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Abstract

Textual content appearing in videos represents an interesting index for semantic retrieval of videos
(from archives), generation of alerts (live streams) as well as high level applications like opinion
mining and content summarization. Key components of a textual content based retrieval system
include detection (localization) of text regions and recognition of text through Video Optical Char-
acter Recognition (V-OCR) systems. While mature detection and recognition systems are available
for text in non-cursive scripts, research on cursive scripts (like Urdu) is fairly limited and is marked
by many challenges. These include complex and overlapping ligatures, context-dependent shape
variations and presence of a large number of dots and diacritics.

This research aims at detection and recognition of artificial (caption) Urdu text appearing in
video frames, primarily targeting the local News channels. Leveraging the recent advancements in
deep neural networks (DNN), we propose robust techniques to detect and recognize Urdu caption
text from frames with bilingual (English & Urdu) textual content, the most common scenario in
majority of our News channels. Detection of textual content relies on adapting the deep convolu-
tional neural networks(CNN) based object detectors for text localization. To cater multiple scripts,
text detection and script identification are combined in a single end-to-end trainable system. For
recognition, we employ an implicit segmentation based analytical technique that relies on a combi-
nation of a CNN and recurrent neural network (RNN) with a connectionist temporal classification
(CTC) layer. Images of text lines extracted from video frames along with ground truth transcription
are fed to the CNN for feature extraction. The extracted feature sequences are then employed by
the recurrent part of the network to predict the likely sequence of characters. Finally, the CTC layer
converts raw predictions into meaningful Urdu text.

As a part of this research, a comprehensive dataset named as ‘UTiV’ (Urdu Text in Videos),
containing more than 11,000 video frames from various Urdu News channels was collected
and labeled and has been made publicly available. The ground truth of each frame comprises
information on location of text regions and the corresponding transcription along with other meta-
data. A comprehensive series of experiments is carried out on the collected dataset to study the
impact of different object detectors, models in the convolutional base, pre-processing steps to
segment text from background, the type of recurrent unit and so on. The detector reports an overall
F-measure of 0.91 while a character recognition rate of 97.63% is realized by the recognition
engine. A comparison with the state-of-the-art validates the effectiveness of the proposed detection
and recognition techniques. In addition to the development of Urdu caption text detector and
recognizer, we also integrated the two modules to develop an indexing and retrieval application.
End-to-end retrieval experiments were also carried out and reported a high F-measure reading 0.89.
The reported results not only validate the effectiveness and robustness of the proposed techniques
but also demonstrate their potential usage in real world applications for end users.
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Chapter 1

Introduction

The last decade has witnessed a tremendous increase in the digital multimedia data including videos

and images. This growth can be primarily attributed to the large number of low cost optical sensors

as well as the enhanced connectivity with increased bandwidth allowing capture and sharing of

multimedia data. Hundreds of hours of video is being uploaded every minute on video sharing

portals [1] and the proportion of video in World’s Internet traffic has grown from 66% in 2014

to 80% in 2019 [2]. Such enormous collections of videos have opened up a whole new world of

challenges to develop smart retrieval systems allowing users an efficient and effective retrieval of

desired content.

The conventional video retrieval systems rely on matching the queried words with user-assigned

annotations and, ignore the rich information in videos that can be exploited for effective indexing

and subsequent retrieval. Content-based search systems, on the other hand, may exploit the visual

information (objects, buildings, persons etc.), audio (spoken words), textual content (News tickers,

anchor names, subtitles, etc) or a combination of these to support smart retrieval. Examples of

typical queries to such intelligent systems include retrieving all videos where a particular individual

has appeared or all instances where a particular keyword (for example ‘Breaking News’) has been

flashed [3]. Among various search modalities, the focus of our present study lies on the textual

content appearing in videos.

Textual content in videos can be categorized into two different classes, scene text and caption

text (also known as artificial/graphics text). Scene text is captured through the camera during video

recording and may not always be co-related with the content. Examples of scene text include

signboards, advertisement banners, building names, text on T-shirts and play cards etc. It may

also include handwritten text. Scene text is useful for applications like robot navigation [4, 5] and

systems to assist the visually impaired [6, 7, 8]. Caption text or artificial text, on the other hand, is

superimposed on videos and, in most cases, is more related with the content. Typical examples of

artificial text include News tickers, scorecards and movie credits etc. The correlation of caption

text with the actual content makes it more appropriate for indexing and retrieval applications.

1
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An example video frame containing occurrences of scene as well as caption text is illustrated in

Figure 1.1.

Figure 1.1: A video frame with instances of scene and caption text

The initial research on smart video retrieval primarily exploited simple image analysis tech-

niques supporting retrieval using attributes like color, texture and shape etc. Subsequent theoretical

as well as technological advancements led to more sophisticated systems supporting shot boundary

detection, video summarization, semantic video search and video captioning [9]. Typically, features

extracted from key frames or regions corresponding to objects in frames are employed for indexing

purposes. The recent paradigm shift from hand-engineered to machine learned features and the pos-

sibility of end-to-end trainable deep neural networks (DNN) have served to significantly enhance the

robustness of smart retrieval systems [10, 11, 12]. Such systems exploit different retrieval modalities

including caption text [13], faces [14], spoken keywords [15] objects [16] and other visual cues [17].

From the view point of text-based video indexing and retrieval, textual content in video frames

needs to be detected (localized) and recognized. Keywords in the transcription of a video frame can

then be extracted and employed for indexing and subsequent retrieval. Keywords refer to the words

that are provided as query by the user (Figure 1.2). Once a keyword is provided, the system queries

the database that contains videos indexed on keywords. Videos containing instances of the relevant

keyword are then provided to the user in the retrieval phase (Figure 1.3).
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Figure 1.2: Keyword supplied as query by user

Figure 1.3: Videos retrieved against a query keyword

The present study focuses on detection and recognition of Urdu caption text appearing in

videos. Once the text is extracted and recognized using a video-OCR, in addition to indexing and

retrieval, a number of interesting applications can be developed using the recognized text. Typical

examples include summarization of News tickers, generation of alerts on user specified keywords

and comparative analysis of same News across multiple News channels etc.

1.1 Motivation

Content based retrieval of images and videos (CBVIR) has been explored by researchers since many

years [18]. Many different applications for indexing and retrieval of images and videos have been

proposed. In case of image databases, user may provide the query in the form of an image or some

attributes of image like color, shape or texture to retrieval all relevant images. For videos, as dis-

cussed earlier, the visual content, audio or textual information in the video could be used as an index.
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QBIC [19] developed by IBM, is known to be the first commercial Content Based Image Re-

trieval (CBIR) system. In this system, user may retrieve images based on one or more features like

color, shape or texture. A similar image retrieval system has been developed at the Massachusetts

Institute of Technology called the Photobook [20]. Other preliminary retrieval systems include

IMatch [21] and VisualSEEK/WebSEEK [22] developed at Columbia University, FIRE (Flexible

Image Retrieval Engine) developed at RWTH Aachen University, MUVIS developed at Tampere

University of Technology and ALIPR developed by researchers of Penn State University. Similarly,

an interesting retrieval system has been developed at University of Maryland (UMD) which is based

on text and speech recognition for indexing videos [23]. Another significant contribution is the

Informedia project at the Carnegie Mellon University (CMU). The Informedia-I supports indexing

and retrieval using speech, image and natural language processing while Informedia-II incorporates

other interesting features like video summarization and production of collages with other features.

As compared to CBIR, a wider spectrum of applications are offered for content based intelligent

retrieval of videos. A number of government agencies in the United States (US) and the National

Institute of Standards & Technology (NIST) have been able to reflect the importance of CBVIR

since 2003 by regularly sponsoring the Text Retrieval Conference Video Retrieval Evaluation

(TRECVID) [24]. TRECVID offers a huge collection of videos and various algorithms for video

retrieval are submitted to the company for evaluation and comparisons.

Among relatively recent works on this problem [25, 26], a discussion on the latest techniques

and challenges in CBVR systems with respect to text, audio and visual content is presented in [18].

Different types of features, classifiers, their combinations and various querying methods are dis-

cussed and critically analyzed. CBVR systems have paved way for a large number of real world

applications. Few examples include smart retrieval of video lectures using speech recognition and

V-OCR [27], video search using spoken words and visual cues like objects and places [28] and the

Ontological-PENN system [29] that recognizes semantic concepts in videos etc. A very effective

retrieval system has been developed by the Visual Geometry Group at University of Oxford to

search BBC content using objects, people and text as queries. The system has been developed on

videos corresponding to more than five years of News broadcasts from six different BBC channels.

A screen shot of a retrieval session on BBC archives using different types of queries is illustrated in

Figure 1.4.

It can be observed from the above discussion that while CBVIR is a mature area of research,

retrieval systems targeting local needs of our country have not been extensively researched. From the

view point of textual content-based retrieval, systems detecting and recognizing text in non-cursive

scripts are already in use by regulatory bodies, agencies and media houses in many developed

countries. Among cursive scripts, recognition of Arabic text also attracted significant research

attention in the recent years both for caption [30, 31, 32, 33, 34, 31] and scene text [35, 36]. From the

perspective of Urdu text, a major proportion of research endeavors target printed text in document
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Figure 1.4: Visual Search of BBC News (a): Textual content-based search for query keyword
‘Pakistan’ (b): Person search for ‘Donald Trump’ (c): Object search for ‘JF17 Thunder’ (d): Instance
search for ‘London Bridge’
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images [37, 38, 39] with few preliminary studies on Urdu handwriting as well [40, 41, 42, 43].

However, the literature is fairly limited once it comes to detection and recognition of Urdu caption

text. Though few pilot studies on detection [44, 45, 46, 47] and recognition [48, 49] have been

carried out, they are far from expectations of a practical retrieval system. A major limiting factor

has been the non-availability of large labeled datasets supporting the development and subsequent

evaluation of such systems. Indeed there is a need to investigate and propose robust text detection

and recognition techniques which could eventually be employed to develop smart retrieval (and

other associated) applications, targeting our local regulatory bodies (like PEMRA) and media

houses.

1.2 Challenges in Cursive Scripts

To highlight the challenges of cursive scripts, it is important to mention the complex word formation

in such scripts. Typically, a word in a cursive language like Arabic or Urdu is a combination of

one or more ligatures where a ligature represents one or more characters joined together through

joiner rules. These joiner rules determine which characters are joined and which appear in isolated

form. The shape of characters within a ligature is a function of its position (initial, middle, end,

isolated etc.). Ligatures can therefore be considered as partial words [50]. Ligatures are further

categorized into primary and secondary components, the primary component being the main body

of the ligature while the secondary components represent dots and diacritics [38]. It is also worth

mentioning that many ligatures share the same primary component and differ only in number and/or

position of dots (leading to high inter class similarity). Furthermore, the non-uniform intra and

inter word spacing in such scripts makes segmentation of lines into words highly complex hence

ligatures or characters are mostly employed as units of recognition.

Cursive text is printed (or rendered) in one of the standard scripts, Naskh and Nastaliq being two

popular scripts (for Arabic and Urdu respectively). Naskh script follows a horizontal baseline, i.e.

characters are joined along a horizontal line. In Nastaliq, on the other hand, characters are joined

diagonally making it highly cursive. This diagonal style also results in overlapping of neighboring

characters both horizontally as well as vertically making segmentation of characters much more

challenging as compared to Naskh. Figure 1.5 illustrates an Urdu text line printed in both Naskh

and Nastaliq scripts. Among these, Nastaliq being the more common script for Urdu text, makes

the subject of our current study. An example cursive (Urdu) text line illustrating various recognition

challenges is presented in Figure 1.6.

1.3 Problem Statement

This study is aimed at research and development of techniques to detect and recognize Urdu caption

text appearing in video frames. More specifically, we target data from local News channels which
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Figure 1.5: A sample text line in (a): Nastaliq (b): Naskh script

Figure 1.6: Example of cursive text line highlighting recognition challenges

typically contain bilingual (Urdu & English) textual content. Localizing the textual regions and

converting them from image to text using a V-OCR can then be exploited to develop smart retrieval

systems and other related applications.

In contrast to printed text, detection and recognition of text appearing in video frames is

marked by many challenges. Typical problems include low resolution of text, complex and non-

homogeneous backgrounds and, different font sizes and colors etc. Another set of challenges is

also introduced by the complexity of the script to be recognized. Thanks to more than five decades

of extensive research [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], mature detection and recognition

systems have been developed targeting text in non-cursive scripts (languages based on Roman

script for instance). Research on cursive scripts (like Arabic, Persian, Urdu etc.) is much more

challenging and the research attention of the pattern recognition community in this problem is

relatively recent (especially for caption text). Furthermore, development of a text detector that

could work in multi-script environments also remains an open problem.

In our study, we target detection and recognition of cursive Nastaliq text appearing in video

frames using Urdu as a case study, though the findings can be generalized to other cursive scripts

as well. As mentioned earlier, research on detection and recognition of Urdu caption text is in its

infancy and requires significant research endeavors to propose robust solutions which can eventually

be employed in real world applications. The current research is a step in this direction with the aim
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to develop caption text detection and recognition system primarily focusing on the content of our

local News channels.

1.4 Research Objectives

The key objectives of this research study are listed in the following.

• To develop a comprehensive benchmark dataset of video frames with ground truth information

to allow algorithmic development, as well as, evaluation of (Urdu) caption text detection and

recognition systems.

• To propose a robust caption text detector specifically targeting the local News channels with

bilingual (Urdu & English) textual content.

• To investigate different pre-processing techniques which effectively segment detected text

from background for subsequent recognition.

• To develop an effective recognition method for Urdu caption text in an attempt to advance

the current state-of-the-art on this problem.

• To evaluate the proposed methods on the developed dataset and assess the effectiveness of

these methods in the context of the current state-of-the-art techniques.

1.5 Research Questions

In pursuit of the aforementioned objectives, the following research questions were identified for

this study.

• How can we solve the caption text detection problem for our local News channels using

conventional image analysis based techniques?

• How the current advancements in deep learning-based object detection can be exploited for

this problem and do they outperform image analysis based solution?

• What are the effective pre-processing methods that can segment caption text from the

background? Is the pre-processing required? How the text recognition performance evolves

as a function of pre-processing methods?

• Which recognition unit (ligature or character) is more appropriate for development of recog-

nition systems for cursive scripts like Urdu and what are the effective techniques for each

that can be investigated for recognition purposes?

• How sequence modeling can be applied to Urdu text lines to develop a video OCR and how

the choice of model impacts the recognizer performance?
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• What is performance of the developed detection and recognition techniques with respect to

current state-of-the-art using standard evaluation metrics?

1.6 Proposed Techniques

The key hypothesis of our study is that the recent advancements in different areas of deep (machine)

learning can be adapted to effectively solve the problem of Urdu caption text detection and

recognition. Leveraging these advancements, a system for detection and recognition of Urdu

text appearing in video frames is presented. Object detectors based on deep convolutional neural

networks (CNN) are adapted to text detection problem by modifying the anchor boxes and training

the detectors on examples of text lines. Since it is common to have videos with caption text in

multiple-scripts, cursive text is distinguished from Latin text using a script-identification module.

Finally, detection and script identification are combined in a single end-to-end trainable system.

For recognition, we present an analytical technique that relies on a combination of CNN, recurrent

neural networks (RNN) and connectionist temporal classification (CTC) trained in an end-to-end

framework. Text lines extracted from video frames are pre-processed to segment the background and

are fed to a CNN for feature extraction. The extracted feature sequences are fed to different variants

of Bi-Directional RNNs along with the ground truth transcription to learn sequence-to-sequence

mapping. Finally, a CTC layer is employed to produce the final transcription. Experimental study

of the system is carried out on a comprehensive dataset of more than 11,000 video frames; the

detector reports an F-measure of 0.91 while the recognition engine realizes a character recognition

rate of 97.63%. The overall methodology including data labeling, text detection, pre-processing

and finally recognition of caption text is illustrated in Figure 1.7.

Figure 1.7: Methodology of proposed technique for processing of caption text

1.7 Research Contributions

The significant contributions of this study are listed as follows.

• Development of a comprehensive dataset of more than 11,000 video frames collected from

local News channels along with ground truth information on location as well as transcription

of text. The dataset has been named as ‘UTiV’ (Urdu Text in Videos).
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• Public availability 1 of the developed dataset to contribute to enhance research on Urdu

caption text detection and recognition – problems that are tailored to our local needs.

• Leveraging the recent advancements in deep learning based object detection and adaptation

of these detectors for localization of Urdu caption text.

• Combining text detection and script identification in a single system accustoming the solution

to the bilingual textual content in local News channels.

• Through investigation of pre-processing techniques to convert detected text regions into

binary images for effective recognition.

• Development of a comprehensive recognition framework for Urdu caption text that exploits

a convolutional neural network (CNN) with different variants of recurrent neural networks

(RNN, GRU, LSTM).

• Analytical experimental studies to validate the proposed techniques and identify the optimal

configurations for detection and recognition.

1.8 Thesis Organization

This thesis is organized as follows.

Chapter 2 (Literature Review) provides an overview of related work on text detection as well

as text recognition from images and videos. Though the primary focus of our research is Urdu

caption text, for completeness, well-known contributions to detection and recognition of text in

other scripts are also discussed. The chapter aims to analyze the current state-of-the-art on problem

at hand and identifies the research gaps that call for further investigations.

Chapter 3 (Data Collection and Labeling) presents the details of dataset collected and labeled

as a part of this research. Evaluation metrics, details of ground truth labeling tool and statistics of

labeled data are also presented in this chapter. Furthermore, synthetic data generation (to enrich the

training set) is also discussed.

Chapter 4 (Detection of Textual Content) presents the technical details on the first aspect of

our research i.e. detection of textual content. We discuss text detection using image analysis-based

techniques, identify the demerits and provide a rationale for choosing the deep learning-based

techniques. Details on adaptation of CNN-based object detectors for localization of Urdu caption

text are then presented. The chapter next introduces a hybrid detector that combines text detection

and script identification in a single system. Details of experiments, corresponding results and the

1https://drive.google.com/drive/folders/1U3M6WTReCu4PYxk88aXlTQDqsSn4gHAq
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accompanying discussion finally conclude the chapter.

Chapter 5 (Recognition of Textual Content) introduces the technical details of the proposed

V-OCR architecture for Urdu text. The discussion includes choice of recognition unit (ligature vs.

character), pre-processing of text lines and the architectural details of the feature extractor (CNN),

the sequence predictor (different variants of RNN) and the final transcription generation (CTC

layer). The chapter also presents the key experiments, their findings and a comparison with current

state-of-the-art.

Chapter 6 (Text Detection & Recognition: Applications) summarizes real world applica-

tions that can be developed on top of the detection and recognition modules. Details on textual

content based indexing and retrieval, the key target application of our study, are also presented. The

chapter also presents end-to-end results from the perspective of a retrieval application.

Chapter 7 (Conclusion and Future Work) summarizes the key findings of our study and

presents the concluding remarks. The chapter also recalls the key contributions of this research and

identifies future research directions on this subject.



Chapter 2

Literature Review

2.1 Introduction

Detection and recognition of textual content have been studied for many decades by the pattern

recognition and computer vision communities [51, 54, 55]. Most of the earlier studies on these

problems are reported on scanned documents only [52, 62, 63]. However, over the years, as new

applications were envisaged, text recognition in other modalities such as historical documents,

scene images, handwritten documents and videos (Figure 2.1), was also investigated. The ultimate

goal, in all these diverse modalities, is to detect the textual content and convert it into machine

readable string. From the perspective of caption text, textual content appearing in videos carries

useful semantic information that can be exploited for indexing and retrieval applications. Key

components of a Video Optical Character Recognition System (V-OCR) include detection (local-

ization) of textual content, extraction of text segmenting it from the background, identification

of script and recognition of text. Figure 2.2 presents an overview of these steps along with examples.

Text in videos may contain complex background, multiple foreground colors, different fonts

styles, sizes and orientations. All these properties make detection and recognition a challenging

problem. The literature is very rich and comprehensive when it comes to detection and recognition

of textual content both from still images and videos. In the following sections, we will give an

overview of notable contributions to text detection (Section 2.2) and text recognition (Section 2.3)

along with a discussion on challenges in each of these tasks. Since we primarily target detection and

recognition of Urdu text, a special focus is given to discussion of methods which employ cursive

(Arabic, Urdu etc.) text. Nevertheless, for the sake of completeness, techniques targeting text in

western languages also make a part of our discussion.

12
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Figure 2.1: Text recognition modalities

2.2 Text Detection Methods

Detection of textual content in videos, images, documents and natural scenes has remained an

attractive research problem. Over the recent years, a wide variety of approaches have been pro-

posed for text detection, localization and extraction both in videos and still images. The domain

has matured progressively over the years starting with trivial image analysis based systems to

complex end-to-end learning based systems. In the following, we discuss significant contributions

to detection of text while detailed surveys on the problem (and related problems) can be found

in [55, 64, 13, 65, 66, 67, 68, 69, 69].

Text detection refers to localization of textual content in images. Techniques proposed for

detection of text are typically categorized into unsupervised and supervised approaches (Figure 2.3).

While unsupervised approaches primarily rely on image analysis techniques to segment text from

background, supervised methods involve training a learning algorithm to discriminate between

text and non-text regions. Supervised approaches for detection of textual content typically employ

state-of-the-art learning algorithms which are trained on examples of text and non-text blocks either

using pixel values or by first extracting relevant features. Classifiers like Naïve Bayes [70], Support

Vector Machine [71], Artificial Neural Network [72] and Deep Neural Networks [73] have been

investigated for this problem over the years.
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Figure 2.2: Typical steps in Video Optical Character Recognition

The subsequent sections discuss the well-known text detection methods proposed in the litera-

ture.

