored XADC data, only the uppermost byte
datal =10,
data? =0,

datad = 0;

reg [7:0] pwm_count; // shared pwm counter

Zynq 7000 SOC based device for remote data monitoring and processing Page 57

reg [15:0] pwm_duty(; // duty cycles for the 4 pwm led brightness controllers
reg [15:0] pwm_dutyl;
reg [15:0] pwm_duty2;
reg [15:0] pwm_duty3;

¥ade wiz) myxade (
.delk in (clio),

.den_in (eoc), // drp enable, start a new conversion whenever the last one has ended
.dwe_in (o,

.daddr in (daddr), /' channel address

.di_in (R

.do_out (dout), // data out

Jdrdy out (drdy), // data ready

-.eoc_out (eoc), // end of conversion

A vauxnb (qa[71).
N vauxpb (a[31),

A vauxn? (ja[>1).
i vauxpT (ja[11),

N vaml s (ja[6]),
| vapl3 (ja[2]),

N vaml4 (ja[41),
A vapl4 EI)

vamnld (a[11),
vaxpld (a[0n)
)

alwavs{fl(posedge clk)
_drdy <= {_drdy[0]. drdy}:

always@ (™)
case (ledidx)
(- daddr = 7hlE;
1: daddr =7hl7;
2: daddr = ThlF;
3: daddr =7hl6;
default: daddr = ThiE;
endcase

alwavs{f(posedge clk) begin
if (_drdy == 2D10) begin // on negative edge

ledidx <= ledidx = 1;
case (ledidx)
0: datal == dout;

- datal <= dout;

- data? <= dout;

- data? == dout;

Lad P

Zynq 7000 SOC based device for remote data monitoring and processing Page 58

endcase
end
end

always@(posedge clk)
pwimn_count <= pwm_count + 1;

always@(posedge clk)
if (pwm_count =) begin
pwm_dutv() <= datal;
pwm_dutvl <= datal;
pwm_dutv? <= dataZ;
pwm_dutv3 <= data3;
end

assign led[0] = (pwm_count <= pwm_duty0) 71 :
assign led[1] = (pwm_count <= pwm dutyl) 71 :
assign led[2] = (pwm_count <= pwm_duty2) 71 :
assign led[3] = (pwm_count <= pwm_duty3) 71 :

[o R o Y s |

wire [9:0] Temp C;
assign Temp C =pwm duty(* 'd100 "d63336;

fla 0vour instance name |
clikielk), // input wire clk

Jprobeli{pwm_duty(), /7 input wire [13:0] probel
probel(Temp C) // mput wire [9:0]_ probel
);

Endmodule

APPENDIX B: C Language Implementation

B1. Design code for Compass in C

#include <stdio.h>
#include "math h"
#include "PmodCNPS2.R"
#include "sleep.h"
#include "xil cache h"
#include "xparameters.h"”

// Calibration data struet, track minimum, maximum, and average sample seen for
// each ®'v/z channel
typedaf struct {
CMPS52 DataPacket max, min, mid;
1} CMPS2 CalibrationData;

void Demolnitialize();

Zynq 7000 SOC based device for remote data monitoring and processing Page 59

void DemoRun();

int DemoConvertDegree(PmodCMPS2 *InstancePtr, CMPS2 CalibrationData calib,
CMPS2 DataPacket data, int declination);

void DemoClearCalibration(CMPS2 _CalibrationData *calib);

void DemoCalibrate(PmodCNPS2 *InstancePtr, CMPS2 CalibrationData *calib,
CMBPS2 DataPacket data);

char *DemoGetCardinalDirectionString(int deg, char *cardinal table[]);

void DemoCleanup();

void EnableCaches();

void DisableCaches();

PmodCMPS2 myDevice;

CMPS2 CalibrationData myCalibrationData;

const int myDeclination = 15; // Magnetic declination for Seattle, WA
const u8 chip address = 0x30; // I2C chip address

int main(void) {
Demolnitialize();
DemoFRun();
DemoCleanup();
retutn 0;

}

void Demolnitialize() {

EnableCaches();

CMPS2 begin{&myDevice, XPAR PMODCMPS2 0 AXT ILITE IIC BASEADDE,
chip address);

usleep(10000);

CMPS2_ SetSensor{&myDevice);

usleep(100007;

CAhPS2 SetOutputResolution(&mvDevice, (0b007;

}

void DemoFam() {
[/ FIXME: data becomes invalid when the board is not face up and flat.

char *cardinal table[] = {"North", "North East”, "East”, "South East",
"South”, "South West", "West", "North West"};

char *cardinal:

int deg;