2.2.1 Text Detection using Unsupervised Techniques

Unsupervised approaches for detection of text are typically based on image analysis techniques

and use segmentation methods (edges, spatial grouping etc.) to differentiate text from rest of

the image. This section describes some of the well-known existing unsupervised approaches for

text detection from video frames and images. Generally, unsupervised methods are classified

into edge-based (gradient-based), connected component-based (region based), texture-based, and

color-based methods as discussed in the following.
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Figure 2.3: Taxonomy of text detection methods

2.2.1.1 Edge-based Methods

Edge-based methods have been employed for many years for text detection in images [74]. These

methods exploit the high contrast between text and its background by finding the edges in an image.

Regions of high edge density are then merged under some heuristics to filter out non-text regions.

Typically, an edge detector (e.g. Sobel or Canny operator) is applied on the image to find the

edges, which is followed by smoothing and morphological operations. Edge based methods work

reasonably good in case of sharp images but generate a large number of false alarms if the input

image is noisy.

Among known edge-based methods, Cai et al. [75] exploit edge strength and density to detect

textual regions in images. As a first step, non-text regions are eliminated by applying edge detection
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and then local thresholding is used to highlight low contrast text. The method is evaluated on Hong

Kong Jade TV station videos containing Chinese text and CNN news for English text and an overall

detection rate of 93.6% on 14,685 text lines is reported. Likewise, edge density and morphological

operations are also employed by Ye et al. [76]. As a second step, wavelet features are computed

to capture the textural information in the text regions. The authors report a detection accuracy of

93.4% on Chinese text and 93.9% on English text. The technique is shown to be robust against

variations in text font, color and size.

In other similar methods, Shivakumara et al. [77] employed edge based features to detect text

from the video images. The authors also proposed to exploit straightness as a novel edge feature to

eliminate the unwanted edges from detected regions hence improving the localization performance.

A detection rate of 82% is realized on a custom dataset of images. A subsequent work by the

same authors [78] exploit the combination of low and high components of Sobel and Canny edge

detectors to handle the varying contrast in images; improving the detection rates up to 85.6%.

The work was later extended [79] to combine Sobel edge filter along with color differences and

boundary growing technique. Experimental study of the proposed technique on Hua’s Dataset [80]

reported a detection rate of 89.67%.

Guru et al. [81] also make use of an edge detector for text detection problem. Candidate text

regions are first determined by applying block-wise eigen value computation on image gradients.

Furthermore, k-means is used to identify the text regions among the candidate text blocks. Once

candidate text blocks are identified, edges of text regions are extracted using Sobel filter and,

bounding boxes are generated using horizontal and vertical projection profiles. The identified text

regions are validated using geometric properties. A dataset of 800 video frames is used to carry

out the experimental study of the system and 84.5% detection rate is reported. In [44], Jamil et al.

studied Urdu text detection in videos using a combination of edge-based features and a series of

morphological operations. The proposed method first extracts vertical edges in the frame followed

by computation of mean gradient magnitude around each pixel. The resulting image is binarized

and to merge the candidate text pixels into regions, Run Length Smoothing Algorithm (RLSA)

is applied. An edge-density filter is then applied to remove all regions where the edge density is

below a pre-defined threshold. Finally, a set of geometrical constraints is applied on the candidate

bounding boxes to eliminate the false detections. The key processing steps of the technique are

summarized in Figure 2.4; the technique is evaluated on a small dataset of 150 video frames and an

F-measure of 0.79 is reported.

A novel edge-based method, known as edge-ray filter was proposed by Huang et.al [82] to

detect characters from camera-based images. The presented method works differently by filtering

out the complex background in the image instead of directly detecting text lines. Edge Preserving

Smoothing Filter (EPSF) followed by Canny edge detector is then applied. To speed up the filter-

ing process, Edge Quasi-Connectivity Analysis (EQCA) is used to combine complex edges and
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Figure 2.4: An overview of key processing steps for detection of Urdu caption text by Jamil et
al. [44]

contours of separated characters. Noisy regions are eliminated using Label Histogram Analysis

(Figure 2.5). The proposed technique works on dark text on bright background as well as the

inverse scenario simultaneously. The proposed edge-ray filter reports an F-Measure of 63% on

ICDAR2011 dataset.

Figure 2.5: Label histogram Analysis for extraction of characters (Image Source [82])

Another notable text detection technique from camera images is presented by Banerjee et

al. [83]. The authors identify the highly specular pixels in the image and apply connected compo-

nent labeling on the identified set of pixels. Canny edge detector is then applied on the complete
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image and bounded boxes corresponding to each component are generated followed by merging of

overlapping boxes. For each bounding box, Otsu’s thresholding is separately applied and finally, the

specular components, which are extracted in the beginning, are replaced back in the corresponding

regions of the image. A post-processing step is also carried out to enhance the detector performance.

The technique is evaluated on the ICDAR 2013 dataset with an F-measure of 64%.

A method involving two edge-based techniques along with stroke width transform is proposed

by Yu et al. [84]. The authors named these methods as edge classification and candidate edge

recombination and exploit the concept of over-segmentation and region merging. As a first step,

edges of text are extracted from the background by dividing the image into sub images. Based on

color and stroke width, neighboring edges are combined resulting in bounded boxes over characters.

Character boundaries are then merged into a sequence using chain features. Application of the

proposed method on a sample image is show in Figure 2.6. Evaluations is done on ICDAR 2003

and ICDAR 2011 datasets and reported F-measures of 0.69 and 0.70 respectively. The work was

later extended with similar edge filters and introduction of multi-channel processing [85]. The

method is improved by storing all extracted edge features in a pool and then selected features

are used to train the classifier. Multi-channel processing is used to verify the textual regions and

duplication are removed using the non-maximal suppression method. The improved technique

realized an F-measure of 0.73 on the ICDAR2011 dataset. Furthermore, experiments were also

carried out on the SVT dataset [86] reading an F-measure of 0.31.

Figure 2.6: Edge segmentation example (Image Source [84]) (a): Original image (b): Edge image,
(c): Segmentation points (d): Edge segmentation with different colors

A combination of saliency map and edge features for detection of video scene text is presented

in [87]. The technique is claimed to be robust on cluttered backgrounds as well as low resolution

text. The method first calculates saliency and edge maps from the image. The saliency map is used

to retain saliency regions in the image and, is later employed to remove complex backgrounds.

Ignoring the low resolution and light regions, the edge map calculates the edge features. Saliency

map and edge map are then merged and the resulting image is termed as Saliency Edge Map (SEM).

As a last step, connected component analysis are performed to extract text regions. Experimental
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study of the system was carried out on multiple datasets including ICDAR 2011 and 2013, MSRA

and SVT datasets and F-measures of more than 0.80 were reported in different evaluations.

2.2.1.2 Connected component based methods

Connected component based methods [88] exploit the color/intensity of text pixels generally ac-

companied with geometrical heuristics to distinguish text from the background. Pixels in the image

are clustered into small regions based on homogeneity of color or intensity values. While CC-based

methods heavily depend on the color/intensity information and geometrical properties to group

pixels into clusters, these methods, like gradient based methods, do not perform well in case of low

contrast between text and the background.

Connected components are exploited to localize characters in a technique presented by Wand

and Kangasin [89]. Color clustering is employed to divide the image as a function of similar color

layers. Connected-components in each color layer are processed using a graph and bounding boxes

are calculated. An aligning-and-merging-analysis (AMA) method is then applied exploiting the

color layers and the bounded boxes of connected components. The technique is evaluated on 325

camera-based images at a resolution of 640×480 captured from different perspectives and different

lighting conditions. With 3,597 characters in 325 images, a detection rate of 92% is reported. Key

steps in the proposed technique are summarized in Figure 2.7.

Figure 2.7: Character localization technique proposed in [89]

In another study, Liu et al. [90] employ Gaussian mixture model with learning of neighboring

characters to localize multilingual text in images. Each connected component in the image is identi-

fied as text or non-text as a function of its neighbors. Parts of characters are connected together

using a morphological process while Voronoi partition is employed to determine the component

neighbors. Training is carried out using the maximum–minimum similarity (MMS) criterion and

evaluations are conducted on Chinese and English text. A recall of more than 98% is reported

on a set of 300 images. Another connected component based technique is presented in [91] for

scene text detection. Components are extracted using the maximally stable extremal region (MSER)

technique while AdaBoost is employed to find the pairwise adjacency relations between the clusters

which are generated using CCs as potential text regions. A nearest neighbor based classifier is
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developed to identify whether a given image contains text or not. ICDAR 2005 and ICDAR 2011

datasets are used in experiments reporting accuracies of 74% and 70% respectively.

Liu and Sarkar [92] introduce novel intensity and shape filters for text detection in scene images.

The images are binarized using Niblack thresholding and components are grouped using typical

geometrical properties. The intensity filter exploits the overlap between the intensity histograms of

components while the shape filter serves to eliminate the non-text regions. An example image with

output of both filters is presented in Figure 2.8. Experiments on 249 images of the ICDAR 2003

dataset report an F-measure of 54%.

Figure 2.8: Application of Intensity and Shape filters for text detection in [92]

Laplacian operator is used in [93] for detection of text in video frames by computing maximum

gradient difference value for each pixel. Text and non-text pixels are discriminated using k-means

clustering. Projection profiles analysis is carried out on the input image to determine the boundaries

of the textual regions while non-text regions are dropped by using the geometrical properties of

text. Experiments on a small dataset of around 100 video frames report a detection rate of 93.3%.
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A multi-channel connected component segmentation method (Figure 2.9) is investigated by

Wang et al. [94]. The authors carry out connected component segmentation using the Markov

Random Field exploiting color, contrast and gradients of image RGB channels. Non-text regions

are removed from each channel of image separately while the remaining text components are

merged and grouped into words. ICDAR 2003 and ICDAR 2011 datasets are used for experiments

reporting an average F-measure of 70%.

Figure 2.9: CC-based text segmentation method in [94]

2.2.1.3 Texture based methods

Texture-based methods consider the textual content in an image as a unique texture which dis-

tinguishes itself from the non-text regions. Texture features are generally computed from gray

level images or by first transforming the image using filtering or applying frequency domain

transformations. With complex backgrounds, texture-based methods perform better as compared to

connected component or gradient based methods. These methods, however, generate more false

positives when the background contains similar texture properties as text. Gabor filters, wavelets

and spatial variance etc. have been investigated to capture texture properties of text. Along with

this, Curvelets [95], LBP [96], HoG [97] and DCT [98] have also been used for detection of textual

content.

Among one of the preliminary works on texture-based text detection from videos, Zohng et

al. [98] proposed extraction of text from I-frames in JPEG compressed image of MPEG videos.

Unlike the common practice of first decompressing the video and then performing text detection,
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the technique relies on directly locating the candidate text regions in the DCT domain. In another

texture based method [99], scale-space feature extractor is used to detect text in digital videos. The

proposed method comprises of two steps, a sum of squared difference (SSD) which finds the initial

position of text and a contour-based module, which refines the locations identified in first step. The

technique reported an F-measure of 73% on a private dataset of videos. Another texture based

method is presented by Kim et al. [100] where an SVM is used to analyze the textural pattern made

by raw pixel values in an image. Output of texture analysis is fed to a continuously adaptive mean

shift algorithm (CAMSHIFT) which refines and validates the text regions. Experiments on a private

dataset of videos, web and document images reported an overall detection rate of 96%. Key steps

in the proposed technique are illustrated in Figure 2.10.

Figure 2.10: Text detection system presented by Kim et al. [100]

Wavelet transformation has been widely explored for detection of text in different types of

images. Gallavata et al. [101], for instance, employed wavelet transformation on images and

extracted the high-frequency wavelet coefficients to characterize text and non-text regions in the

image. A k-means algorithm is then employed to group textual regions together and finally a

projection analysis allows localizing the text boundaries. The technique is validated on a small

dataset of 45 video frames [102] containing 145 readable text lines and an accuracy of 89% is

reported. In a similar work [103], a multi-scale wavelet approach is investigated in a two-step

detection process. As a first step, candidate text pixels are identified using wavelet energy features

and are grouped together using a density-based region growing method. In the second step, textural

measures computed from candidate text regions are used to refine the detection with an SVM

classifier. The technique is evaluated on a private dataset containing 177 video frames as well as 44

images from Hua’s dataset [80] and, a detection rate of 96.8% is reported.

Wonjun & Changick [104] hypothesize the existence of transient colors between text and the

background and exploit this to detect textual content. A transition map is first produced and poten-
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tial text regions are extracted using a reshaping method. The localization is refined by projecting

the text pixels in the transition map. The proposed method is claimed to be invariant to changes in

size, color, position and contrast of characters. Another texture-based technique for text detection

is presented in [105] where the authors propose novel Fourier-statistical features (FSF) for this

problem. The method first identifies text frames from a large collection of images and, in the

second step, text regions in these frames are detected. Classification of text frames is carried out

using visual cues while for detection FSF features are computed and are fed to k-means clustering

to group pixels into text and not-text classes. Like many other methods, projection profiles are

employed for fine localization while false alarms are reduced using a set of heuristics. Experimental

study on a custom developed dataset reports an F-measure of 93%.

Among other texture-based methods, Das et al. [106] employed textural features to localize

text regions in natural scene images. Authors first employ DCT for background suppression

and subsequently extract textural features from the image. An F-measure of 64% is reported on

a private dataset in this study. Likewise, texture features based on Gabor filters are employed

in [107]. Experimental study on the ICDAR 2003 dataset along with 100 video frames collected

by the authors reported a detection rate of 97.90%. In another work by Grzegorzek et al. [108],

heuristics-based filtering is first carried out to discard the non-textual (background) regions in the

image. Subsequently, textural features are used with SVM classifier to identify the text regions.

2.2.1.4 Color based methods

Color based methods [105, 109] are similar in many aspects to the component based methods

and employ color information to distinguish text and non-text areas. These methods rely on the

assumption that text pixels and the background contain separate color clusters and perform a color

based segmentation to extract textual regions.

Among earlier works in color-based text detection, Garcia and Apostolidis [110] employ color

quantization with clustering to identify candidate text regions. Character periodicity is then ex-

ploited to classify the regions as text or non-text. Experiments on DiVAN dataset of 200 JPEG

images report an accuracy of 93%. A similar work is presented in [111], where in addition to

color analysis, affine-rectification is applied to improve the detector performance. The technique is

evaluated on road sign boards with text in Arabic, English and Chinese.

Among other color-based methods, Mancas and Gosselin [112] carry out text detection in

natural scene images using color segmentation that is based on spatial information. Text pixels are

combined together using clustering and the technique is claimed to be robust to uneven lighting, blur

and complex backgrounds. The technique is validated on ICDAR 2003 dataset with an accuracy of

93%. The work was later extended [113] to include a selective metric-based clustering and the color

information was complemented with intensity and spatial information computed using Log-Gabor
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filters (Figure 2.11).

Figure 2.11: Combination of color and spatial information for text detection proposed in [113]

A framework for detection of text with arbitrary orientation is proposed in [114]. A set of

components is extracted using local gradient features along with color uniformity in the image.

Characters are grouped together using structural features of text such as, distance, size and alignment

etc. Text lines are grouped by applying Hough transform that attempts to fit a line on the centroids

of potential text regions. An overview of the proposed framework in illustrated in Figure 2.12.

The Robust Reading and Oriented Scene Text dataset is used for experiments and F-measure of

62% is realized. The work was later extended [115] to present an enhanced method that relies on

three steps. As a first step, a bigram-color-uniformity based technique is applied to group edge

pixels based on color pairs. Character candidate regions are then extracted by applying stroke

segmentation. Finally, texture features based on Gabor filters are employed for string fragment

classification.

Karatzas and Antonacopoulos [116] exploit human color perception to extract text from com-

plex backgrounds.Text is segmented by applying a split-and-merge approach on the hue-lightness-

saturation (HLS) representation of color. The technique is evaluated on a dataset of 115 web images

collected by the authors with a detection rate of almost 70%. Nikolaou and Papmarkos [117] argue

that images with a large number of colors results into poor text detection. The authors proposed a

method for color reduction in complex images with many colors and infer that it helps in better

text detection. Using the 3D color histogram, generated using edge map and mean-shift method,

significant reduction in number of colors is achieved. Furthermore, an edge-preserving-smoothing

filter is applied as a pre-processing step to enhance the detections. The method is evaluated on

different book covers with more than 200K colors. Impact of color reduction and pre-processing on
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Figure 2.12: An overview of key steps for text detection in [114]

text segmentation for an example image is shown in Figure 2.13.

Figure 2.13: Color reduction and edge-preserving filtering for text detection in [117]

In another notable work by Song et al. [118], color-based k-means clustering is carried out for

segmenting text in video frames. To detect text in different sizes, a multi-scale approach is adopted

while projection profiles are employed to refine localization. Experimental study of the technique
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is carried out using videos from the TRECVID dataset with occurrences of bilingual (English &

Chinese) text, and a detection rate of more than 90% is reported. A similar work is reported by Lee

et al. [119] where potential textual regions are highlighted by exploiting the color, edge and texture

features using k-means clustering (Figure 2.14). Validation of possible text regions is carried out

using Markov Random Field model and an F-measure of 64% is reported on the ICDAR 2003

dataset.

Figure 2.14: Clustering based text detection reported in [119]

2.2.1.5 Discussion

An overview of well-known unsupervised techniques for text detection is presented in Table 2.1.

As discussed earlier, these techniques do not involve any learning algorithm and text is segmented

from rest of the image using a series of image analysis techniques and heuristics. The discussion

was grouped into edge-based, CC-based, texture-based and color-based techniques. An analysis

of the studies listed in Table 2.1 reveals that edge-based techniques have remained a popular

choice of many researchers primarily due to the high edge density in text regions in all scripts.

Color-based methods, though simplify the detection, are criticized by many due to reliance on color

information which may not always be available (for instance if image acquisition is gray-scale).

Component-based methods share many characteristics with color-based methods and represent a

more attractive choice as they exploit the intensity rather than the chrominance information and can

work on gray-scale images as well. Likewise, textural features have also been widely employed for

text detection problem but are known to report high false detections in complex backgrounds.
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From the view point of performance evaluation, the ICDAR datasets have been most widely

employed for scene text detection. A series of competitions held in conjunction with different

editions of ICDAR allowed researchers to objectively compare different techniques under the

same experimental settings. From the perspective of caption text, in most cases, private datasets

with limited number of images have been employed. For Urdu text Jamil et al. [44] employed an

edge-based method with a series of morphological operations and reported a detection rate of 79%

on a small set of 150 video frames.

Unsupervised text detection techniques, though report high detection rates in few cases, remain

sensitive to the content of image and are mostly accompanied by heuristics and a (relatively) large

number of parameters (which are empirically chosen). Supervised approaches, in general, tend to

be more robust and effective and make the subject of our discussion in the next section.

Table 2.1: An overview of unsupervised text detection methods

Method Study Technique Script Dataset Results

Edge Based

Cai et al. [75](2002) Edge Strength & Density Chinese Private 93.6%
Ye et al. [76](2003) Edge Density Chinese Private 93.9%
Shivakumara et al. [77](2008) Edge Straightness English Private 82%
Shivakumara et al. [78](2010) Sobel & Canny Edge Detecor English Private 85.6%
Shivakumara et al. [79](2010) Color Differences English Hua’s Dataset [80] 89.67%
Guru et al. [81](2010) Sobel Edge Detector English Private 84.5%
Jamil et al. [44](2011) Edge Features Urdu Private 79%
Huang et al. [82](2013) Edge Smoothing Filter English ICDAR2011 63%
Banerjee et al. [83](2013) Canny Edge Detector English ICDAR2013 64%
Yu et al. [85](2016) CERB English ICDAR2003&2011 69%, 70%
Yu et al. [84](2015) Multi-channel Processing English ICDAR2011,SVT [86] 73%,31%
Huang et al. [87](2019) Saliency Edge Map English CDAR2011&2013,SVT 83% to 88%

CC Based

Wand and Kangas [89](2003) BAG& AMA Chinese Private 92%
Koo and Duck [91](2013) MSER English ICDAR 2005 & 2011 74%,70%
Pan et al. [120](2011) Conditional Random Field English ICDAR 2005 65.2%
Liu et al. [90](2008) Gaussian Mixture Model English Private+ICDAR2003 96%
Phan et al. [93](2009) Laplacian operator English Private 93.3%
Liu and Sarkar [92](2008) Intensity & Shape Filter English ICDAR2003 54%
Shahzad & Khurshid [47](2017) Image Analysis Techniques Urdu Private 88%
Wang et al. [94](2013) Multi-channel CCs English ICDAR 2003& 2011 70%

Texture Based

Zohng et al. [98](2002) Discrete Cosine Transformation English Private 99%
Li et al. [99](2000) Scale-space Features English Private 73%
Kim et al. [100](2003) CAMSHIFT English Private 96%
Gallavata [101](2004) Wavelet transformation English Hua et al. [102] 89%
Ye et al. [103](2005) Multisacle Wavelets English Hua et al. [80] 96.8%
Wonjun and Kim. [104](2008) Transition Map Chinese Private -
Goto and Tanaka [121](2009) Particle filter Chinese Private (1,730 video images) -
Shivakumara et al. [105](2010) Fourier-statistical features English Private video dataset 93%
Das et al. [106](2012) DCT English Private 64%
Aradhya et al. [107](2012) Gabor filter English Private+ICDAR2003 97.9%
Grzegorzek et al. [108](2013) SVM filtering English ICDAR2003 36.45%

Color Based

Garcia & Apostolidis [110](2000) Color Quantization French DiVAN dataset 93%
Karatzas and Antona [116](2004) Color Expression English Private 70%
Mancas and Gosselin [112](2006) Complementary Clustering English ICDAR2003 93%
Mancas and Gosselin [113](2007) Color metric Clustering English ICDAR2003 92%
Yi and Tian [114](2011) Color-uniformity English ICDAR2003 62%
Yi and Tian [115](2012) Bigram-color-uniformity English ICDAR2011 71%
Song et al. [118](2008) Color-based K-means English TRECVID 2005 & 2006 90%
Lee et al. [119](2010) K-means English ICDAR2003 64%
Nikolaou and Nikos [117](2009) Color reduction English ICDAR2003 96%
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2.2.2 Text Detection using Supervised Techniques

Supervised techniques for text detection [122, 70, 123, 72, 71] rely on a learning algorithm to

discriminate between text and non-text regions in an image. State-of-the-art classifiers like, Naïve

Bayes (NB) [70], Support Vector Machine (SVM) [71], Artificial Neural Network (ANN) [72] and

Deep Neural Networks (DNN) [73] have been typically employed for identification of text regions.

Like any other pattern classification task, supervised methods for text detection consist of two

phases, learning (training) and classification (inference). During training, features extracted from

text and non-text regions are fed to a classifier to make it learn to discriminate between the two

classes. In the inference phase, features extracted from the region in question are fed to the trained

classifier which outputs the likelihood of the region as being text or non-text. In general, supervised

approaches tend to be more sophisticated than the unsupervised methods. These methods, however,

require significant training data (text and non-text regions) to achieve acceptable classification rates.

With conventional machine learning based classifiers (like SVM and ANN etc.), features are

typically extracted by applying image analysis based techniques. Common examples of such

hand-crafted features include Gabor filters [124], wavelets [103], curvelets [125], strokelets [126],

local binary patterns (LBP) [96], discrete cosine transformation (DCT) [98], histograms of oriented

gradients (HoG) [97] and Fourier transformation [79]. Deep learning based techniques, on the

contrary, combine feature extraction and classification in a single model and features are learned as

a part of training hence the term machine-learned features is commonly employed. A number of

recent studies [127, 128, 129], validate the superiority of machine-learned over hand-engineered

features (and raw pixel values).

In the following, we first discuss text detection using hand-crafted features with conventional

classifiers followed by deep learning based techniques.

2.2.2.1 Machine Learning based Methods – Hand-crafted Features

As discussed earlier, in machine learning-based methods, features that serve to distinguish text and

non-text regions are identified and extracted. These features are then employed to train a classifier

and once trained, the model can be used for classification. We discuss these techniques grouping

them as a function of the employed classifier.

Among one of the pioneer works on video text detection using neural networks, Jeong et

al. [130] presented a method that classifies text and non-text pixels in video images using textural

filters. Histogram analysis is subsequently carried out to remove errors in the first step. Experiments

are carried out on 2000 frames collected from different Korean News channel videos. A similar

technique is presented in [131] for detection of license plates from images. Neural network is

employed as filter on small windows of image to locate the license plate. Reported accuracy is upto

90% on different images of cars. A post-processing step then combines the detected windows to
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generate the final localization of license plate.

Li & Doermann [132] presented a neural network based dynamic system that adapts its param-

eters as a function of changing environments in the videos. The system is able to detect caption

and scene text at arbitrary orientations in multiple languages. A similar technique called bootstrap

artificial neural network (BANN) is presented by Hao et al. [133]. The method relies on a colored

image edge operator which segments the image to extract candidate text blocks. A neural network

is then employed to discriminate between text and non-text regions. In another work [123], a

bootstrap polynomial neural network (PNN) (Figure 2.15) is employed for video text detection.

The network is trained with textural features extracted using a modified version of the LBP operator.

The experimental study of the system was carried out on a custom developed dataset comprising of

1,027 video frames and reported an F-measure of 87%.

Figure 2.15: Structure of polynomial neural network (PNN) employed for text detection in [123]

Jamil et al. in [45] investigated the combination of unsupervised and supervised techniques

for Urdu caption text detection. Edge based filtering with a series of morphological operations

is applied to the image to extract potential text regions. The detected regions are then validated

through an ANN. Evaluations on a set of 500 video frames collected from various News channels

realize 85% F-measure. A similar approach is proposed by Thilagavathy et al. [134] where the

authors first employ a combination of region-based and connected component-based methods to

extract the potential text regions. Subsequently, an ANN validates the potential text regions to filter

out the false positives.

In addition to ANN, SVM has also remained a popular choice as classifier for text detection

problem. Among one of the earlier attempts, Shin et al. [135], instead of explicitly extracting any

features, directly feed the raw-pixel values of the gray-scale images to an SVM. The idea is based

on the ability of SVMs to learn from high-dimensional feature space and embed the implicit feature
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extraction within its own architecture. A comparative study with ANNs revealed the superiority of

SVM in detecting video text. In another study, Chen et al. [136] extract text lines from video frames

with complex backgrounds using baseline location, edge analysis and a set of heuristic constraints.

Verification of text lines is carried out using an SVM with edge-based distance map features. The

technique is evaluated on a set of video frames containing English text and reported 98.7% correct

detection rate. In a subsequent study by the same authors [137], the verification performance of

SVM and ANN is compared. Similar to the findings of [135], the authors concluded that SVM

outperforms on ANN in terms of detection performance.

Among other notable contributions, Anthimopoulos et al. [138] exploit an edge-map to identify

the candidate text blocks. False alarms in the detection are then removed by validating each detected

region through an SVM. The SVM is trained with a variant of LBP using a set of 3500 text and

6500 non-text lines from a dataset of 150 video frames. A detection rate of more than 96% is

reported in the study. The work was later extended [96] to incorporate multi-resolution analysis

and a more comprehensive series of experiments. Experiments on a dataset of 217 video frames

collected from 10 different videos, containing 2,963 text regions reported an F-measure of 97%.

Wavelet transformation along with SVM is proposed in [139] for detection of text on complex

backgrounds. The image is decomposed using wavelet transform and the high-frequency energy

and the low-frequency approximate subspace are employed to train an SVM. Experiments are

carried out on 300 images and 97% detection rate is achieved. The authors concluded that the

combination of wavelet with SVM not only required fewer training examples but also allowed

faster learning. A similar study by Zhen and Wei [71] also advocates that the combination of

wavelets and SVM effectively detects text regions in video frames. Three different SVMs are

trained by the authors with gray-level values extracted from 9 windows, 2D wavelet decomposi-

tion (Figure 2.16) and strokelets. Experiments on 550 video frames reported an accuracy of 92.78%.

Darab and Rahmati [140] also applied wavelet features combining them with HoG to detect

Farsi text from scene images. Text and non-text distinction is carried out using an SVM and

experiments on 800 images reported an F-measure of 86.5%.

Detection of Farsi text from video frames is also investigated by Moradi et al. in a series of

studies [141, 141, 32]. The authors employed various features including text detectors, corners

maps, projection profiles, Gaussian pyramid, corner histogram analysis and LBP. Like many other

studies, SVM is employed as classifier. All experiments are carried out on a dataset of 50 videos

collected from News channels containing Farsi text. Detection rates of close to 90% are reported in

various evaluations. The authors claim generalization of the proposed techniques for Arabic text as

well but quantified results are not presented.

A relatively recent work on detection of Urdu text through SVM is proposed by Unar et

al. [142]. Canny and Sobel operators are applied to the input video frame and combined with
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Figure 2.16: Illustration of 2D wavelet-decomposition on a video frame (Image Source [71])

MSER (Maximally Stable Extremal Region) detected candidates. Non-text regions are removed

using geometric constraints and stroke width transformation. Finally, for verification of text and

non-text blocks, SVM is used as a classifier. The technique is evaluated on 1000 video frames of

the IPC dataset [143] and an F-measure of 85% is achieved. In another recent work, Francis and

Sreenath [144] employ the least-Square SVM which is trained on 74,000 characters for text and

CIFAR-10 dataset [145] for not-text examples. Possible textual regions are extracted from the pool

of objects extracted from the input image and are validated by an SVM. The technique is evaluated

on multiple datasets (ICDAR, MSRA500 and SVT) for detection of scene text and detection rates

varying from 75% to 98% are reported in different experiments.

In general, supervised techniques are known to be more robust and effective in detecting the

textual content from images as opposed to unsupervised methods. A major challenge, however,

has been the choice of the right feature set that is fed to the classifiers. In the recent years, this

challenge has been addressed through automatic feature learning using deep learning techniques.

Such methods represent a major paradigm shift and are discussed in the following.

2.2.2.2 Machine Learning based Methods – Data Driven Features

Deep learning-based methods have emerged as one of the most influential solutions to almost all

pattern classification problems. The landscape of video processing has also entirely changed with

deep learning being the most dominant paradigm for solving a variety of problems.

Among deep learning-based techniques adapted for text detection, Huang et al. [146] employed

sliding windows and MSER with CNNs to detect textual regions in low resolution scene images.

The proposed technique improved the detection performance in low-quality images having text on

complex backgrounds and diverse variations. The method was evaluated on ICDAR2011 dataset and
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reported an F-measure of 78%. A fully convolutional network (FCN) is used to predict the salient-

map of text blocks in an image by Zhang et al. [147]. The salient map and MSER components are

then combined to estimate the text lines. As a last step, another FCN is employed that predicts

the center of each character and removes the false positives. The proposed system is claimed

to detect text at multiple orientations, fonts and languages. Evaluations on the MSRA-TD500,

ICDAR2013 and ICDAR2015 datasets report F-measures of 0.74, 0.83 and 0.54, respectively. A

similar work is presented by Gupta et al. [148] where a fully-convolutional regression network

(FCRN) is trained using synthetic data for detection of text in natural images. FCRN is able to

detect text and apply bounding box regression at multiple scales; and achieved an F-measure of

84.2% on the ICDAR2013 dataset.

Another method called ‘SegLink’, is proposed in [149] that relies on decomposing the text into

segments (oriented boxes of words or lines) and links (connecting two adjacent segments). The

segments and links are detected using fully convolutional networks at multiple scales and combined

together to detect the complete text line. Figure 2.17 illustrates the architecture of the proposed

network. Experiments are carried out on the ICDAR2015 dataset and an F-measure of 75% is

reported. The authors also applied the same method to detection of non-Latin text and the system

was able to perform equally well on long lines of Chinese text as well.

Figure 2.17: The ‘SegLink’ network architecture proposed by Shi et al. [149]

In [150], a vertical anchor-based method is reported that predicts text and non-text scores of

fixed size regions. The proposed network is termed as Connectionist Text Proposal Network (CTPN)

(Figure 2.18) and is able to effectively predict the candidate text and non-text scores in a fixed-width

proposal. CTPN is able to detect multi-lingual text of any scale in natural images. ICDAR2013 and

ICDAR2015 datasets are employed in the experimental study with F-measures reading 88% and

61% respectively. In another recent work, Wang et al. [58] present a framework based on conditional

random field (CRF) to detect text in scene images. The authors define a cost function by considering
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the color, stroke, shape and spatial features with CNN for effective detection of textual regions.

Evaluations are carried out on various ICDAR datasets and a detection rate of up to 77% is achieved.

Figure 2.18: Connectionist Text Proposal Network (CTPN) (Image Source [150])

In another interesting work, Zhang et al. [151] presented a character proposal network (CPN)

(Figure 2.19) which is inspired by the accelerated speed and high capacity of an FCN. The network

is designed to predict the character-ness scores and localize the candidate characters. The score is

subsequently employed to eliminate the non-text regions and improve the localization accuracy.

The network is evaluated on SVT, ICDAR2013 and Chines-2K datasets with recall rates of 93.6%,

93.88% and 96.46% respectively. Likewise, Yao et al. [152] propose to produce a pixel-level

prediction map which is subsequently employed for detection. An FCN is employed to estimate

the information on text regions, characters and their relationship. The proposed network is able to

handle horizontal as well as curved text in scene images. Experimental study reports F-measures of

84%, 65% and 76% on ICDAR2013, ICDAR2015 and MSRA-TD500 datasets respectively.

Among other end-to-end trainable deep neural networks based systems, Liao et al. [153] present

a system called ‘TextBoxes’ which detects text in natural images in a single forward pass network

(Figure 2.20). This approach is considered a fast text detector, as it takes 0.09 seconds per image.

‘TextBoxes’ achieved 85% accuracy on ICDAR2013 and ICDAR2015 datasets. The technique was

later extended to ‘TextBoxes++’ [57] and evaluated on four public databases outperforming the

state-of-the-art methods. He et al. [56] improved the convolutional layer of CNNs to detect text

with arbitrary orientation by introducing a text-alignment layer that calculates features from text at

arbitrary orientations. The proposed method significantly improved the results on ICDAR2013 and

ICDAR2015 datasets with F-measure of 90% and 87% respectively. In another end-to-end trainable

system [154], an ensemble of CNNs is trained on synthetic data to detect video text in East Asian

languages. The proposed study employs consecutive sequences of video frames to identify textual

regions. A set of 80 videos containing Chinese text is used in experiments and 98% accuracy is

reported.

EAST [155] (Efficient and Accurate Scene Text Detector), is another well-known scene text

detector that provides promising results in challenging scenarios. The detector can detect text of

any orientation and draws quadrilateral shapes around the text. The CNN architecture of EAST
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Figure 2.19: Character proposal network presented in [151]

Figure 2.20: CNN architecture of TextBoxes [153]

contains two main phases for detection i.e. Multi-channel-FCN and Non Maximum Suppression

(NMS) which finally produces the multi-orient text-lines and word boxes in the images. An F-

measure of 78% on the ICDAR2015 and that of 76% on COCO-Text dataset is reported using EAST.

In a relatively recent work on detection of Arabic caption text, Zayene et al. [33] employ a

combination of stroke width transform (SWT) with a convolutional auto-encoder (CAE). The

method is evaluated on a publicly available dataset AcTiV-DB [156] which contains 1,843 frames

with 5,133 text lines from Arabic News channels. The system realizes an F-measure of 84%.
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Likewise, Yousfi et al. [157] employ CNNs and multi-exit asymmetric boosting cascade method to

detect Arabic text in News videos and reports a detection rate of 97%. In another recent work [3],

the authors target detection of moving caption text in videos. A sequence of frames is processed

using Hough transform with color based filtering, and the candidate text regions are identified

using a ConvNet. Likewise, the caption motion is analyzed using an LSTM and a correlation-based

model. Experimental study on a self-collected dataset with multi-language captions News reported

promising performance.

Figure 2.21: Application of stroke width transform (SWT) (Image Source [33])

2.2.2.3 Discussion

A summarized review of the well-known text detection methods is presented in Table 2.2. In

pre-deep learning era, ANN and SVM have remained popular choices of researchers in classifying

text and non-text regions. Though high detection rates are reported by many such studies, most of

these have been evaluated on fairly limited sized datasets. In the recent years, it can be observed that

the problem of text detection has been dominated by the application of different deep learning based

techniques. The availability of benchmark datasets has also contributed to the rapid developments

in this area. Different variants of convolutional neural networks have been thoroughly investigated

on various ICDAR datasets. While detection of text in languages based on the Latin alphabet

has received significant research attention and is very much mature, detection of cursive text still

remains a relatively less addressed and challenging issue. Zayene et al. [33] and Yousfi et al. [157]

investigated detection of Arabic text from News videos and the preliminary findings are indeed
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promising. From the perspective of Urdu text which is the problem being addressed in our study,

Jamil et al. [45] employed an ANN to validate the candidate text regions produced using image

analysis techniques. Although an F-measure of 85% is reported, the technique is evaluated on a

small set of 500 frames only.

Table 2.2: Summary of supervised text detection methods

Classifier Study Technique Script Dataset Results

ANN
Park et al. [131](1999) Window Filter English License plate dataset 90%
Ye et al. [123](2009) Bootstrap ANN Chinese Private (1,207 video frames) 87%
Jamil et al. [45](2012) Textural Features Urdu Private (500 video frames) 85%

SVM

Chen et al. [136](2001) Edge-distance Map English Private 98.7%
Anthimo. et al. [138](2008) LBP,HAAR,DCT English Private (150 video frames) 96.7%
Anthimo. et al. [96](2010) LBP English Private (217 video frames) 97%
Sun et al. [139](2006) Wavelet Transform Chinese Private (300 images) 97%
Zhen and Wei [71](2009) Wavelet Transform Chinese Private (500 video frames) 92.78%
Unar et al. [142](2018) Canny & Sobel Urdu IPC [143] 85%
Francis and Sreenath [144](2020) Least-Square SVM English MSRA500,SVT 76%,98.5%
Moradi et al. [141](2011) Gaussian Pyramid Farsi/Arabic Private (2,871 video frames) 84.57%
Darab and Rahmati [140](2012) Wavelet+HoG Farsi/Arabic Private (800 images) 86.5%
Moradi et al. [158, 32](2010,13) Textural Features Farsi/Arabic Private (50 videos) 89.25%

CNN

Huang et al. [146](2014) MSER English ICDAR2011 78%
Zhang et al. [147](2016) FCN, Salient-map English ICDAR2013,2015,MSRA500 83%,54%,74%
Gupta et al. [148](2016) Fully-CRN English ICDAR2013 84.2%
Shi et al. [149](2017) FCN,SegLink English ICDAR2015 75%
Tian et al. [150](2016) CTPN English ICDAR2013,2015 88%,61%
Wang et al. [58](2018) Conditional Random Field English ICDAR2015 77%
Zhang et al. [151](2016) Character Proposal Network Chinese SVT,ICDAR2013,Chines-2K 93.6%,94%,96.5%
Yao et al. [152](2016) Fully Convolutional Network English ICDAR2013,2015,MSRA500 84%,65%,76%
Liao et al. [153](2017) Single FPN English ICDAR2013,2015 85%,85%
Liao et al. [57](2018) Forward Pass Network English ICDAR2013,2015,COCO 80%,82%,56%
He et al. [56](2018) Alignment Layer English ICDAR2013,2015 90%,87%
Xu et al. [154](2018) Ensemble CNNs Chinese Private (80 video) 98%
Zhou et al. [155](2017) Multi- FCN,NMS English ICDAR2015,COCO 78%,76%
Zayene et al. [33](2016) SWT,CAE Arabic AcTiV [156] 84%
Yousfi et al. [157](2014) Multi-exit Boosting Arabic Private (Video images) 97%

2.3 Text Recognition Methods

Recognition of text commonly termed as Optical Character Recognition (OCR), is one the most

classical pattern recognition problems that has been investigated in images, documents, natural

scenes and videos for more than five decades [55]. From recognition of isolated characters and

digits to complex end-to-end systems, the domain has matured significantly over the years. For-

mally, the task of an OCR system is to take a set of pixel data which contains textual information as

input and convert it into corresponding string as output. Thanks to the extensive research endeavors,

mature recognition systems like Google Tesseract [159] and Abbyy FineReader [160] etc. have

been developed reporting near to 100% recognition rates on text in multiple scripts. However, as

discussed earlier, recognition of text in cursive scripts still remains challenging especially when it

comes to caption text [62].

We will discuss the recognition methods from the perspective of document text, scene text and

video text (Figure 2.22). Since text recognition has been investigated for around half a century



2.3 Text Recognition Methods 37

now, our discussion will be more focused on cursive text in general and Urdu text in particular. For

a comprehensive review on the history and development of OCR systems, readers may refer to

resources like [161, 162].

Figure 2.22: Taxonomy of text detection methods

2.3.1 Document Text Recognition

The earliest attempts towards development of recognition systems targeted text (printed as well

as handwritten) in document images. As a function of recognition unit employed, recognition

techniques are typically categorized into analytical (segmentation-based) [163, 164] and holistic

(segmentation-free) [165, 166] methods. In segmentation-based approaches, the image of text is

divided into individual characters which are then recognized. Segmentation-free approaches on the

other hand recognize text at word or ligature level without segmenting them into characters. The

main advantage of segmentation-based approaches is that the number of classes to be recognized

is the same as number of characters (and their different shapes) in the alphabet. This number is

much smaller when compared to the number of ligatures or words which are units of recognition in

segmentation-free approaches (Urdu, for example, has more than 26,000 unique ligatures [167]).

Segmentation of text into characters, however, is a complex and challenging problem. Segmentation-

free approaches tend to be less complex than segmentation-based approaches in the sense that they

do not require segmentation of text into individual characters. These methods are relatively easier

to implement but are more prone to noise and minor variations in the patterns. The main challenge

with segmentation-free approaches, however, is the large number of classes to be recognized. A

recent trend in recognition is use of implicit-segmentation where the learning algorithm is fed with

text line images as well as ground truth transcriptions to not only learn character shapes but also

the segmentation points [168, 169].
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For text recognition in document images, a large number of techniques have been presented

both at character (analytical) and word (holistic) levels. Among methods employing characters as

units of recognition graph-based models [170, 171, 172, 173], Bayesian classifier [174, 175, 176]

and Hidden Markov Models (HHM) [177, 178, 179, 180] etc. have been typically investigated.

Among holistic or word level recognition techniques, a wide variety of features as well as clas-

sifiers have been studied [181, 182, 183, 184] reporting high recognition rates. Deep learn-

ing has also been employed for feature extraction and classification at character and word lev-

els [185, 186, 187, 188, 189].

From the view point of recognition of cursive scripts and more specifically Urdu text in doc-

ument images, significant research efforts have been made in the last few years. These systems

primarily target scanned document images of printed text in Nastaliq script. Due to challenges

already discussed, implicit segmentation based techniques have remained a popular choice of

researchers [168, 169, 190, 191]. Likewise, in case of holistic approaches, ligatures have been

typically employed as recognition units [165, 38, 166].

The initial research endeavors on recognition of Urdu text mainly targeted isolated charac-

ters [192, 193] or already segmented ligatures [194]. Among significant holistic approaches, HMMs

have been widely employed for recognition of ligatures [195, 196, 197, 198]. These techniques use

the sliding windows to extract features from ligature images which are projected in the quantized

feature space hence representing each ligature image as a sequence. In some cases, the main body

and dots are separately recognized [165] to reduce the total number of unique classes which can be

very high in case of Urdu text. A number of holistic techniques are based on word spotting [40, 199]

rather than recognition, to retrieve documents containing words similar to those provided as query.

Recently, recognition of Urdu handwriting in documents has also been explored in number of

studies [200, 201, 41, 42, 43].

Among one of the earliest works on Urdu text, Pal et al. [163] presented structural, shape and

water reservoir features for recognition of isolated characters and numerals. The document image is

first binarized and skew is corrected using Hough transform. Traditional projection profile methods

are then employed to segment the text lines. The authors report a character recognition rate of more

than 97%. The system, however, works only on isolated characters and cannot be employed for

words or lines directly. The authors in [192] propose a feed forward neural network-based method

for recognition of individual printed Urdu characters. The system evaluated on isolated Urdu

characters in Arial font reports 98% classification rate. In another study on isolated characters [71],

the authors employ structural features to distinguish character shapes. Classification is followed by

dictionary matching and an overall recognition rate of 97% is reported.