ChPS2 DataPacket data;

DemoClearCalibration{&myCalibrationData);

while (1) {
data = CMPS2 GetData(&mvDevice);

DemoCalibrate(&mvDevice, &myCalibrationData, data);

deg = DemoConvertDegree{ &myDevice, myCalibrationData, data,

Zynq 7000 SOC based device for remote data monitoring and processing Page 60

mvDeclination);
cardinal = DemoGetCardinalDirectionString(deg, cardinal table);
printfi{"Degree: %d; Y Direction: %es'r'n”, deg, cardinal);

usleep(100000);

3
}

int DemoConvertDegree(PmodCMPS2 *InstancePtr, CMPS2 CalibrationData calib,
CMPS2 DataPacket data, int declination) {
int tx, ty;
int deg;

if (data.x < calib.mid x)
= (calib.mid x - data. x);
glse
= (data.x - calib.mid x);

if (data v < calib.mid.y)
ty = (calib.mud.vy - data.v);
glse
ty = (data.y - calib.mid.v);

if (data.x < calib.mid x) {
if (data. v > calib.mid.v)
deg =00 - atan?f(ty, &) * 180 /3.14139;
glse
deg =90 + atan?fity, =) * 180 / 3.14139;
1oelse {
if (data.v < calib.mid.v)

deg =270 - atan2f(ty, ©) * 180/ 3.14139;
glse
deg =270 + atan2fity, tx) * 180/ 3.14139;
¥

deg += declination;

while (deg == 360)
deg -=360;

while (deg <)
deg += 360;

return deg;

}

void DemoClearCalibration(CMPS2 CalibrationData *calib) {
calib-=max.x = 0x8000; // Center point of 0x0000 -> 0xFFFF
calib-=max.v = 0x8000;
calib-=max.z = 0x8000;
calib-=min x = 0x8000;
calib-=min. v = 0x8000;

Zynq 7000 SOC based device for remote data monitoring and processing Page 61

calib-=min.z = 0x8000;

calib-=mid.x = 0x8000;

calib-zmid. v = 0x8000;

calib-=mid.z = 0x8000;
h

void DemoCalibrate(PmodCMPS2 *InstancePtr, CMPS2 CalibrationData *calib,
CMPS2 DataPacket data) {
if {data.x > calib-=max x) calib->max X = data x; // Track maximum / minimum
if {data.v = calib-=max.v) calib->max v = data.v; // value seen per axis
if {data.z > calib->max z7) calib->max.z = data.z;
if (data x < calib->min x) calib->min X = data x;
if {data.v < calib->min v) calib->min v = data v;
if (data z = calib->min 7) calib->min z = data z;
calib->mid x = (calib->max x >> 1) + (calib->min x »= 1); //Find average
calib->mid v = (calib-=max v == 1) + (calib-=min y == 1);
calib->mid z = (calib->max 7 »> 1) + (calib->min 7 >> 1);

}

char *DemoGetCardinalDirectionString(int deg, char *cardinal table[]) {
float fdeg = deg;
if (fdeg = 337.5)
fdeg -=337.5;
glse
fdeg +=122.5;
fdeg /=45.0;
return cardinal table[(int) fdeg];

}

void DemoCleanup() {
DisableCaches();
}

void EnableCaches() {

#ifdef MICROBLAJE

#ifdef XPAR. MICROBLAZE USE ICACHE
Xil ICacheEnable();

zendif

#ifdef XPAR. MICROBLAZE USE DCACHE
Xil DCacheEnable();

#endif

#endif

}

void DisableCaches() {

#ifdef MICROBLAZE

#ifdef XPAR. MICROBLAYE USE DCACHE
Xil DCacheDizable();

zendif

#ifdef XPAR. MICROBLAZFE USE_ICACHE
Xil ICacheDizable();

#endif

#endif

3

Zynq 7000 SOC based device for remote data monitoring and processing

Page 62

APPENDIX C: Python Language Implementation

C1. Code for GUI (transmission)

import csv
import serial

ser = serial Serial("COMT", 115200)
print("connected to: " + ser portstr)
line =[]
filename = "sensordata csv"
while True:
cc=str(serreadline())
writing to csv file
with open(filename, 'w") as csviile:
creating a csv writer object
csvwriter = csv.writer(csviile)
writing the data rows
cevwriter writerows([[str(cc[2:][-3 1D
#self ledNumber 4 display(cc[2:][:-3])
print(cc)
#QtWidgets QApplication processEvents()
ser.close()

Zynq 7000 SOC based device for remote data monitoring and processing

Page 63