Sardar & Wahab [194] present a recognition system that performs skew correction, line extrac-

tion and ligature segmentation (into primary and secondary ligatures). Recognition is carried out
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using Hu’s moments and text to non-text pixel density features. These features are computed from

sliding windows of varying sizes. Classification using nearest neighbor classifier reports an accuracy

of 97%. Likewise, Nawaz et al. [202] remove dots and diacritics from isolated characters creating

separate classes of secondary and primary ligatures. Chain code based features are then extracted

to separately recognize main body and secondary ligatures which are subsequently re-associated

to recognize the true characters. In another study, Ahmed et al. [203] classify each character as

simple, semi-complex or complex using shape information and perform recognition using a neural

network. The system reports 93.4% recognition rate in the absence of diacritics.

In another study [204], a holistic approach is employed for recognition of Arabic (Naskh)

and Urdu (Nastaliq) text. Ligatures are characterized using shape descriptors and are classified

using nearest neighbor classification. Recognition rates of 91% and 86% on Urdu and Arabic text

respectively are reported. The paper also introduce the Urdu printed Text Images (UPTI) dataset

containing around 10,000 text line images with ground truth transcription. UPTI is considered as

one of the benchmark datasets for the evaluation of printed Urdu OCR systems. The text lines,

however, are synthetically generated using an Urdu text tool hence the dataset does not offer the

same kind of challenges as those encountered in scanned document images.

In a series of related studies [205, 164, 206], the Center of Language Engineering (CLE) team

targeted recognition of Urdu ligatures in the CLE dataset [207]. Javed et al. in [205] present a

holistic technique where features based on DCT are extracted from ligatures using sliding windows.

Primary and secondary ligatures are separately recognized using HMMs and subsequently a set of

rules is employed to associate the dots with the parent primary ligature. Experiments on a dataset

of 3655 ligatures report a recognition rate of 92%. In a later study, Javed and Hussain [164] employ

a segmentation-based technique with HMMs followed by a rule-based post processing to recognize

main body ligatures (without diacritics). An accuracy of 92.7% is reported on printed and then

scanned images. Subsequently, the Google Tesseract recognition engine was enhanced to recognize

Nastaliq text in two font sizes (14 and 16) [206]. Experiments on a set of around 1500 unique

ligature classes revealed that while the original Tesseract engine reported 66% recognition rate,

the modification performed by the authors enhanced the recognition rates to 97%. The technique,

however, suffers from the drawback that the recognition system needs to be trained for every font

size separately.

Another holistic recognition method, where primary and secondary ligatures are separately

recognized, is presented by Khattak et al. [208]. The authors employ sliding windows to extract

features from ligature images which are then employed to train HMMs – a separate model for each

ligature class. Primary and secondary ligatures, once recognized, are associated together using

a comprehensive post processing step. A set of more than 2000 high frequency Urdu ligatures

is employed in evaluations and a ligature recognition rate of 97.93% is reported. In a subse-

quent work, the authors replaced the HMM-based recognition with CNN-based recognition [38].



Literature Review 40

Similar to [208], the main body and secondary ligatures are separately recognized, by a CNN

trained from scratch and then re-associated to recognize the complete ligature. The system is

evaluated on UPTI [63] and CLE [207] datasets with recognition rates of 97.81% and 89.20%,

respectively. A similar technique is presented by Rehman & Hussain [39] where the authors employ

a CNN for font-independent ligature recognition with an accuracy of 84.2%. Likewise, Arafat

& Iqbal [209] extracted features using Alexnet and VGG16 from 46,000 synthetically generated

ligatures. Extracted features are then fed to BLSTM for recognition and a recognition rate of

70% is reported on a test set of 7,000 ligatures. Another recent study is presented in [210] where

ligatures are segmented from text lines and a set of 15 features is extracted from each ligature

image. Hierarchical clustering is carried out in the feature space and a genetic algorithm opti-

mizes the classification rules. The technique reports a promising ligature recognition rate of 96.72%.

As discussed earlier, the large number of ligature classes and the challenges in segmentation of

ligatures into characters resulted in shifting the research attention towards implicit segmentation

based techniques. These methods exploit the deep learning architectures which are fed with images

of text lines and the respective transcription to learn the character shapes and boundaries. Among

these methods, Ahmed et al. [211] applied bidirectional Long Short-Term Memory (LSTM) network

for character level evaluation of cursive as well as non-cursive scripts. Experiments were carried

out on UPTI dataset for Urdu and UNLV-ISRI dataset for the Roman script and character-level

recognition rates of 89% and 99.17% are reported for Urdu and Roman text respectively. In a

similar work, Adnan et al. [212] fed raw pixels to a bidirectional LSTM with a connectionist

temporal classification (CTC) layer. Experiments with and without considering the shape variations

of characters reported recognition rates of 87.4% and 94.85% respectively.

In another series of significant contributions towards Urdu recognition systems, Naz et al. [168,

213] employ a set of statistical features that are fed to MD-RNNs for training and evaluation.

Evaluations on the UPTI dataset with 6800 lines in the training and 1600 in the test set realize char-

acter recognition rates of 94.97% and 96.40% in [168] and [213] respectively. Later, the statistical

features were replaced by features learned through a CNN which improved the recognition rate to

98.12% [190].

In addition to printed Urdu text, few recent endeavors have been made to recognize Urdu

handwritten text as well. Hassan et al. [41], for instance, employ a combination of CNN with RNNs

to recognize handwritten text lines in Urdu. Experimental study on a collection of 6000 text lines

reported a character recognition rate of 84%. In another recent work, Anjum & Khan [214] employ

a deep learning based encoder /decoder framework with attention mechanism to recognize Urdu

text lines. Authors demonstrate that incorporating attention mechanism significantly improves the

recognition performance both at character and word levels. Khan et al. [215] investigate different

CNN architectures recognize isolated handwritten Urdu words. Although the study reports word

recognition rates of up to 96%, the dataset comprises only 5 unique words with a little more than
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1000 samples per word. In addition to recognition, few word spotting based systems have also been

investigated for Urdu text. Among these, Sabbour et al. [216] proposed a set of compound features

with SVM classifier to spot Urdu words in a set of documents. In another study, Abidi et al. [217]

extract a set of profile and projection features from Urdu ligatures and employ Dynamic Time

Warping (DTW) to compare two ligatures. Evaluations are carried out in a retrieval framework on a

set of 50 Urdu documents and realized a recall of 95.17% while a precision of 94.3%.

Among other cursive scripts, recognition of Arabic text from document images has been studied

in a number of studies [218]. Challenges in recognition of Arabic text are more or less similar

to those of Urdu text. Arabic, however, is mostly printed in the Naskh style as opposed to the

common Nastaliq style of Urdu. Segmentation of text into characters in Naskh is relatively less

complex as compared to the diagonal Nastaliq text. IFN/ENIT [219] is the most widely em-

ployed dataset for evaluation of Arabic text recognition systems. Both hand-crafted [196, 220] and

machine-learned [221] features have been investigated. HMM has also been applied in various

studies [222, 223, 178, 179, 180] for Arabic handwriting. More details on recognition of Arabic

and similar scripts can be found in [218, 224, 225, 226].

It can be observed from the above discussion that the literature is quite rich when it comes to

recognition of text from document images. Indeed thanks the decades of research endeavors of

the pattern recognition community, text recognition from document images is highly mature today

with many commercial recognition engines available. On the contrary, recognition of text in scene

images and video frames still remain open research problems and are discussed in the subsequent

sections.

2.3.2 Scene Text Recognition

Contrary to document images, recognition of text from scene images is much more challenging

due to camera perspective, varying lighting conditions and unconstrained backgrounds. Scene

text recognition is typically employed for applications like robot navigation, self-driving cars and

assistance to the visually impaired. Among well-known studies on this problem, Histogram of

Oriented Gradients (HOG) [227, 228, 229], Strokelets [230, 126], and SIFT descriptors [231, 232]

have been employed as popular features in a number of studies. For classification, similar to text

detection, ANNs [233, 234, 235] and SVMs [236, 237] have been widely investigated. A special

case of scene text recognition is the recognition of text on road signs and has also been investigated

in a number of studies [238, 239, 240, 241, 242]. Word spotting based approaches have also been

employed on scene text images [243, 244, 245] in the literature.

In a number of relatively recent studies, combination of CNNs with RNNs (and different

variants) has been effectively applied to text recognition from scene images [246, 247, 248, 249,

250, 251]. Further advancements in deep learning techniques led to the development of more
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sophisticated architectures. Notable of these include Binary Convolutional Encoder-Decoder Net-

work (B-CEDNet) using Bidirectional-RNN [252] (Figure 2.23), Character-Aware Neural Network

(Char-Net) using LSTM [253] (Figure 2.24), Character Attention Fully Convolutional Network

(CA-FCN) [254] and Double Supervised Network (DSAN) [255]. These DNN based models claim

to be robust and efficient for scene text recognition in challenging scenarios.

Figure 2.23: Binary Convolutional Encoder-Decoder network (B-CEDNet) [252]

Figure 2.24: Architecture of Char-net (Image Source [253])

From the perspective of cursive text, a comprehensive survey on recognition of Arabic scene

text is presented in [35]. the authors discuss the challenges in recognition of cursive text and

emphasize on the need of a benchmark cursive scene text dataset. From the view point of Urdu

text, Chandio et al. [256, 257] introduced a dataset of 2500 natural scene images with occurrences

of Urdu text. In addition to Urdu, the images also contain instances of Sindhi and English text.

The dataset is divided into three parts, images of isolated characters, cropped word images and

the text spotting set of complete images. The dataset was evaluated by applying the latest deep

learning based techniques for detection and recognition of text. In a subsequent study by the same

authors [258], a hybrid deep neural network with skip connections is employed. The network

combines a CNN with an LSTM and reports a recognition rate of 61.35% on 11,500 isolated word

images.

Similarly, Panhwar et al. [259] target recognition of text in signboards, primarily focusing on

English and Urdu text. An ANN is employed for recognition and a recognition rate of 85% is

reported on a collection of 500 natural scene images. Likewise, Arafat & Iqbal [260] employed
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a two-stream deep neural Nnetwork (TSDNN) to recognize Urdu ligatures from 4,200 natural

scene images and 51,000 synthetically generated images and achieved recognition rates of 94.90%,

95.20% respectively. The work was later extended [261] to introduce a dataset of more than 30K

natural scene images with 467 ligature categories. An 18-layer CNN was trained to recognize the

ligatures and a classification rate of more than 97% was reported in this study.

After having discussed recognition of text in scene images, we now present a discussion on

recognition of caption text from video frames in the following section.

2.3.3 Video Text Recognition

Caption (artificial) text, as elaborated previously, is superimposed on video and is typically em-

ployed for indexing and retrieval applications. While the challenges related to camera perspective

and non-homogeneous backgrounds are not encountered in case of artificial video text, a major

recognition challenge is the low resolution of text. In case of non-homogeneous backgrounds,

segmentation of text from background prior to recognition can also be challenging.

Among one of the earlier endeavours towards the development of a video OCR, a combination

of holistic and component-level approaches is presented in [262] for recognition of Korean char-

acters appearing in video frames. The holistic approach exploits the global shape information of

a character while the component-level analysis employs the local shape information in segments

of characters. Recognition rate of more than 96% is reported on 50,000 character images. In

another pilot study on recognition of Chinese caption text, Tang et al. [263] use a fuzzy-clustering

neural network for recognition purposes and report an accuracy of 86% on News channel videos.

Likewise, a step-wise language model is incorporated with an ANN to develop a character by

character video OCR in [264]. A dataset of 12 videos from French News channels is used for

evaluation purposes reporting 95% character and, 78% word recognition rate. Later on the work is

improved by applying BLSTM with CTC. This time 32 videos containing french text are employed

and 97.35% character recognition rate is achieved.

In another notable work [265], structural features of characters are employed for recognition of

caption text. TRECVID dataset is used for validation with 1,462 different characters. The authors

demonstrated that with only 10% samples of each character class in the training set, high recognition

rate (94.5%) is achieved. Recognition of video text for indexing and retrieval applications has also

been investigated in a number of studies. Khatri et al. [266], for instance, implemented a recognition

system for lectures and News videos while Kulkarni et al. [267] targeted text recognition from

cartoon, sports and military videos to develop a video-based search engine.

Among relatively recent studies, Bhunia et al. [61] employ an SVM to select and appropri-

ate color channel for video text recognition. The recognizer is based on hidden Markov models

with histogram of oriented gradients computed from the selected color channel. The technique is
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evaluated on various public English datasets and a dataset of text in Devanagari script and, word

recognition rates of 75.41% and 71.14% are reported on English and Devanagari text respectively.

In deep learning-based methods, Lu et al. [268] employ transfer learning with pre-trained CNNs

for video text recognition. Models including InceptionV3, VGG16 and Resnet50 are considered

for transfer learning and the performance is evaluated on multiple datasets. A similar study for

recognition of video text in East Asian languages is presented in [154]. Characters in simplified as

well as traditional Chinese are recognized using an ensemble of CNNs (Figure 2.25) and recognition

rates of more than 98% are reported for both the scenarios. Dutta et al. [60] came up with an idea

of recognizing the text from lecture videos. They developed a dataset called LectureVideoDB

with 5,000 video frames of papers, slides and boards (black & white) with the word bounding

boxes and their corresponding ground truth. The architecture of CNN and RNN is developed and

fine-tuned on two well known datasets called IAM Handwriting [269] and MJSynthetic [233]. The

proposed scheme is able to achieve 64.48% and 86.08% word and character recognition rates on

the developed dataset, respectively.

From the view point of recognition of Arabic caption text, Halima et al. [270] applied KNN

classifier on features extracted from segmented Arabic characters from News channel videos. The

work was later improved with fuzzy-KNN [271] enhancing the recognition rate to 95%. Another

notable study is presented by Yousfi et al. [272] where recognition is carried out using deep neural

networks. A combination of CNN and deep auto-encoders is used for feature computation and

the extracted features are subsequently fed to a BLSTM for recognition. A comprehensive dataset

named ‘ALIF’ [273], with more than 6500 video frames containing Arabic caption text was also

developed as a part of this study. Few sample images of the dataset are illustrated in Figure 2.26.

A character recognition rate of 94.36% is reported on this dataset using the proposed technique.

BLSTM with combination of CTC is also investigated by the authors in [34].

Another similar dataset called ‘AcTiV’ is presented by Zeyene et al [156] that comprises of

video frames collected from four different Arabic News channel videos. The dataset contains

bounding box information of textual regions (for evaluation of text detection) as well as the cor-

responding transcription (to evaluate recognition). The dataset was employed by the authors in a

subsequent study [31] where Multidimensional LSTMs (MD-LSTM) were employed for recogni-

tion. In addition to their AcTiV dataset [156], the authors also evaluated the recognition engine on

the ALIF dataset [273] with character recognition rates of 96.48% and 96.85% respectively.

In another work targeting recognition of Arabic caption text, Jain et al. [274] employed both

the dataset (i.e. ALIF and AcTiV) in their study. An end-to-end, hybrid architecture of CNN and

RNN is proposed that is able to recognize Arabic text from natural scenes as well as video frames.

The reported character recognition rates read 98.17% on ALIF and 97.44% on AcTiV dataset.
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Figure 2.25: Overview of CNN Ensemble employed in [154]

Figure 2.26: Sample images in ‘ALIF’ dataset [273]

The literature is relatively limited when it comes to recognition of Urdu caption text. In a pilot

study on this problem, holistic recognition technique is presented by Hayat et al. [48] where a

number of pre-trained CNNs are employed to recognize a small set of 290 ligature classes. Though
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very high ligature recognition rate (99.5%) is reported, the number of ligature classes is very small

for employment in real world scenarios. In another recent study [49], Bi-Directional LSTMs are

employed for recognition of Urdu News tickers. The technique is evaluated on a custom developed

dataset and the performance is compared with a commercial recognition engine. Experiments on

19,824 text lines report a recognition rate of 93.02%.

2.3.4 Discussion

After having discussed text recognition methods, we now present a summary of prominent contribu-

tions to this problem in Table 2.3. Though the primary target of our current research is Urdu caption

text, for completeness we have also discussed recognition of text in document images, natural

scenes as well as handwriting images. Naturally, the objective is not to provide an exhaustive review

of literature in all these related yet different problem areas, but to cover the breadth of knowledge

in this highly investigated research problem. More focus, of course, lies on recognition of cursive

text in general and Urdu text in particular.

From the perspective of text in languages based on the Roman script, recognition of caption

text is relatively less challenging and major proportion of the recent research targets recognition of

scene text [254, 254, 252, 259]. Similar to detection, different ICDAR datasets have been a popular

choice of researchers for evaluation purposes [275, 276, 277, 146, 147, 148, 149, 150, 58]. Arabic

text recognition has been investigated for printed document images as well as handwriting images

for many years [224, 218, 223, 225, 226, 178, 179, 180, 221], the interest in caption text however,

is relatively recent [271, 274, 34, 31]. The development of two benchmark datasets, ALIF [273]

and AcTiv [156] also contributed to enhance the research attention in recognition of Arabic caption

text.

From the view point of Urdu text, a number of techniques have been presented for printed

document images [40, 62, 278, 37, 279]. While the initial research endeavors primarily relied on

holistic methods, analytical techniques based on deep learning have mostly been proposed in the

recent years [41, 42, 43, 213, 38, 39]. For video text, few pilot studies have been carried out for

recognition of scene [209, 260, 256, 259, 258] as well as caption text [48, 49]. The work reported

in [48] for recognition of Urdu caption text relies on a holistic approach and considers a very small

subset of Urdu ligatures. Likewise, the work by Tayyab et al. [49] focuses on News tickers only

which appear mostly on homogeneous backgrounds. The experimental study is also carried out on

a private dataset.



2.4 Challenges in Video Text Detection and Recognition 47

Table 2.3: Summary of Text Recognition Methods

Image Type Study Technique Script Dataset Results

Scene

Gao et al. [255](2018) DSAN English IIIT5K,ICDAR2013 88.6%,92.3%
Liao et al. [254](2018) Char-Net LSTM English IIIT [280] 92%
Liu et al. [252](2018) B-CEDNet English ICDAR2003 98.4%
Chandio et al. [256](2020) BLSTM Urdu,Sindhi Private (2,500 images) 78%
Ali et al. [258](2019) CNN-LSTM Urdu Private (11,500 images) 61.35%
Panhwar et al. [259](2019) ANN Urdu,English Private (500 images) 85%
Arafat and Iqbal [260](2020) TSDNN Urdu Private (4,200 images) 94.90%
Wang et al. [251](2017) CNN-RNN English ICDAR2015 60.25% (WRR)

Handwritten

Ahmed et al. [200](2019) BLSTM Urdu UNHD [200](2019) 90.72%
Hassan et al. [41](2019) CNN-LSTM Urdu Private (6,000 lines) 83.69%
Husnain et al. [42](2019) CNN Urdu Private (38,400 chars) 96.04%
Ali et al. [43](2020) DAE+CNN Urdu Private (45,000 chars) 82.7%
Ahmed et al. [201](2019) CNN-MDLSTM Urdu UNHD [200] 93%
Khemiri et al. [196](2015) HMM,DBN Arabic IFN/ENIT [219](2002) 94%
Abandah et al. [221](2014) BLSTM Arabic INF/ENIT [219] 98%

Document

Ahmed et al. [220](2016) HMM Arabic Private 97.11%
Pal et al. [163](2003) Structural Features Urdu Private 97%
Inam et al. [192](2007) ANN Urdu Private 98%
Sardar and Wahab [281](2010) KNN Urdu Private 97%
Ahmed et al. [203](2007) ANN Urdu Private 93.4%
Javed and Hussain [197](2013) DCT,HMM Urdu Private (20 LC) 92.7%
Hussain et al. [282](2015) Shape Features Urdu Private 95%
Javed et al. [283](2010) DCT,HMM Urdu Private (4,937 Ligatures) 92%
Khattak et al. [208](2015) HMM Urdu Private (8,112 Ligatures) 97.93%
Sabbour et al. [63](2013) KNN Urdu UPTI [63] 89%
Ahmed et al. [211](2016) BLSTM Urdu,English UPTI [63],UNLV-ISRI 89%,99.2%
Adnan et al. [212](2013) BLSTM-CTC Urdu Private 94.85%
Naz et al. [168](2016) MDLSTM-CTC Urdu UPTI [63] 96.4%
Uddin et al. [38](2019) CNN Urdu UPTI [63],CLE [207] 97.8%,89.2%
Rehman and Hussain [39](2020) CNN Urdu Private 84.2%
Arafat and Iqbal [209](2019) CNN-BLSTM Urdu Private (46k Ligatures) 70%

Video

Lee et al. [262](2008) Shape Features Korean Private (50 Videos) 96.5%
Tang et al. [263](2002) FCNN Chinese Private 86%
Elagouni et al. [264](2011) ANN French Private (12 Videos) 95%
Elagouni et al. [59](2012) BLSTM-CTC French Private (32 videos) 97.35%
Halima et al. [270](2010) KNN Arabic Private 91.85%
Halima et al. [271](2013) Fuzzy KNN Arabic Private 95%
Shivakumara et al. [265](2011) Structural Features English TRECVID [24] 94.5%
Bhunia et al. [61](2018) SVM,HMM English,Indic ICDAR2013,MSRA 75.4%,71.1%
Xu et al. [154](2018) CNN ensembles Chinese Private (80 Videos) 98.3%
Yousfi et al. [272](2015) CNN-DAE,BLSTM Arabic ALIF [273] 94.36%
Yousfi et al. [34](2017) BLSTM-CTC Arabic ALIF [273] 89.3%
Dutta et al. [60](2018) CNN-RNN English LectureVideoDB 86.08%
Jain et al. [274](2017) CNN-RNN Arabic ALIF [273],AcTiV [156] 98.2%,97.4%
Zayene et al. [31](2018) MDLSTM Arabic ALIF [273],AcTiV [156] 96.5%,96.9%
Hayat et al. [48](2018) CNN Urdu Private (290 LC) 99.5%
Tayyab et al. [49](2018) CNN-LSTM Urdu Private (19,824 text lines) 93.02%

2.4 Challenges in Video Text Detection and Recognition

A critical review of the literature presented in the previous sections reveals that for caption text

in non-cursive scripts, detection and recognition have been thoroughly investigated and systems

reporting high detection and recognition performance have been developed. The recent focus

of the community from the perspective of text in non-cursive scripts is on the more challenging

scene text detection and recognition which are marked by challenges like camera perspective,

non-uniform illumination, complex backgrounds, text in different orientations and occlusion etc.

The organization of different International competitions in conjunction with various editions of

ICDAR as well as the public availability of the competition datasets has greatly contributed to
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advance research efforts on this problem[284, 285, 286, 287]

As opposed to scanned documents, text in videos is of low resolution and may occur on complex

backgrounds making its detection a challenging task, irrespective of the script. Text may occur

in different font styles, sizes and at arbitrary positions in the video frame. While the latest deep

learning based detectors are able to handle these challenges, many such techniques assume presence

of text in a single script with a video frame. In most of the News channel videos however, it is

common to have bi-lingual text (for instance English and Urdu text in most of our local News

channels). While textual occurrences in different scripts are visually distinct, they also share some

common properties. At the same time, script of detected text also needs to be identified so that

subsequent processing (recognition) can be carried out accordingly. An open research question

in such cases is whether to develop a generic script-independent text detector and subsequently

identify the script or, to identify/learn script-dependent features allowing detection of text in the

given script(s).

From the view point of recognition of Urdu text, a number of techniques exploiting the recent

advancements in deep learning have been proposed in recent years [168, 213, 165]. It is however

important to note that most of these techniques target document images and have been evaluated

on either UPTI [204] or CLE dataset [207]. Though character recognition rates of as high as 98%

have been reported on UPTI dataset, it is worth mentioning that the dataset comprises synthetically

generated Urdu text line images. CLE, on the other hand, represents a more realistic scenario and

consists of two parts, a collection of printed then scanned high frequency ligatures and digitized

pages from Urdu books. Nevertheless, as mentioned earlier, text in document images does not

offer the same kind of challenges as those of caption text. Videos, especially those uploaded on

video sharing portals, are compressed and of relatively low resolution. While these aspects make

recognition challenging in any script, the problem is much more complex in case of cursive scripts

as illustrated in Figure 2.27.

Though detection and recognition of Arabic text has been investigated in the literature [31],

the character set of Urdu (39 letters) is a super set of that of Arabic (28 letters) and the diagonal

Nastaleeq style of Urdu is much more complex as opposed to the Naskh style of Arabic [62]. In

addition to more complex character shapes, association of secondary ligatures (dots) with their

parent primary ligature is much more challenging in the Nastaleeq style as compared to Naskh. An

analysis of the existing work on Urdu text detection and recognition and, the associated challenges

discussed in the preceding paragraphs, led us to identify the following research gaps which call for

in-depth investigations.

• There is a need of a comprehensive dataset with ground truth information to support al-

gorithmic development and evaluation of Urdu caption detection and recognition systems.

Presently, a small dataset of about 1000 video frames is publicly available [288]; not only the
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Figure 2.27: Low resolution caption text examples

dataset is too small to take advantage of the recent advancements in deep learning based solu-

tions, the ground truth information is only provided for localization of textual regions and no

transcription is available. The availability of a large labeled dataset is likely to trigger signifi-

cant research on this problem similar to the impact of ICDAR scene text [289, 275, 276, 277],

and Arabic caption text datasets ALIF [273] and AcTiV [156].

• Detection of Urdu caption text, especially in the context of our local News channels with

bilingual textual occurrences, needs to be thoroughly investigated. Few preliminary studies

based on unsupervised [47, 44, 46] as well as supervised [45, 142] techniques have been

carried out but the methods are developed as well as evaluated on fairly limited sets of images.

These conventional techniques rely on image analysis and traditional classifiers, supported

by a set of heuristics, and are not robust to varying text sizes, complex backgrounds and low

resolution of text.

• Few pilot studies [48, 49] targeted recognition of Urdu caption text. However, similar to

the detection problem, a scalable and robust solution that can cope with the recognition

challenges of video text as well as those of cursive scripts, needs to be investigated.

• The detection and recognition of Urdu caption text needs to be enhanced to an extent where

rather than mere pilot studies real world applications can be developed on top of the detection

and recognition engines. Textual content in videos is typically employed for applications

like smart indexing and retrieval, generation of alerts on keywords, News summarization

etc. Such systems are already in use by media houses and regulatory bodies in developed

countries and a similar solution targeting local needs is very much desirable.
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2.5 Summary

This chapter presented a comprehensive overview of detection as well as recognition of text. We

first discussed the text detection methods as a function of detection technique i.e. unsupervised

and supervised methods. It was concluded that deep learning based supervised techniques are

much more robust and can better handle the variations in text size, font and contrast etc. Likewise,

for recognition of text, we discussed the problem from the perspective of scene text, document

images and caption text. Similar to detection, it was observed that deep learning-based analytical

techniques based on implicit-segmentation outperform the holistic or explicit segmentation based

techniques especially in case of cursive scripts. In the next chapter, we introduce the dataset

collected and labeled as a part of this study.



Chapter 3

Data Collection and Labeling

3.1 Introduction

Availability of labeled dataset is of utmost importance for algorithmic development and evaluation

of any computerized system. With reference to our problem of detection and recognition of Urdu

text in videos, a dataset of 1000 video frames, the IPC dataset [143] is publicly available. However,

the dataset is only labeled from the perspective of detection and does not support evaluation of recog-

nition systems. Likewise, the size of the dataset is relatively small considering the requirements of

deep learning methods. Consequently, we opted to collect and label a customized dataset supporting

both detection and recognition. The first step towards development of a comprehensive labeled

dataset is data collection. In our study, data refers to collection of videos. We have collected videos

from multiple News channels (details are presented later in the chapter). All videos are recorded at

a resolution of 900×600 and a frame rate of 25 fps. From the view point of textual content in the

video, video frames need to be labeled from two perspectives, detection and recognition. Detection

performance refers to how good the system is in locating the textual occurrences in a video frame

while recognition performance refers to the effectiveness of the system to convert images into text.

To evaluate the performance of detection system, bounding box of each textual region in the image

must be identified and stored. Likewise, to evaluate the recognition performance, the transcription

associated with each textual region needs to be stored as ground truth information.

In the following sections, we introduce the developed dataset which we have named as ‘UTiV’.

We also discuss in detail the evaluation metrics, the salient features for the collected data along

with statistics and the developed labeling tool.

3.2 Evaluation Metrics

In the literature, several evaluation metrics have been proposed to evaluate the performance of text

detection methods [44, 289, 290]. In our system, for evaluation of the text detection module, we
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employ the most commonly used area based precision and recall measures reported in [44] and

defined as follows.

Let AE be the estimated text area given by the system and AT be the ground truth text area, then

the precision P and recall R are defined as:

P =
AE ∩ AT

AE
(3.1)

R =
AE ∩ AT

AT
(3.2)

The precision and recall measures can be combined in a single F-measure as follows.

F =
2 × Precision × Recall

Precision + Recall
(3.3)

The same idea can be extended to multiple images by simply summing up area of intersection

and dividing by the total ground truth area (in N images) for recall and the total detected area

for precision. To compute these measures, for each frame, we need to store the actual location

of the textual content. The text detected automatically by the system can then be compared with

the ground truth text regions to compute precision, recall and F-measure. The idea is illustrated

in Figure 3.1. Figure 3.1-a illustrates an example where the text regions detected by the system

are shown while Figure 3.1-b illustrates the ground truth text locations for the given frame. The

detected and ground truth text regions can be compared to compute the metrics defined earlier and

quantify the detection performance.

Figure 3.1: Text regions in an image and the corresponding ground truth image

Unlike many other languages where text can be easily tokenized into words, segmenting

Urdu text into words is highly challenging. Spaces appear between words as well as between

the ligatures within a word. Consequently, text recognition performance is quantified using

recognition rates computed either at ligature or character level (depending upon the recognition

technique employed). In case of holistic techniques employing ligatures as recognition units,

ligature recognition rate is computed as the ratio of correctly recognized ligatures to the total

number of query ligatures. Analytical techniques employing individual characters as recognition

units, however, require more sophisticated metrics for computation of character recognition rates.

In most cases, the Levenshtein’s edit distance [291] between the predicted and the ground truth
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transcriptions is employed to compute the character recognition rates. Levenshtein’s distance

measures the difference between two sequences and corresponds to the smallest number of edits

which change one word (sequence of characters) into the other. Formally, Levenshtein’s distance

between two sequences s1 and s2 of lengths |s1| and |s2| is given by levs1,s2(|s1|, |s2|) where

leva,b(i, j) =



max(i, j) i f min(i, j) = 0

min


leva,b(i−1, j)+1

leva,b(i, j−1)+1

leva,b(i−1, j−1)+1

otherwise.
(3.4)

An example of Levenshtein’s edit distance with two Urdu strings have been solved in Appendix B.

In order to compute the recognition rate, the ground truth transcription of each textual region

needs to be stored. Figure 3.2 illustrates this idea where a textual region in the image and the

corresponding ground truth transcription are shown. The transcription produced by the recognition

module can then be compared with the ground truth transcription to compute word or character

recognition rates as summarized in Figure 3.3.

Figure 3.2: (a) A text line in a video frame (b) Ground truth transcription of text

Figure 3.3: Comparison of ground truth and system produced transcriptions to quantify recognition
performance
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3.3 Ground Truth Labeling Tool

To facilitate the labeling process and standardize the ground truth data, a comprehensive labeling

tool has been developed (in C#.NET) that allows storing the location of each textual region in a

frame along with its ground truth transcription. A screen shot of the developed tool is presented in

Figure 3.4. The tool allows loading video frames and labeling them one by one for text locations as

well as ground truth transcription as discussed in the following. (Various features of the ground

truth labeling tool are summarized in Appendix C).

Figure 3.4: Screen shot of ground truth labeling tool for text data

3.3.1 Labeling of Text Locations

As discussed earlier, evaluation of detection requires storing the actual location of textual content

in each frame. For each textual region in the frame, the tool allows user to draw a rectangle

encompassing the text. For each rectangle (bounding box), the localization information of text is

stored in terms of the x and y coordinates, width and height of the rectangle. Each textual region

is also identified as ‘artificial’ or ‘scene’ text. Artificial text refers to the caption text added to

the video (for instance news tickers) while scene text refers to the text that occurs in the scene

during the video capture (for example text on billboards). In addition to the type of text, the script

information (English or Urdu text) is also stored by separating the English and Urdu text lines in

the ground truth files. The ground truth information stored for each textual region is summarized in

Table 3.1.

Table 3.1: Summary of attributes stored for each text line

Attribute Description
ID A unique identifier assigned to each text line a frame
Text Type Type of text line, i.e. artificial or scene text
Location Bounding box of text line in terms of x, y coordinates and width & height of the box
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3.3.2 Transcription of Text

In order to evaluate the recognition performance, the transcription of each textual region needs to

be stored as well. The labeling tool allows typing the transcription of each text line (in Urdu or

English) and storing it in the ground turth file (Figure 3.5). Transcription is facilitated by providing

a list of frequently used words and allowing users to add words to the list. The labeling process is

carried out for each text region in a frame and the ground truth data is stored in an XML file.

Figure 3.5: Interface to enter transcription of text

3.3.3 Ground Truth Data Organization

The ground truth information of each frame is stored as an XML file that comprises two parts, the

frame meta data and the information on textual regions. The frame meta data contains information

on video, channel and a unique code identifying the frame. The second part of XML file separately

stores information of text in each script (Urdu and English in our case) in the frame. For each

category, we store information on total number of text lines and for each line we store a unique ID,

the type of text (scene text or artificial text), the location of text region within the frame and the

transcription of text. The screen shot of ground truth information of an example frame is illustrated

in Figure 3.6.
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Figure 3.6: Screen shot of an XML file containing ground truth information of a frame

3.4 Statistics of Labeled Data

This section presents a summary of the labeled video frames. It is known that videos typically

contain 25−30 frames per second; consequently, successive frames in a video contain redundant

information (both visual and textual content). From the view point of automatic analysis systems,

frames with unique content are of interest. Hence, each single video frame does not need to be

labeled as major proportions of such frames will have exactly the same textual information. In

our study, we have extracted more than 11,000 frames from videos of different News channels

with an attempt to have as much unique text as possible. Each frame is labeled for text location

as well as transcription as discussed in the previous sections. The statistics of videos, frames and

text lines of our dataset are presented in Table 3.2. Since the frames are primarily collected from

Urdu News channels, major proportion of text lines in these images contain Urdu caption text.

Nevertheless, some channels contain bilingual textual content with caption text appearing both in

Urdu and English and all such occurrences are labeled.

Table 3.2: Statistics of labeled video frames

S# Channel Videos Labeled Images Urdu Lines English Lines
1 Ary News 7 3,206 10,250 3,605
2 Samaa News 13 2,503 10,961 4,411
3 Dunya News 16 3,059 10,723 8,861
4 Express News 10 2,424 8,536 6,755

Total 46 11,192 40,470 23,632

In an attempt to provide further insights in to the collected data, we provide additional statistics

particularly from the perspective of Urdu text, the primary focus of our research. Figure 3.7

summarizes the distribution number of Urdu characters per line and the distribution of number

of lines per frame. It is observed that on the average, each frame contains 3.62±2.09 Urdu text
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Figure 3.7: (a): Distribution of number of Urdu characters per line. (b): Distribution of Urdu lines
per frame

lines while each text line contains 32.56±26.66 characters. Likewise, the frequency of various

characters is of interest and is outlined in Figure 3.8 for the Top-30 most frequent characters.

3.5 Synthetic Data Generation

As mentioned earlier, text lines extracted from video frames using the ground truth information

are used to train the learning algorithm. Few examples of text lines are illustrated in Figure 3.9.

In an attempt to enhance the size of training data (to ensure maximum representation of various

character shapes and their combinations), we also generated a set of 50,000 synthetic text lines. In

order to artificially generate the text line images, we first create a pool of text lines from different

Urdu books and News portals. The textual content on these sources is parsed and each text line is

stored in a pool. Although the content in books is semantically different from the content on News

channels, it is important to mention that we strive to enhance the training data such that it contains

various combinations of characters. Since we target an implicit segmentation based analytical

approach, the semantic content itself is not important rather, the representation of various character

shapes and their combinations is what contributes to the effectiveness of the learning algorithm.

Likewise, to ensure close resemblance with the actual data, various backgrounds are extracted from

actual News channel videos and a pool of background is created. Next, we randomly pick one of

the text lines and one of the backgrounds from the respective pools and the text is superimposed on

the background image. The process is repeated as many times as the required number of synthetic

text lines. The overall process of generating the synthetic text lines is summarized in Figure 3.10

while samples of such synthetic text lines are presented in Figure 3.11 where it can be seen that the
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generated text line images look very similar to the actual text lines extracted from video frames.

3.6 Summary

This chapter presented an overview of data collection and labeling and introduced the ’UTiV’

dataset 1. We also presented the ground truth labeling tool and its different features and presented a

summary of the data that has been labeled along with different interesting statistics of the collected

data. In the next chapter, we present the techniques investigated for detection of textual content in

video frames.

1https://drive.google.com/drive/folders/1U3M6WTReCu4PYxk88aXlTQDqsSn4gHAq



3.6 Summary 59

Figure 3.8: Frequency of Top-30 Urdu characters in the collected data
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Figure 3.9: Sample text lines extracted from video frames

Figure 3.10: Generation of synthetic text lines

Figure 3.11: Synthetically generated text lines to resemble caption text



Chapter 4

Detection of Textual Content

4.1 Introduction

This chapter presents the details of techniques developed for detection of caption text appearing

in video frames, the first step towards the development of textual content based applications. We

first introduce our investigations based on hand-crafted features. A combination of unsupervised

and supervised techniques was investigated for this purpose. The unsupervised detection relies on

a series of image analysis operations exploiting the edge density of text characters to determine

the candidate text regions. The identified regions are further enhanced by using a combination

of morphological operations followed by application of geometrical constraints. The detected

text regions are later validated through a supervised technique using textural measures as features.

With the recent paradigm shift from hand-crafted to machine-learned features and, inspired by

the superiority of these learned features over hand-engineered features, we adapted the detection

methodology to include the latest and robust feature extraction using deep learning techniques. A

number of object detectors were adapted for text detection problem and their performance was

analyzed through a comprehensive series of experiments.

In the following sections, we first present text detection using image analysis techniques

followed by the investigation of deep learning based techniques for this problem. We then present

the findings of the experimental study along with a detailed analysis of the realized results. The

chapter concludes with a recall of the key ideas and a summary of the findings.

4.2 Detection of Text using Image Analysis Techniques

Text in video or images has certain attributes which can be effectively employed to segment it from

the background. Our initial research on detection of textual content targeted these properties to

find potential text regions in the image. The text is supposed to be readable hence the contrast

between the text and its background should be reasonably high. Similarly, text in any script can be

characterized by a strong density of edges. With few exceptions, text is aligned horizontally and in
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general has the same font style and size within the same line of text. We exploit these attributes to

detect potential text regions as presented in the following.

4.2.1 Gray Scale Filtering

It is known that text appearing in video frames can be detected and read using intensity information

only. Consequently, in order to make the processing of frames independent of the color information,

the frames are first converted to gray scale keeping only the intensity information of each pixel [88].

4.2.2 Detection of Edges

It is known that edges are a common feature of text in all scripts [53, 44]. Although, many non-text

objects may also have sharp edges, text is characterized by the presence of a large number of edges

in the proximity of one another. Edges can be computed using first or second order derivatives

termed as gradient and Laplacian methods respectively. Different scripts have different proportions

of horizontal, vertical and diagonal edges corresponding to text strokes in each of these directions.

These differences make it difficult to have a common method that could detect text occurrences in

variety of languages (English and Urdu in our case). Analyzing samples of text in English and Urdu,

it can be observed that vertical strokes represent the most dominant common attribute between the

two types of text. We, therefore, extract vertical strokes through detection of vertical edges in the

image.

Sobel operator [292] is applied on the grayscale image to detect the vertical edges. Effectively,

performing convolution with the horizontal Sobel mask (Equation 4.1) computes the derivative of

image in the horizontal direction which highlights the vertical edges in the image.

Gx =

 −1 0 1

−2 0 2

−1 0 1

 (4.1)

As illustrated in Figure 4.1, extracting vertical strokes retains most of the textual regions.

Although a number of non-text regions are also retained and these non-text regions are likely to be

high in case of complex backgrounds, the subsequent detection and validation steps reduce these

false positives to as low as possible.

4.2.3 Mean Gradient

It is known that the textual content generally appears in groups rather than in isolation. As a result,

a natural step after detection of (vertical) edges is to enhance the magnitude of image gradients in

the text regions while suppressing it in the non-text areas. Generally, this is achieved by scanning

the gradient image with a small window and performing some operations [44, 290, 77]. In our

implementation, we have employed a sliding window based technique where each pixel value is
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Figure 4.1: An image with occurrences of Urdu and English text and the corresponding vertical
edges in the image

replaced with the mean gradient value within the window. The width of the window is determined

as a function of the image resolution. The motivation behind this operation is that edges in text

regions appear in clusters. Hence, computing the average gradient in windows over text regions is

likely to maintain high values. On the other hand, isolated gradients in the non-text regions are

likely to be suppressed.

4.2.4 Binarization

Once the gradients have been accumulated using the mean gradient filter, the resulting image is

binarized to obtain the potential text regions as white pixels and the background as black pixels.

This allows application of morphological operators in the subsequent steps. We have employed a

global thresholding technique (Otsu’s algorithm) [293] to binarize the frames. As a result of this

step, the isolated or weak gradients become a part of the background.

4.2.5 Morphological Processing

Once the frames are binarized, the clusters of text regions are further discriminated from non-

text regions by employing a series of morphological operations [44, 46, 294]. We first apply a

horizontal run-length smoothing algorithm (RLSA) to the binarized image so that the white pixels

within the proximity of one another are merged together. These components are likely to be

characters or ligatures which are combined into a single component using the horizontal RLSA. To

remove the noisy, text-like regions, we then apply morphological erosion. Erosion has the effect

of shrinking the components while smaller components are completely removed from the frame.

Finally, morphological closing is applied to the image to smooth component boundaries, fill the

holes and merge the components joined through bridges.

4.2.6 Geometrical Constraints

Textual regions in images have some geometrical features that can be used to differentiate them

from non-text areas [53, 44, 46]. Given the alignment of text (horizontal or vertical), the bounding

box of textual content has a constrained aspect ratio. Similarly, thresholds can be applied to the
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area, width and height of the text blocks. Since the size of text on the image is large enough to be

read by the viewers, different thresholds can be determined as a function of image resolution. In our

system, we mainly target the horizontal text. Consequently, we apply thresholds on the aspect ratio

and size of the connected components to remove all components which are not likely to correspond

to text regions. Finally, the connected components remaining in the frame are extracted which

correspond to candidate text regions.

Different steps of unsupervised detection are illustrated on three diverse sample images in

Figure 4.2 & Figure 4.3. It can be observed that detection of edges is one of the most critical steps

which influences the subsequent stages. Relatively larger number of false regions are detected in

images with high edge density. It should, however, be noted that the unsupervised, image analysis

based processing steps discussed above are aimed at detecting the regions which are likely to

contain textual occurrences. A precise localization of text is not required at this stage rather, the

idea is to make an effort not to miss the textual regions. The next step of text validation will then be

employed to eliminate the false positives and retain only textual regions.

4.2.7 Validation of Text Regions

Once the candidate text regions are identified, we validate them using a supervised approach (with

hand-crafted features). Supervised techniques involve learning of a function that maps an input

to an output based on the input-output pairs in the training set. From the perspective of text and

non-text classification, supervised classification includes presenting a learning algorithm with

examples of each category (i.e. text images and non-text images as illustrated in Figure 4.4) to

make it learn the discrimination between the two classes.

Features extracted from video frames comprising text and non-text blocks are used to train

classifiers to discriminate between the two classes as discussed in the following while an overview

of the detection system is presented in Figure 4.5.

4.2.7.1 Feature Extraction

It is known that text has a unique texture that distinguishes itself from non-text regions. We,

therefore, employ textural features to discriminate between the text and non-text regions. The

textural measures considered in our study include Gabor filters and curvelets.

• Gabor Filters: One of the widely used and popular textural feature based filters are Gabor

filters. Gabor filters share similarities with the visual cortex of mammalian cells. Mammals

are able to use band pass and orientation selectivity as main characteristics of their visual cor-

tex cells which make them respond to specific spatial frequency and direction. These cortex

cells are found in pairs with odd and even symmetry respectively. Various image processing

applications are developed based on these similarities of Gabor filters and visual cortex. In

many applications, bank of Gabor filters is prepared using different scales and orientations.
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Original Images 

  

Grayscale Images 

Detection of Vertical Edges 

   

Mean Gradient Images 

Figure 4.2: Steps I-III in unsupervised text detection

As an example, with four scales and six orientations, a bank of Gabor filter can be seen in

Figure 4.6 and the same is employed in our study. Based on the combination of different

orientations and scales, we get 24 filtered images. We calculate the mean and variance of

each of the 24 images and place these values in two matrices. Fast Fourier Transform (FFT)

is then applied on the mean and variance matrices to generate a 48 dimensional feature vector.
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Binarized Images 

   

Morphological Processing 

   

Potential Text Regions after Geometrical Constraints 

 Figure 5: An illustration of key steps in detection of text regions 
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Figure 4.3: Steps IV-VI in unsupervised text detection

Figure 4.4: Sample blocks of (a) Non-text and (b) text regions which are employed to train a
classifier

• Curvelets: Curvelets [95] are known to be effective as a feature descriptor for images

containing textual occurrences. Pixels in the close proximity of one another give rise to

edges, the strokes of text in our case. The 2D Fast Fourier Transform (FFT) of the curvelet

transformed image is taken and is employed as feature.
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Figure 3: Overview of detection system using hand-crafted features 

 

1.1 Feature Extraction 

It is known that text has a unique texture that distinguishes itself from non-text regions. We, therefore, 

employ textural features to discriminate between the text and non-text regions. The textural measures 

considered in our study include Gabor filters and curvelets.  

 

Gabor Filters: One of the widely used and popular textural feature based filters are Gabor filters. Gabor 

filter shares similarities with the visual cortex of mammalian cells. Mammals are able to use band pass 

and orientation selectivity as main characteristics of their visual cortex cells which make them respond to 

specific spatial frequency and direction. These cortex cells are found in pairs with odd and even symmetry 

respectively. Various image processing applications are developed based on these similarities of Gabor 

filters and visual cortex. 

 

Figure 4.5: Overview of detection system using hand-crafted features

Figure 4.6: Bank of Gabor filters with 4 scales and 6 orientations

4.2.7.2 Classification

For classification, two state-of-the-art classifiers namely Support Vector Machine (SVM) and

feed forward Artificial Neural Network (ANN) have been employed. Gabor and curvelet features

extracted from text and non-text blocks are used to train these classifiers which are later evaluated

on unseen blocks.

4.2.7.3 Evaluation

In the preliminary experiments, we studied the effectiveness of the proposed scheme using a set of

1000 video frames taken from ’UTiV’ dataset. The system realized a precision of 0.72 and a recall
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of 0.89. More details on supervised text validation using hand-crafted features can be found in [295].

As discussed earlier, the latest trend in machine learning is to replace hand-crafted features with

machine-learned features which are known to be more robust and also outperform the traditional

feature extraction techniques. Consequently, after initial investigations with hand-crafted features,

we explored machine learned features using convolutional neural networks (CNNs). Details on

CNNs and their adaptation to our problem are presented in the following sections.

4.3 Detection of Text using Deep Learning Techniques

Deep neural networks enjoy a renewed interest of the machine learning community thanks primarily

to the availability of high performance computing hardware (GPUs) as well as large data sets to

train these systems. A major development contributing to the current fame of deep learning was the

application of Convolutional Neural Networks (CNNs) by Krizhevsky et al. [296] on the ImageNet

Large Scale Visual Recognition competition [297], which greatly reduced the error rates. Since then,

CNNs are considered to be state-of-the-art feature extractors and classifiers [298, 299] and have

been applied to a variety of recognition tasks [300, 301, 302]. In addition to classification, CNNs

have also been adapted for object detection and are known to outperform the conventional computer

vision algorithms for detecting and localizing objects in images. Inspired by their robustness, we

have chosen to adapt deep learning based object detectors for detection of textual content in the

video frames. We first present an overview of the well-known object detectors followed by details

on how they are adapted for detection of textual content in video frames.

4.3.1 Deep Learning based Object Detectors

While traditional CNNs are typically employed for object classification, Region-based Convolu-

tional Networks (R-CNN) [303] and their further enhancements Fast R-CNN [304] and Faster

R-CNN [305] adapt CNNs for object detection. In addition to different variants of R-CNN, a

number of new architectures have also been proposed in the recent years for real time object

detection. The most notable of these include YOLO (You Only Look Once) [306] and SSD (Single

Shot Detector) [307]. Each of these object detectors can be trained to detect C object classes (plus

one for the background). The output of the detector is the location of the bounding box (four

coordinates) containing one of the C classes as well as the class confidence score.

In our study, for detection of textual content in a given frame, we investigated a number of

CNN based object detectors. Although, many object detectors are trained with thousands of class

examples and provide high accuracy in detection and recognition of different objects, these object

detectors can not be directly applied to identify text regions in images. These models have to be

tuned to the specific problem of discrimination of text from non-text regions. The convolutional

base of these models can be trained from scratch or known pre-trained models can be fine-tuned by
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training them on text and non-text regions. The following object detectors were adapted for text

detection in our study.

• Faster R-CNN

• You Only Look Once (YOLO)

• Single Shot Detector (SSD)

• Region-Based Fully Convolutional Networks (R-FCN)

In the next sections, for completeness, we provide a brief overview of these object detectors.

4.3.1.1 Faster R-CNN

Faster R-CNN [305] is an enhanced version of its predecessors R-CNN [303] and Fast R-CNN [304].

Each of these detectors exploits the powerful features of ConvNets for object localization as well as

classification. R-CNN was one of the first attempts to apply ConvNets for object detection. An R-

CNN scans the input image for potential objects using Selective Search [301] that generates around

2,000 region proposals. Each of these region proposals is then fed to a CNN for feature extraction.

The output of the CNN is finally employed by an SVM to classify the object and a linear regressor

to tighten the bounding box. R-CNN was enhanced in terms of training efficiency by extending

it to Fast R-CNN [304]. In Fast R-CNN, rather than separately feeding each region proposal to

the ConvNet, convolution is performed only once on the complete image and the region proposals

are projected on the feature maps. Furthermore, the SVM in R-CNN was replaced by a softmax

layer extending the network to predict the class labels rather than using a separate model. While

Fast R-CNN significantly reduced the time complexity of the basic R-CNN, a major bottleneck

was the selective search algorithm to generate the region proposals. This was addressed through

Region Proposal Network (RPN) in Faster R-CNN [305] which shares convolutional features with

the detection network. RPN predicts region proposals which are then fed to the detection network

to identify the object class and refine the bounding boxes produced by the RPN. A summary of

various R-CNN models in presented in Figure 4.7.

4.3.1.2 You Only Look Once (YOLO)

YOLO [306] takes a different approach to object detection primarily focusing on improving the

detection speed (rather than accuracy). As the name suggests, YOLO employs a single pass of

the convolutional network for localization and classification of objects from the the input images.

The input image is divided into a grid and an object is expected to be detected by the grid which

holds the center of the object. Each cell in the grid predicts up to two bounding boxes (and class

probabilities) (Figure 4.8). The network comprises 24 convolutional and fully connected layers.

YOLO works in real time but in terms of accuracy, it is known to make significant localization
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Figure 4.7: Summary of R-CNN Family Models

errors in comparison to region based object detectors (Faster R-CNN for instance). YOLO was later

enhanced to YOLO9000 [308] by including batch normalization, increasing the resolution of the

input image (by a factor of 2) and introducing the concept of anchor boxes. YOLO9000 employs

Darknet 19 architecture with 19 convolutional layers and 5 max pooling layers and a softmax layer

for classification objects. Incremental improvements in YOLO v2 resulted in YOLO v3 [309] that

uses logistic regerssion to predict the score of objectness for each bounding box. Furthermore, it

employs class-wise logistic classifiers (rather than softmax) allowing multi-label classification.

4.3.1.3 Single Shot Detector (SSD)

Unlike the R-CNN series object detectors which require two shots to detect objects in an image,

Single Shot Multi-box Detector [307], as the name suggests, requires a single shot to detect objects

(similar to YOLO). SSD relies on the idea of default boxes and multi-scale predictions and directly

applies bounding box regression to the default boxes without generating the region proposals.

Detection at multiple scales are handled by exploiting the feature maps of different convolutional

layers corresponding to different receptive fields in the input image. The architecture (Figure 4.9)

has an input size of 300×300×3 and primarily builds on the VGG-16 architecture discarding the

fully connected layers. VGG-16 is used as base network mainly due to its robust performance of

image classification tasks. The bounding box regression technique of SSD is inspired by [299]

while the MultiBox relies on priors, the pre-computed fixed size bounding boxes. The priors are

selected in such a way that their Intersection over Union ratio (with ground truth objects) is greater

than 0.5. The MultiBox starts with the priors as predictions and attempt to regress closer to the
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Figure 4.8: Detection method of YOLO, (Image Source [306])

ground truth bounding boxes. SSD works in real time but requires images of fixed square size and

is known to miss small objects in the image.

Figure 4.9: Architecture of Single Shot Detector, (Image Source [307])

4.3.1.4 Region-Based Fully Convolutional Networks (R-FCN)

R-FCN [310] builds on the idea of increasing the detection accuracy by maximizing the shared

calculations. R-FCN generates position-sensitive score maps to represent different relative positions

of an object. An object is represented by k2 relative positions dividing it into a grid of size k× k.

A ConvNet (ResNet in the original R-FCN paper) sweeps the input image and an additional fully

convoltional layer produces the position-sensitive scores in k2× (C+ 1) score maps where C is

the number of classes plus 1 class for the background. A fully convolutional proposal network
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generates regions of interest which are divided in k2 bins and the corresponding class probabilities

are obtained from the score maps. The scores are averaged to convert the k2× (C+1) values into a

one dimensional (C+1) sized vector which is finally fed to the softmax layer for classification.

Localization is carried out using the bounding box regression similar to other object detectors.

R-FCN speeds up the detection in comparison to Faster R-CNN but compared to other Single Shot

methods, it requires more computational resources. An overview of R-FCN based object detection

is presented in Figure 4.10.

Figure 4.10: Region-based Fully Convolutional Networks (R-FCN) for Object Detection (Image
Source [310])

4.3.2 Adapting Object Detectors for Text Detection

In the context of object detection, the problem of text detection can be formulated as a two class

problem. The text regions represent the object of interest while the non-text regions need to be

ignored. The object detectors discussed in the previous section are adapted for text detection using

two pre-trained models, ResNet 101 [311] and Inception v3 [312]. The pre-trained models are

trained on the very large scale Microsoft COCO (Common Objects in Context) database [313]. The

database contains images of 91 different object types with a total of 2.5 million labeled instances in

328K images. The pre-trained network serves as starting point rather than random weight initial-

ization and the network is made to learn the specific class labels (text or non-text) by continuing

back propagation (Figure 4.11). The ground truth localization information of the textual regions

in the video frames is employed for training the models. A critical aspect in employing object

detectors for text detection is the choice of anchor boxes. The anchor boxes in all the detectors have

been designed to detect general object categories. Text appearing in videos has specific geometric

properties in terms of size and aspect ratio hence the default anchor boxes of the detectors need to be

adapted to detect textual regions. We carried out a comprehensive analysis of the textual regions in

terms of width, height and aspect ratios of the bounding boxes. As a result of this analysis we have

chosen a base anchor of size 256×256. To each anchor box we apply three scales (1.0,2.0,5.0)
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and five aspect ratios (0.125,0.1875,0.25,0.375,0.50) as illustrated in Figure 4.12. Among the

various investigated detectors, we finally adapted Faster R-CNN for our study; more details are

presented in Section 4.4.

Figure 4.11: Overview of adapting object detectors for text detection

Figure 4.12: Anchor boxes (base size 256×256) at three scales (1.0,2.0,5.0) and five aspect ratios
(0.125,0.1875,0.25,0.375,0.50)
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4.3.3 Script Identification

Since we primarily target videos from the local News channels, video frames are likely to contain

bilingual text (Urdu & English) in most cases. Consequently, once the text is detected, we need

to identify the script of each detected region (Figure 4.13) so that the subsequent processing

(recognition) of each type of script can be carried out by the respective recognition engine. For

script identification, we employ CNNs in a classification framework (rather than detection). Urdu

and English text lines are employed to fine-tune CNNs to discriminate between the two classes.

Once trained, the model is able to separate text lines as a function of the script. Similar to detection,

rather than training the networks from scratch, we fine-tune known pre-trained models (Inception

and ResNet) to solve the two-class classification problem.

Figure 4.13: Example of script identification

4.3.4 Hybrid Text Detector & Script Identifier

Detection of text and identification script, as discussed previously, can be implemented in a cas-

caded framework where the output of text detector is fed to the script identifier. A deep learning

framework can be tuned to discriminate between text and non-text regions and the extracted text

regions can be fed to a separate script recognition model that identifies the script of the detected

text. This, however, introduces a bottleneck of training two separate networks. Furthermore, the

cascaded solution also implies that errors in detection are propagated to the next step as well.

We, therefore, propose to combine the text detector and script identifier in a single hybrid model.

Rather than treating detection as a two-class problem (text and non-text), we consider it as a three

class problem, i.e. non-text regions, English text and Urdu text. This not only avoids training

two separate models but also eliminates the accumulation of errors in a cascaded solution. The

superiority of the combined text detector and script identifier is also supported through quantitative

evaluations as discussed in the next section.

All detectors are trained in an end-to-end manner with a multi-task objective function that

combines the classification and regression losses. Formally, the loss function (of the chosen Faster

R-CNN based detector) is defined as a combination of the region proposal and the detection network

loss functions as follows.
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L = L RPN +L DET

Where L RPN is the loss of region proposal network while L DET is the loss of detection

network. Each of these are defined in the following. The multi-task loss function L RPN combines

the losses of the region proposal classification and bounding box regression.

L RPN = L RPN
cls +L RPN

box

L RPN =
1

Ncls
∑

i
Lcls(pi, p∗i )+

λ

Nbox
∑

i
p∗i ·Lsmooth

1 (ti− t∗i )

Where L RPN
cls is the log loss function over two classes, pi is the predicted probability of anchor i

being an object, p∗i is the ground truth label (binary) of anchor i being an object, ti are the predicted

four coordinates of the bounding box and t∗i are the ground truth coordinates. Likewise, Ncls is the

normalization term set to the mini-batch size, Nbox is the normalization term set to the number of

anchors and λ is the balancing parameter set to the default value of 10. Lsmooth
1 is the smooth L1

loss.

L RPN
cls (pi, p∗i ) =−p∗i log pi− (1− p∗i ) log(1− pi)

Lsmooth
1 (x) =

0.5x2 if |x|< 1

|x|−0.5 otherwise

In a similar fashion, the multi-task loss function of the detection network (L DET) also combines

the losses of classification and bounding box regression.

L DET = L DET
cls +L DET

box

For background, L DET
box is ignored by the indicator function 1[u≥ 1], defined as:

1[u >= 1] =

1 if u≥ 1

0 otherwise

Where u is the true class label, u ∈ 0,1,2; in our study. For background we have u=0. The overall
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detector loss function is defined in the following.

L DET = L DET
cls (p,u)+1[u≥ 1]L DET

box (tu,v)

L DET
cls =− log pu

L DET
box (tu,v) = ∑

i∈{x,y,w,h}
Lsmooth

1 (tu
i − vi)

pu is the probability of region belonging to class u, v = (vx,vy,vw,vh) are the ground truth

bounding box coordinates while (tu are the predicted coordinates.

The evolution of training loss for the investigated detectors (with Inception and ResNet) is

illustrated in Figure 4.14 where it can be seen that the loss begins to stabilize from 40 epochs on

wards. A summary of different hyper-parameters employed for training is presented in Table 4.1

while the number of tuned parameters in our adapted and standard Faster R-CNN are presented in

Table 4.2.

Figure 4.14: Training loss of various detectors

4.4 Experiments and Results

The detection performance is evaluated through a series of experiments carried out on the collected

set of video frames. We first present the experimental protocol followed by the detection results of

various object detectors. We then present the script identification results and the performance of the

combined text detector and script identifier. Furthermore, performance sensitivity of the system as

well as a comparison with state-of-the-art is also presented.
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Table 4.1: Training parameters of hybrid text detector & script identifier network

Training Parameters
Parameter Value
Number of Classes 2
Learning Rate 0.0001
Batch Size 32
Anchor Box Size 256×256
Scales 1.0, 2.0, 5.0
Aspect Ratios 0.125, 0.1875, 0.25, 0.375, 0.50

Table 4.2: Tuned Parameters of adapted and standard Faster R-CNN models

Parameters
Image Size Base Model Base Layers RPN Detection Total

Orignal 224×224×3 VGG16 14.7 M 2.4 M 39.4 M 56.5 M
Adapted 900×600×3 InceptionV3 21.5 M 9.5 M 25 M 56 M

4.4.1 Experimental Settings

As introduced in Chapter 3, we collected a total of 11,192 video frames from four different News

channel videos. The localization information of text regions in these frames is used to train and

subsequently evaluate the text detection and script identification performance. The distribution of

frames into training and test sets along with the number of text lines in each set is summarized

in Table 4.3. The split of data into training and test sets for machine learning-based systems has

remained a subject of thorough discussion in the literature. The generally recommended splits

of data into training and test sets are 80%-20%, 75%-25% or 70%-30% [314, 315]. In some

cases, a split of 60%-40% is also suggested [316, 317]. From the perspective of text detection

and recognition, a split of 80%-20% is employed in [33, 318] while a distribution of 70%-30%

into training and test sets is carried out in [190, 168, 213]. Taking into account the common split

ratios suggested by machine learning researchers in general and employed by text detection and

recognition community in particular, we split the data into train and test sets with a ratio of 75:25.

The details of detection performance are presented in the next section.

Table 4.3: Data distribution for text detection experiments

Train Test
Frames Lines Frames Lines

Urdu
8,500

31,321
2,692

9,149
English 16,207 7,425
Total 47,528 16,574
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4.4.2 Text Detection Results

Object detectors including Faster R-CNN, YOLO, SSD and R-FCN are adapted to detect textual

content by fine-tuning the Inception and ResNet pre-trained models and changing the anchor boxes

as discussed previously. Performance of each of these detectors in terms of precision, recall and

F-measure is summarized in Table 4.4. It can be seen that in all cases, detectors pre-trained on

Inception outperform those trained on ResNet. Among various detectors, Faster R-CNN reports

the highest F-measure of 0.90. The lowest performance is reported by Yolo reading an F-measure

of 0.66. A comprehensive study on the trade-off between speed and accuracy of various object

detectors is presented in [319] and our findings on detection of text are consistent with those

of [319]. It is also important to recap that precision and recall are computed using area based

metrics. As a result, if the detected bounding box is larger (smaller) than the ground truth, it results

in penalizing the precision (recall) of the detector as illustrated in Figure 4.15. The output of the

Faster R-CNN based text detector for few sample frames in our dataset is illustrated in Figure 4.16.

Table 4.4: Text Detection Results

RestNet Inception
Model Precision Recall F-Measure Precision Recall F-Measure
SSD 0.83 0.71 0.77 0.82 0.77 0.80
R-FCN 0.79 0.86 0.82 0.84 0.89 0.86
Faster R-CNN 0.82 0.90 0.85 0.86 0.95 0.90
Yolo - - - 0.63 0.69 0.66

In an attempt to provide an insight into the detection errors, few of the errors are illustrated in

Figure 4.17. It can be seen that in most cases, the detector is able to detect the textual region but the

localization is not perfect i.e. in some cases the bounding box is larger (smaller) than the actual

content leading to a reduced precision (recall).

4.4.3 Script Identification Results

For script identification, we employ the same distribution of frames into training and test sets as

that of the detection protocol. Text lines from the video frames in the training set are employed to

fine-tune the pre-trained ConvNets while the identification rates are computed on text lines from the

frames in the test set. A total of 31,321 Urdu and 16,207 English text lines are used in the training

set while the test set comprises 9,9149 and 7,425 text lines in Urdu and English respectively. The

resulting confusion matrix is presented in Table 4.5 while the precision, recall and F-measure are

summarized in Table 4.6. It can be seen that the model was able to correctly identify the scripts

with an accuracy of more than 94%.
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Figure 4.15: Computation of precision and recall (a):Ground Truth Bounding Box (b): Detected
region is larger than ground truth (c):Detected region is smaller than ground truth (d):Detected
region overlaps perfectly with the ground truth

 

  

 

Figure 4.16: Text detection results on sample images (Faster R-CNN with Inception)
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Figure 4.17: Imperfect Localization of Text Regions

Table 4.5: Script identification confusion matrix

Urdu English
Urdu 8763 386
English 551 6874

Table 4.6: Performance of Script Identification

Precision Recall F–Measure
Urdu 0.94 0.96 0.95
English 0.95 0.93 0.94

4.4.4 Hybrid Text Detection & Script Identification Results

As discussed previously, text detection and script identification can be combined in a single model

treating detection as a three (rather than two) class problem. The results of these experiments

are summarized in Table 4.7 keeping the same distribution of training and test frames as in the

previous experiments. Many interesting observations can be drawn from the results in Table 4.7.

Similar to the script independent detectors, models pre-trained on Inception outperform those

trained on ResNet and the observation is consistent for all four detectors. Comprehensive analytical

studies [320, 321] that aim to compare state-of-the-art CNN models also report the superior perfor-

mance of Inception over ResNet for the image recognition task.

Comparing the performance of different detectors, Faster R-CNN reports the highest F-measure

both for detection of Urdu and English text reading 0.91 and 0.87 respectively. SSD and YOLO are

single shot detectors where the prime objective is real time object detection and in pursuit of speed,

the accuracy is compromised. Faster R-CNN, on the other hand is a two-stage detector which is not

as fast as YOLO or SSD but reports higher F-measure. In all cases, the performances on detection

of Urdu text are better than those on English text. This can be attributed to the fact that the data is

collected primarily from Urdu News channels which have limited amount of English text.
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It is also interesting to note that by combining text detection and script identification in a single

model, not only the cascaded solution is avoided, the detection F-measures have also improved (in

most cases). This can be attributed to the fact that errors are encountered in both text detection

and script identification, and once a cascaded solution is employed, errors of the two stages are

accumulated. The total error in such a solution is a combination of detector error and the script

identifier error. On the other hand, the hybrid solution detects the textual regions with script

information in a single step reducing the error rates. As an example, assuming there are G ground

truth text lines out of which D are detected, the detected text lines are fed to the script identification

module. The script identifier introduces its own errors correctly recognizing S out of D lines. On

the other hand, the hybrid solution detects the textual regions with script information in a single

step reducing the error rates i.e. D out of G lines are detected along with script information and

additional errors are not introduced. Though the improvement is marginal, eliminating the separate

processing of detected text regions to identify the script offers a much simplified (yet effective)

solution. Detection outputs on sample frames for the four detectors are illustrated in Figure 4.18.

While some sample output of Faster R-CNN on different news channels frames is presented in

Appendix D.

To study the effectiveness of the proposed set of anchor boxes, we also (statistically) compared

the performance of the detector with default anchor boxes with that of the adapted anchor boxes.

F-measure was computed by running the detector on multiple splits of training and test sets (keeping

their ratio same) and the t-test was performed. Average F-measures of 0.86 and 0.91 were reported

with default and adapted anchor boxes respectively and the performance of the proposed anchor

boxes was confirmed to be statistically significant with respect to default anchors.

Table 4.7: Performance of hybrid text detector and script identifier

RestNet Inception
Method Script Precision Recall F-Measure Precision Recall F-Measure

SSD Urdu 0.83 0.72 0.77 0.82 0.78 0.80
English 0.80 0.63 0.70 0.82 0.70 0.75

R-FCN Urdu 0.80 0.87 0.83 0.85 0.90 0.87
English 0.73 0.81 0.77 0.77 0.84 0.81

Faster R-CNN Urdu 0.82 0.92 0.86 0.87 0.95 0.91
English 0.80 0.81 0.80 0.81 0.94 0.87

Yolo Urdu - - - 0.64 0.70 0.67
English - - - 0.62 0.67 0.64

In an attempt to carry out an in-depth analysis of the detection performance and its evolution

with respect to important system parameters, we carried out another series of experiments using

Faster R-CNN (with Inception). In the first such experiment, we study the performance sensitivity

to the amount of training data. We train the model by varying the number of text line images (from

10K to 47K) and compute the detector F-measure. Naturally, the detector performance enhances

with the increase in the amount of training data (Figure 4.19) and begins to stabilize from around
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Figure 4.18: Detection output of hybrid text detection and script identification for different detectors
(a): SSD (b): R-FCN (c): Faster RCNN (d): Yolo
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30K-35K training lines.

Figure 4.19: Impact of size of training data on text detection performance (Faster R-CNN with
Inception)

Resolution of input video frames is an important parameter that might affect the detector

performance. To study the detector sensitivity to image resolution, we varied the image resolution

from 256× 144 to 1920× 1080. The resolution was varied only in the test set and all sets of

images were evaluated on the detector trained on a single resolution (900×600). The F-measures

in Figure 4.20 are more less consistent for varied image resolutions reflecting the robustness of

the detector. The proposed anchor boxes adapted for textual content play a key role in achieving

this scale invariance. An overall average F-measure of 0.90±0.015 is reported taking into account

multiple frame resolutions. Likewise, average precision and recall read 0.90±0.027 and 0.90±
0.017 respectively.

From the perspective of computation time, on the average, detection takes 0.36 seconds per

frame (at resolution of 900 × 600) once the model is executed on Tesla K40 GPU Computing

Processor with 12GB RAM. Unlike real time object detection, localization of textual content does

not require every frame to be processed due to redundancy of content in subsequent frames. The

processing time of 0.36 seconds per frame in our system maps to a little less than 3 frames per

second making it an appropriate model for retrieval and other related applications.

4.4.5 Performance Comparison

In an attempt to compare the performance of our detector with those reported in the literature, we

present a comparative overview of various text detectors targeting cursive caption text in Table 4.8.

It is important to note that since different studies are evaluated on different datasets, a direct compar-

ison of these techniques is difficult. Most of the listed studies employ a small set of images (≤ 1000).

Moradi et al. [32] and Zayene et al. [33] report results on relatively larger datasets with F-measures

of 0.89 and 0.84 respectively. In comparison to other studies, we employ a significantly larger set
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Figure 4.20: Impact of video resolution on text detection performance (Faster R-CNN with
Inception)

of images with an F-measure of 0.91. Furthermore, for a fair comparison, we also evaluated our

system on the set 1000 images in the publicly available IPC dataset [143] for Urdu and English text.

The corresponding F-measures read 0.92 and 0.89 for Urdu and English respectively outperforming

other methods evaluated on this dataset hence validating the effectiveness of our detection technique.

Table 4.8: Performance comparison with other techniques

Study Method Dataset Script Video Frames Precision Recall F-Measure
Jamil et al.(2011) [44] Edge-based Features IPC Urdu 150 0.77 0.81 0.79
Siddiqi and Raza(2012) [143] Image Analysis IPC Urdu 1,000 0.71 0.80 0.75
Moradi et al.(2013) [32] LBP with SVM - Farsi/Arabic 4971 0.91 0.87 0.89
Raza et al.(2013) [46] Cascade of Transforms IPC Urdu 1,000 0.80 0.89 0.84
Raza et al.(2013) [46] Cascade of Transforms IPC Arabic 300 0.81 0.93 0.86
Yousfi et al.(2014) [157] ConvNet - Arabic 201 0.75 0.80 0.77
Zayene et al.(2015) [156] SWT AcTiV Arabic 425 0.67 0.73 0.70
Zayene et al.(2016) [33] SWT & CAE AcTiV Arabic 1843 0.83 0.85 0.84
Shahzad et al.(2017) [47] Image Analysis - Urdu/Arabic 240 0.83 0.93 0.88
Mirza et al.(2018) [295] Textural Features UTiV Urdu 1,000 0.72 0.89 0.80
Unar et al.(2018) [142] Image Analysis+SVM IPC Urdu 1,000 0.83 0.88 0.85
Proposed Method Deep ConvNets UTiV Urdu 11,192 0.87 0.95 0.91

IPC Urdu 1,000 0.91 0.93 0.92
IPC English 1,000 0.84 0.94 0.89

4.5 Summary

This chapter presented the details of techniques developed for detection of caption text appearing in

video frames. We fist introduced the image analysis based detection technique and highlighted our

motivation of migrating to deep learning based object detectors. A number of object detectors were

adapted for detection of textual regions and among these, based on the findings of a comprehensive

series of experiments, Faster R-CNN with Inception was eventually chosen. We also demonstrated
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the effectiveness of combining text detection and script identification in a single model. The findings

of this study are published in [322]. In the next chapter, we introduce the technique developed for

recognition of textual regions.



Chapter 5

Recognition of Textual Content

5.1 Introduction

This chapter presents the details of the techniques developed for recognition of cursive (Urdu)

caption text. We first discuss the pros and cons of holistic and analytical recognition techniques

and the motivation of choosing an implicit segmentation-based analytical technique in our study.

We next introduce the details of the recognition technique including the pre-processing, feature

extraction and classification. Recognition is modeled as a sequence-to-sequence mapping problem

where a Convolutional Neural Network is employed for feature extraction while different variants

of Recurrent Neural Networks are investigated for (sequence) classification. We then present the

experimental protocol, the realized results and a detailed analysis of the recognition performance

with some insights into causes of recognition errors. The chapter concludes with a summary of the

key findings.

5.2 Choice of Recognition Unit

As a function of recognition unit, recognition techniques for cursive scripts are categorized into

holistic and analytical methods as discussed in Chapter 2. Holistic or segmentation-free techniques

employ sub-words (also known as ligatures) as units of recognition while analytical approaches

recognize individual characters. Holistic methods avoid the complex segmentation part but a major

challenge in these techniques is the large number of unique ligature classes. On the other hand,

analytical methods need to discriminate among a small number of character classes which is equal

to the number of unique characters in the alphabet and their various context-dependent shapes.

Segmentation of cursive text into characters, however, is itself a highly complex problem.

In Urdu, characters may appear in isolated form or are joined with other characters using the

joiner rules. The shape of a character, therefore, varies depending upon whether it appears in

isolation or, at the start, end or middle of a sequence of joined characters. Since word boundaries

86
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are hard to identify in Urdu and other cursive scripts, holistic recognition techniques typically rely

on extracting partial words or ligatures from text line images. Ligatures are further categorized into

primary and secondary ligatures. Primary ligatures are the main body component while secondary

ligatures correspond to dots and diacritics (Figure 5.1). As a first step, ligatures are extracted

from input text images typically using connected component labeling. Secondary ligatures (dots

and diacritics) are then associated with their parent primary ligatures by applying morphological

operations. Subsequently, ligatures are grouped in to clusters to produce the training data. While

the total number of unique ligatures in Urdu is more than 26,000 [167], it has been shown [167]

that more than 90% of Urdu corpus can be covered with around 2,000 frequent ligatures only. In

some cases, primary and secondary ligatures are separately recognized (to reduce the number of

unique classes) and are re-associated in a post processing step [165].

Figure 5.1: (a):A complete Urdu word (b):Ligatures (c):Main body (primary ligature) (d):Dots and
diacritics (secondary ligatures)

There are, however, also some challenges associated with recognition using holistic techniques.

Generation of ligature clusters along with labels for training the model is a tedious and prohibitively

time consuming task. Furthermore, in videos, segmentation of caption text in to ligatures is difficult

due to low resolution. In cases, where primary and secondary ligatures are recognized separately,

the re-association of secondary ligatures with the parent body is also known to be a major cause of

recognition errors [165].

In analytical recognition techniques, characters are used as units of recognition. Both explicit

and implicit segmentation of characters can be employed in analytical recognition techniques.

However, explicit segmentation of text into characters is a highly challenging problem, therefore,

most of the analytical techniques rely on implicit segmentation [323, 37, 211, 213]. With the recent

advancements in deep learning, learning algorithms can be provided with text line images along

with the corresponding textual transcriptions. The algorithm not only learns various character

shapes but also character boundaries. The only challenging part in such implicit segmentation

based techniques is the need of ‘sufficient’ labeled training data.

In our study, we employed an analytical technique for recognition of Urdu caption text. The

decision is also supported by our preliminary investigations on holistic recognition (details are

provided in Appendix E) which do not scale up well as the vocabulary size increases. Unlike
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holistic techniques, analytical recognition also allows recognizing the words which the system

might not have seen in the actual training set. The details of the proposed recognition technique are

presented in the next section.

5.3 Recognition using Analytical Technique

This section presents the details of the proposed recognition technique. Text line images are

first pre-processed to segment text from the background. The binarized images of text lines are

then fed to a convolutional neural network for feature extraction. The generated feature map is

subsequently provided as input to a recurrent neural network using sliding windows. Finally, being

a sequence-to-sequence mapping problem, we introduce a connectionist temporal classification

layer for sequence alignment. An overview of these steps is presented in Figure 5.2 while each of

these is detailed in the following.

5.3.1 Pre-Processing

While the recognition engine can be fed with colored or grayscale images, removing the background

information and binarizing the image allows the learning algorithm better learn the character shapes

and boundaries. For images with simple and homogeneous backgrounds, a global thresholding

suffices. Video frames, however, often contain text on multiple, non-homogeneous backgrounds.

Furthermore, there are two scenarios in which text may appear; dark text on bright background or

bright text on dark background. Once the image is binarized, we need all text lines to follow one of

the two conventions. In our study, we assume dark text on bright background and if this is not the

case, we invert the polarity of the grayscale image prior to binarization.

As a first step, we need to detect the polarity of the text. Canny edge detector is applied to the

grayscale text line image and blobs are identified. These blobs correspond to (approximate) text

regions in the image. Region filling is applied to these blobs and the generated binary image is used

as mask on the grayscale image to extract potential text regions (characters or ligatures). We then

compute the median gray value (Medtext) of the extracted blobs as well as the median gray value

of the background (all pixels which do not belong to any blob), Medback. If Medtext < Medback we

have dark text on bright background and the polarity agrees with our assumed convention. On

the other hand, if Medtext > Medback, this corresponds to bright text on dark background. In such

cases, the polarity of the image is reversed prior to any further processing [324]. The process is

summarized in Figure 5.3.

Once all text lines contain text in the same polarity, we binarize the images to contain only

textual information. For binarization, we investigated a number of thresholding techniques. These
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Figure 5.2: An overview of the key processing steps

include Otsu’s global thresholding method [293] as well as a number of local thresholding algo-

rithms. The local thresholding algorithms are adaptive techniques where the threshold value of each

pixel is computed as a function of the neighboring pixels. Most of these algorithms are inspired
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Figure 5.3: Identification of polarity of text (a):Original image (b):Gray scale image (c):Text blobs
(d):Filled text blobs serving as a mask to extract corresponding blobs from the gray image (e): Final
image (Image on the right is inverted while the one on left remains unchanged)

from the classical Niblack thresholding [88] where the threshold is computed as a function of the

mean and standard deviation of the gray values in the neighborhood of a reference pixel. Other

algorithms investigated in our study include Sauvola [325], Feng’s [326] and Wolf’s thresholding

algorithm [53]. A brief description of these methods is presented in the following.

Otsu’s Global Thresholding [293], named after Nobuyuki Otsu, is a classical binarization

method that converts an image into two classes based on a single threshold value. As a function

of the distribution of gray values in the input image I, Otsu’s method computes a threshold value

(TOtsu) which is then employed to binarize the image.

O(i, j) =

1 i f I(i, j)≥ TOtsu

0 otherwise.
(5.1)

Niblack thresholding [88] is one of the earliest local binarization algorithms that computes

a threshold for every pixel in the input image as a function of the the neighboring pixels. The

threshold is calculated by considering a small rectangular window around each pixel using the

mean m and standard deviation s of the pixel values within a window as outlined in the following.

TNiblack = m+ k× s (5.2)

where m is the mean gray value of pixels within a window, s is the standard deviation and k

represents the Niblack constant that is fixed to −0.2. While Niblack’s thresholding is known to
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correctly binarize the text regions in an input image, it tends to introduce noise in non-text regions

of the image.

Sauvola’s Algorithm [325] is an improvement of Niblack’s thresholding and incorporates the

dynamic range of image gray level values in calculating the threshold.

TSauvola = m× (1− k× (1− s
R
)) (5.3)

Similar to Niblack’s algorithm, m and s represent respectively the mean and standard deviation of

the gray values within a window while k and R are fixed to 0.5 and 128 respectively. This method

provides good binarization results in case the pixel values in the input grayscale image are near to

black or white. If the values of text and non-text pixels are close to each other, the results degrade

significantly.

Wolf’s Algorithm [53], an enhancement of Sauvola’s method, was specifically developed for

binarization of multimedia document images. The algorithm normalizes the average gray and

contrast value of the image and computes the binarization threshold as follows.

TWol f = (1− k)×m+ k×M+ k× s
R
(m−M) (5.4)

Where k is fixed to 0.5, M is the minimum gray value in the image while R represents the maximum

value of standard deviations in all windows.

Feng’s Binarization [326] presented the idea of using two local windows to calculate the

dynamic standard deviation of the grayscale image (in contrast to a single window in Wolf’s

algorithm). The local mean m, minimum gray-level M, and standard deviation s are calculated in

the first (smaller) window while the dynamic range standard deviation Rs is computed in the second

(larger) window. Threshold for binarization is then calculated as follows.

TFeng = (1−α1)×m+α2×
(

s
Rs

)
× (m−M)+α3×M (5.5)

Where α2 = k1(s/Rs)
γ and α3 = k2(s/Rs)

γ ; the value of γ is set to 2 by the authors while

for other parameters, α1 varies from 0.1 to 0.2, k1 from 0.15 to 0.25 and k2 form 0.01 to 0.05.

These ranges have been empirically determined by the authors based on a comprehensive series of

experiments.

Prior to binarizing the images, we also apply a smoothing (median) filter on each text line to

remove/suppress any noisy patterns in the image. Binarization results of applying various threshold-

ing techniques to a sample text line image are illustrated in Figure 5.4. From the subjective analysis

of these results, Wolf’s algorithm that was specifically proposed for low resolution video text, seems

to outperform other techniques. Nevertheless, it is hard to generalize from visual inspection of few
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sample images and the recognition rates on images generated by each of these techniques could be

a better indicative of the effectiveness of the method. Following binarization, we normalize the

height of each text line to a fixed size (32 pixels in our case) while the width of the line is a function

of the textual content it contains.

Figure 5.4: Binarization results on a sample text line (a): Grayscale Image (b):Niblack (c):Otsu’s
Global Thresholding (d):Feng’s Algorithm (e):Sauvola’s Algorithm (f):Wolf’s Algorithm

5.3.2 Feature Extraction

Once the text lines are pre-processed, we proceed to the next step of feature extraction. As

mentioned earlier, a given text line image contains a sequence of characters which needs to be

mapped to the corresponding sequence of characters in the ground truth transcription. The problem

is hence formulated in a sequence-to-sequence mapping framework. The input sequences to the

model can be raw pixel values or features (hand-crafted or machine learned) extracted using a

sliding window protocol. A number of recent studies [127, 128, 129], validate the superiority of

machine-learned features over hand-engineered features (and raw pixel values). We, therefore,

employ a convolutional neural network as feature extractor. The architecture of a CNN is a function

of many hyper-parameters. In our study, we employed a deep neural network architecture which

contains seven convolutional layers (with max pooling). The configuration of the designed network

including filter sizes, strides, padding and output volume shapes is summarized in Table 5.1 while
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the architecture is visually presented in Figure 5.5. The cascaded convolutional layers serve as

(hierarchical) feature extractors mapping the input text line image to feature maps. The output of the

CNN is a 128×512 dimensional feature vector which is fed to an RNN for sequence classification.

Table 5.1: Architectural details of the proposed CNN

Layer Type Filter Size Stride Padding Output Volume Trainable Parameters
Input - - - 32×512×1 -
Convolution 3 x 3 1 1 32×512×64 640
MaxPooling 2 x 2 2 - 32×256×64 -
Convolution 3 x 3 1 1 16×256×128 73,856
MaxPooling 2 x 2 2 - 8×128×128 -
Convolution 3 x 3 1 1 8×128×256 295,168
Convolution 3 x 3 1 1 8×128×256 590,080
MaxPooling 2 x 1 2,1 - 4×128×256 -
Convolution 3 x 3 1 1 4×128×512 1,180,160
Convolution 3 x 3 1 1 4×128×512 2,359,808
MaxPooling 2 x 1 2,1 - 2×128×512 -
Convolution 2 x 2 1 2,1 1×128×512 1,049,088

Total Parameters 5,548,800

Figure 5.5: Architecture of the convolutional neural network employed for feature extraction

5.3.3 Sequence Prediction with Recurrent Nets

Unlike traditional classification tasks (one-to-one mapping), CNNs cannot be directly employed

to recognize the complete text lines. The input in text recognition is a sequence of characters and

the predictor is required to produce the corresponding string as output. The shape of a character

depends on the preceding as well as the subsequent characters within a word (ligature). These

dependencies in the input can be modeled using the recurrent neural networks. RNNs take the

input, process it through multiple time steps and hidden layers, and produce output. The functional

dependencies of hidden layers on previous hidden layers (in depth as well as time) allow RNNs

to exploit the contextual dependencies in the input. RNNs can be employed to solve a variety of
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sequence mapping problems including one-to-many (image captioning), many-to-one (sentiment

analysis) many-to-many (language translation) mappings.

The hidden state of a simple (single layer) RNN (Figure 5.6-a) at time-step t is defined as a

function of the input xt and the previous hidden state ht−1.

ht = tanh(Whh ht−1 +Wxh xt +bh) (5.6)

The typical activation function in RNNs is tanh while Whh and Wxh represent the weight matrices

corresponding to the previous hidden state and the current input respectively. Once the hidden state

is updated, the output is calculated as follows.

yt = g(Why ht +by) (5.7)

The output yt can be calculated at multiple time-steps (many-to-many or one-to-many mappings)

or the final time-step only (many-to-one mapping). An inherent problem of RNNs is the inability to

model long-term dependencies in the input. This is due to vanishing (exploding) gradients during

back propagation through time. The vanishing gradient problem refers to the scenario when the

gradient shrinks as it back propagates through time and if it becomes extremely small, it does not

contribute to learning. To address these issues, Long Short-Term Memory Networks (LSTMs)

were introduced [327] to model long-term dependencies in the input. LSTMs (Figure 5.6-b) are a

special kind of RNN, capable of learning long-term dependencies. The key to LSTMs is the cell

state. LSTMs have the ability to add or remove information to the cell state using gates. Gates

are composed of a sigmoid layer followed by a point-wise multiplication operation which can

optionally let information to flow from one state to another.The sigmoid layer outputs numbers

between 0 and 1, describing how much of each component should be let through.

A typical LSTM cell has a forget gate, an input gate and an output gate. The forget gate as a

function of current input xt and the previous hidden state ht−1 controls what information should be

removed from the cell state.

ft = σ(Wf · [ht−1,xt ]+b f )

To update the cell state, the input gate first decides which values in the cell state are updated.

it = σ(Wi · [ht−1,xt ]+bi)

A tanh layer next produces a vector of candidate values that could be added to the cell state.
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C̃t = tanh(Wc · [ht−1,xt ]+bc)

Finally, the cell state is updated from Ct−1 to Ct regulated by the forget and input gates.

Ct = ft �Ct−1 + it �C̃t

The cell output ht is a filtered version of the cell state Ct regulated by the output gate ot .

ot = σ(Wo[ht−1,xt ]+bo)

ht = ot � tanh(Ct) (5.8)

Figure 5.6: Architectures of (a): Simple RNN (b): GRU (c): LSTM

LSTMs were followed by Gated Recurrent Units (GRUs) [328] which significantly simplified

the cell architecture (Figure 5.6-c). Unlike three gates in an LSTM cell, GRU employs only two

gates, a reset gate and an update gate. Likewise, GRUs also eliminate separate cell and hidden sates

and only the hidden state is employed to transfer information to the next time-step. The update gate

in a GRU regulates how much of the past information needs to be passed to the next time-step.

zt = σ(Wz · [ht−1,xt ]+bz)
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Likewise, the reset gate helps the model determine the past information to forget.

rt = σ(Wr · [ht−1,xt ]+br)

The candidate memory state is computed using the reset gate as follows.

h̃t = tanh(Wh · [rt �ht−1,xt ]+bt)

As a final step, the current memory state is updated using the update gate which regulates what to

collect from the candidate state h̃t and what from the previous time-step ht−1.

ht = (1− zt)�ht−1 + zt � h̃t (5.9)

In our study, we investigated the performance of simple RNN as well as its advanced variants

(LSTMs and GRUs) for sequence prediction. Since character shapes are dependent both on

preceding and subsequent characters in the sequence, bi-directional RNNs are employed. The

output of the CNN (128×512) is fed as a sequence (with 512 time-steps and input at each time-step

being a vector of size 128) to the RNN. The proposed RNN architecture contains two stacks of

hidden layers where each stack contains a forward and a backward layer with 256 hidden units each.

The recurrent layers are connected to a fully connected layer which outputs the predicted sequence

of characters. The overall architecture is summarized in Figure 5.7 while the configuration details

are presented in Table 5.2. The impact of changing the model design on recognition rates can

be found in Appendix G. The predictions of the recurrent network are passed to a Connectionist

Temporal Classification (CTC) layer [329] for text alignment as discussed in the next section.

Table 5.2: Architectural details of the recurrent network

Cell Type Layer Type No. of Neuron Input Vector Trainable Parameters Total Trainable Parameters

RNN
Bidirectional Stack-1 256 128×512 393,728

1,050,112Bidirectional Stack-2 256 512×512 393,728
Dense 80 512 262,656

GRU
Bidirectional Stack-1 256 128×512 1,181,184

2,625,024Bidirectional Stack-2 256 512×512 1,181,184
Dense 80 512 262,656

LSTM
Bidirectional Stack-1 256 128×512 1,574,912

3,412,480Bidirectional Stack-2 256 512×512 1,574,912
Dense 80 512 262,656

5.3.4 Connectionist Temporal Classification (CTC) Layer

A CTC layer serves to convert the raw predictions of RNN into the actual transcription of a given

text line image aligning the output sequence of RNN with the target labels. The alignment of labels

is learned during the training process. The CTC layer keeps record of all labels in the transcription

along with a special extra character which separates the consecutive occurrence of characters

in transcription. CTC layer predicts the most probable sequence of labels against the sequence

predicted by the the RNN.
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Figure 5.7: Architecture of the bidirectional (left-to-right & right-to-left) RNN model with CTC
output layer

Figure 5.8 shows an example of a sequence (of characters) that is produced by the sequence

predictor and contains repetition of characters, the special character (‘-’) and a character for white

space. The extra pseudo character (‘-’) is to be distinguished from a white space character and is

used to solve the duplicate character problem. While encoding the text, a character may be repeated

any number of times and, any number of blanks can be inserted between any of the characters. The

blank character must be inserted between duplicate characters. During the decoding, the first step is

to remove all repeated characters. The special character (blank) is then removed to produce the

final transcription.

As discussed previously, the CTC layer allows the model to be trained in an end-to-end manner

by providing the text line images and the respective transcriptions. Training is guided by the CTC
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Figure 5.8: CTC Decoding Example

loss function which calculates probabilities of all possible alignments of the ground truth text

in the image and takes the sum of all scores. Given a training set with pairs of text line images

and the corresponding transcriptions, the model parameters are updated to minimize the negative

log-likelihood of the probability of producing the output transcription:

∑
(X ,Y )∈D

− log p(Y | X) (5.10)

Where X is the sequence of input features and Y is the output transcription.

The process is elaborated through Figures 5.9 and 5.10. The vocabulary is assumed to be two

characters (‘pay’ and ‘alif’), Figure 5.9-a shows the ground truth transcription of an input image

while Figures 5.9-b summarizes the output probabilities of the characters in the vocabulary at

three time-steps. Figure 5.10-a shows all possible alignments which produce the ground truth text.

The probability of a sequence is computed by multiplying the probabilities of the corresponding

characters at the respective time-steps. These probabilities are then added and the cumulative

probability is converted into loss by taking its negative logarithm (Figure 5.10-b). The loss value is
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then back-propagated through all layers and the parameters are updated.

Figure 5.9: RNN output (probabilities) with three time-steps and two characters (given in (a) )
along with CTC blank (‘-’)

Figure 5.10: (a): All possible alignments of character sequences producing the ground truth text in
Figure 5.9 (b): Summary of CTC loss calculation

5.4 Model Training and Recognition

The CNN, bidirectional LSTM and CTC layer are combined in a single end-to-end trainable net-

work. The model is provided with the text line images along with the corresponding transcriptions
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to learn different character shapes and boundaries. CNN layers extract features from text lines and

pass them to the bidirectional recurrent layers which predict the sequence and feed it to the CTC

layer for alignment.The model is trained using the CTC loss as discussed in the previous section

while other parameters involved in the training are summarized in Table 5.3. Once the model is

trained, it can be fed with the query text line images to predict the transcription.

Table 5.3: Training parameters of recognition network

Training Parameters
Parameter Value
Optimizer Adam
Learning Rate 0.0001
Learning Rate Decay 0.96
Batch Size 128

After having discussed the details of the recognition engine, we present the experimental

protocol and the realized results in the next section.

5.5 Experiments and Results

To evaluate the effectiveness of the proposed recognition technique, we carried out a comprehensive

series of experiments. We first introduce the experimental protocol followed by the recognition

results as a function of pre-processing, type of RNN cell and various combinations of training

data. Finally, we present a comparative analysis of the reported results with respect to other similar

studies.

5.5.1 Experimental Protocol

The experimental study of the system is carried out on text lines extracted from the video frames

using ground truth information. The total number of text lines extracted from video frames of four

different News channels sum up to a total of 40,470. Among these, 27,321 text lines are used in

the training set, 4,000 text lines (1,000 from each channel) in the validation set while 9,149 text

lines are used in the test set. It is ensured that text lines from a given video are only in one of the

training or test sets. The distribution of text lines into training, validation and test sets along with

the statistics on the number of words and characters in each, are summarized in Table 5.4. In some

of the experiments, we also employed the 50,000 synthetic text lines. These synthetic text lines,

however, are only employed in the training set (Table 5.4) while the validation and test sets for all

experiments are kept the same.
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Table 5.4: Distribution of dataset including synthetically generated text lines

Train Validation Test
Type of Data Lines Chars Lines Chars Lines Chars
Video Text 27,321 556,773 4,000 81,516 9,149 277,819
Synthetic Text 50,000 1,259,339 - - - -
Total 77,321 1,816,112 4,000 81,516 9,149 277,819

5.5.2 Recognition Results

In the first series of experiments, we studied the recognition performance as a function of pre-

processing (binarization) technique and the type of RNN cell (Simple RNN, GRU, and LSTM).

These experiments are carried out on actual text lines only and synthetic data is not included at this

stage, i.e. 27,321 text lines in the training set, 4,000 in validation and 9,149 in the test set (Table 5.4).

Furthermore, we also compared the performance of feeding the RNN with raw pixel values and

CNN based features. For all experiments we quantify the system performance by computing the

character recognition rates. The recognition engine outputs the predicted transcription of the query

text line. Recognition rates are calculated by computing the Levenshtein distance between the

predicted and the ground truth transcription. The recognition rates corresponding to the first series

of experiments are summarized in Table 5.5.

A number of interesting observations can be made from the reported recognition rates. First

of all, it can be seen that features computed using CNN report higher recognition rates in all

experiments as compared to raw pixels. Secondly, RNNs implemented with Gated Recurrent Units

perform better than simple RNN cells while LSTM based model outperforms the other two in

all cases for a given pre-processing (binarization) technique. Comparing the various binarization

techniques, the grayscale text lines report higher recognition rates when compared to those ob-

tained on text lines binarized using Niblack and Otsu’s thresholding algorithms. This observation

is consistent with our initial assessment of binarization algorithms where, in general, Niblack’s

binarization introduces a lot of noise in the binarized images while global thresholding fails once

the text images have non-homogeneous backgrounds. The performance of Feng’s and Sauvola’s

binarization methods is more or less similar. Text lines binarized using Wolf’s algorithm report

the highest recognition rates. This observation is also consistent with the subjective analysis of

binarization techniques where Wolf’s algorithm produced relatively cleaner versions of binarized

images. Overall, the highest reported recognition rate reads 95.98% when using the CNN-LSTM

combination and binarizing the text lines using Wolf’s algorithm. We also carried out the analysis

of variance (ANOVA) test to confirm if the results obtained by CNN-LSTM combination are

statistically significant as opposed to those reported with other combinations and raw pixels. The

binarization technique was fixed to Wolf’s algorithm and multiple splits of training and test data

were employed keeping their ratio same. The test confirmed that the reported superiority of the

CNN-LSTM combination is statistically significant. Based on these observations, the subsequent

experiments are carried out with Wolf’s binarization technique as the pre-processing step and the
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combination of CNN and LSTM as the recognition model.

Table 5.5: Summary of character recognition rates in different experimental settings

Character Recognition Rate, %
Raw Pixels CNN Features

RNN GRU LSTM RNN GRU LSTM
Grayscale 72.57 75.19 77.68 80.09 82.35 84.1
Niblack [88] 70.66 73.39 74.81 76.87 79.91 82.13
Otsu [293] 69.36 71.45 75.23 76.54 79.11 80.39
Feng [326] 76.67 79.85 81.31 82.94 84.56 87.91
Sauvola [325] 74.27 78.36 80.19 80.65 83.41 86.25
Wolf [53] 81.78 83.88 86.06 90.18 92.76 95.98

In the second series of experiments, we study the impact of training data on the recognition

performance (using CNN-LSTM with Wolf’s binarization). Furthermore, to provide deeper insights,

in addition to character recognition rates, we also computed text line recognition rate. A text line is

considered to be correctly recognized if all characters constituting the line are classified correctly.

The models are trained using three different scenarios, using text lines from video frames, using

synthetic text lines only and by combining the video text lines with synthetically generated text lines.

The results of these experiments are presented in Table 5.6. It is interesting to note that when

the system is trained using only synthetic data, it still reports acceptable recognition rates reading

69.68% and 89.32%, at line and character levels respectively. Combining the video text lines with

synthetic text lines improves the character recognition rate from 95.98% to 97.63% demonstrating

the effectiveness of the generated text lines. The enhanced recognition rates when using synthetic

data can be attributed to the fact that some of the character combinations which could not be

captured in the original text lines are represented in the synthetic text lines leading to improved

recognition rates. Training with synthetic data, naturally, took slightly longer to converge (Fig-

ure 5.11) as the learning algorithm has more number of character combinations to learn.

Table 5.6: Recognition rates as a function of training data

Item Recognition Rate (%)
Training Data Line Chars
Videos 77.53 95.98
Synthetic 69.68 89.32
Videos + Synthetic 81.34 97.63

In the last series of experiments, we studied the impact of size of training data on the recognition

performance. Keeping the test size (and all other system parameters) fixed, we varied the number

of training text lines from 3,000 to 27,321. The corresponding recognition rates are illustrated in

Figure 5.12 where it can be seen that the recognition rates begin to stabilize from 15,000 lines of
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Figure 5.11: Training loss for video and synthetically generated text lines

text on wards which is a manageable size for such applications.

From the view point of recognition time, the time to recognize a text line is naturally a function of

the length of text. We report the average recognition time per line, the average being computed on

all text lines in our test set. Recognition takes on average 0.18 seconds per text line on Tesla K40

GPU Computing Processor with 12GB RAM. Video frames, on the average, contain 4 to 5 text

lines hence the recognition engine can process one frame per second allowing it to be employed for

indexing and retrieval applications.

Figure 5.12: Recognition rates as a function of size of training data
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5.5.3 Performance Comparison

To provide an idea of the effectiveness of the proposed recognition technique, we present a compar-

ative analysis of various recent studies. Naturally, a meaningful quantitative comparison is only

possible if all techniques are evaluated on the same dataset using the same experimental protocol.

However, unfortunately, due to lack of benchmark datasets for this problem, the reported techniques

are mostly evaluated on custom developed datasets. Nevertheless, for completeness we present

these results to give readers an idea of the current state-of-the-art on this problem. Furthermore,

in addition to caption text, we also list the recognition rates reported on printed document text in

well-known recent studies. These results are summarized in Table 5.7 with a summary of techniques

and the size of dataset employed. In case of printed text, the highest reported recognition rate is

98.12% on the UPTI dataset [63]. It is however important to mention that UPTI is a synthetically

generated dataset that does not offer the same kind of challenges as those encountered in scanned

images of documents or caption text. In case of caption text, a recognition rate of 96.85% is reported

on a relatively smaller set of Arabic text lines. For Urdu caption text, Tayyab et al. [49] achieve

93% recognition rate on approximately 20,000 text lines while Hayyat et al. [48] report a ligature

recognition rate of 99.5%. The dataset considered in [48] however, is fairly limited with only

290 unique ligature classes. In our experiments, we report a recognition rate of 95.98% (97.63%

with synthetic data in training) which, though not directly comparable with reported studies, is

indeed very promising considering the complexity of the problem. Furthermore, since the UPTI

dataset [63] is publicly available, we also trained our model using the text line images in the UPTI

dataset and realized a character recognition rate of 99.14% outperforming other studies evaluated

on the same dataset [168, 213, 190] and validating the effectiveness of our proposed model.

Table 5.7: Results comparison with other recognition techniques

Image Type Study Language Technique Database Data Size Results

Document

Ahmed et al.(2007) [203] Urdu ANN Private 56 LC 93.40%
Hassan et al.(2013) [330] Urdu BLSTM UPTI 10,000 Lines 94.85%
Akram et al.(2014) [206] Urdu DCT & HMMs CLE 224 Images 86.15%
Hussain et al.(2015) [331] Urdu DCT & HMMs CLE 5,249 Ligatures 87.44%
Ahmed et al.(2016) [332] Urdu BLSTM UPTI 15,251 Lines 96.00%
Naz et al.(2016) [168] Urdu MDLSTM UPTI 10,000 Lines 96.40%
Naz et al.(2017) [213] Urdu MDLSTM UPTI 10,000 Lines 94.97%
Naz et al.(2017) [190] Urdu CNN & MDLSTM UPTI 10,000 Lines 98.12%

Videos

Zayene et al.(2018) [31] Arabic MDLSTM AcTiV-R 7,843 Lines 96.85%
Tayyab et al.(2018) [49] Urdu RNN Private 19,824 Lines 93.02%
Hayat et al.(2018) [48] Urdu CNN Private 290 LC 99.50%
Proposed Urdu CNN+LSTM UTiV 40,470 Lines 95.98% (97.63%)

Urdu CNN+LSTM UPTI 10,000 Lines 99.14%

Figure 5.13 presents a screen shot of the visual application that was developed for recognition of

text lines. Furthermore, to provide insights into recognition errors, some common errors produced

by the system are illustrated in Figure 5.14 where it can be seen that a major proportion of errors

results due to false recognition of secondary ligatures (dots and diacritics) while the main body

ligatures is correctly recognized in most cases.
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Figure 5.13: Screen shot of the recognition application developed in C#.NET and Python

5.6 Summary

This chapter presented the technical details of the text recognition module for Urdu caption text.

Although the methodology is developed using Urdu text, the technique can be adapted to other

cursive scripts as well. The proposed recognition technique relies on pre-processing the text line

images and feeding the binarized images along with the ground truth transcriptions to an end-to-end

trainable CNN+RNN model. The convolutional layers convert the raw images into feature maps

while the recurrent layers carry out the sequence prediction. Finally, a CTC layer is employed

to convert the raw predictions into actual transcriptions. The technique was evaluated through a

comprehensive series of experiments and the reported performance was compared with the similar

recent studies. High character recognition rates on a large set of test line images validated the

robustness of the proposed recognition engine. The findings of this study are published in [333, 334].

In the next chapter, we present potential applications by combining the detection and recognition

modules into a single system.
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Figure 5.14: Examples of recognition errors



Chapter 6

Text Detection & Recognition:
Application

6.1 Introduction

The previous chapters introduced the techniques developed for detection and recognition of textual

content appearing in video frames with focus on cursive (Urdu) caption text. Combining the

detection and recognition in a single system, a number of interesting and useful applications can

be developed. Example applications include keyword based indexing and retrieval of videos,

generation of summaries of News tickers for a given time period, analysis of the frequency of

News related to a particular theme and a comparison of News related to a given theme across

various News channels etc. Furthermore, performing detection and recognition of text on live video

streams rather than archived videos can be exploited to generate user alerts on specific keywords,

‘Breaking News’ for instance. In this chapter, we present one such application that was developed

by combining the text detector and the V-OCR into a single system to perform indexing of videos

on specific keywords. The videos can then be retrieved on provided query keyword. Details of the

developed application are presented in the next section.

6.2 Video Indexing & Retrieval

Text appearing in videos can be exploited as a semantic index for content based retrieval. Such

retrieval systems allow users input (query) keywords and retrieve all videos where the keyword has

appeared. Keywords refer to the words that are provided as query by the user (Figure 6.1). Once

the keyword is provided the system queries the database that contains videos indexed on keywords.

The videos containing the relevant keyword are then provided to the user in the retrieval phase

(Figure 6.1).

We combine the text detector with the recognition engine to index videos on specific keywords.

To demonstrate the idea, list of each 100 English and Urdu keywords (listed in Appendix F) is
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Figure 6.1: Keyword supplied as query by user

created and maintained in the database (MS SQL). Frames extracted from a video to be indexed are

provided to the text detector and the output of the detector is fed to the recognizer. From the view

point of application, in addition to Urdu text, we also recognize English text using off-the-shelf

Google’s Tesseract recognition engine. The recognizer outputs the text in a given frame which is

parsed for appearance of any of the keywords. If one or more keywords appear in a frame, the

database is updated to record the identity of the video and the time-stamp where the keyword has

appeared. The process is repeated for all frames in the video and for all videos to be indexed.

During the retrieval phase, user provides a query keyword (Figure 6.2) along with other meta-

data (dates, channels etc.). The system queries the database and returns all videos and all instances

within each video where the keyword appears. Retrieval results for a query keyword returned by

the system are illustrated in Figure 6.3.

From the view point of quantitative evaluation of the retrieval application, it is important to
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Figure 6.2: Search Screen of the Retrieval Application

Figure 6.3: Retrieval Results for a Query Keyword

mention that in the previous chapters, we reported the results of text detection and text recognition

independently. When detection and recognition are combined, the output of the detector is fed to

the recognizer hence any missed or incorrectly detected text regions cannot be recognized correctly.

To provide an idea of the overall system performance, we report the character recognition rates on

text regions extracted by the detector in Table 6.1. The Detection is carried out using Faster R-CNN

while recognition is implemented using CNN-LSTM combination and Wolf’s binarization. It can be

seen from Table 6.1 that an end-to-end character recognition rate of 92.56% is reported as opposed

to 97.63% when evaluated on text lines segmented using the ground truth information. Considering

the fact that output of detector (which may not always be perfect) is fed to the recognition engine,
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the reported character recognition rate is indeed very promising.

Table 6.1: Character Recognition Rate

Recognizer CRR End-to-end CRR
97.63% 92.56%

In addition to the character recognition rate, we also evaluate the system from the perspective

of a retrieval engine. The system is provided with query keywords and the precision, recall and

F-measure are computed based on the retrieval results. The results are reported in Table 6.2 where

it can be seen that an F-measure of 0.89 is reported on more than 4000 instances of Urdu queried

keywords. Likewise, an F-measure of 0.84 is realized for 624 English query words.

From the view point of time complexity of retrieval, given a query keyword, the retrieval

involves a join over two tables, the table containing indices against the keywords and the table

containing video information. The overall retrieval complexity is O(M +N) where M is total

number of rows in frame (index) table and N is the total number rows in video table. We have

employed MS SQL Server as DBMS which sorts tables according to the columns that are used for

joining the two tables. Due to sorting of the tables. A merge operation is carried out resulting in

time complexity of O(M+N)

Table 6.2: Results

Query Instances Precision Recall F–Measure

Text Urdu 4061 0.92 0.85 0.89
English 624 0.90 0.80 0.84

The indexing and retrieval application developed on top of the detection and recognition mod-

ules was supported by IGNITE, National Technology Fund and was successfully deployed at the

Associated Press of Pakistan. Efforts are being made to commercialize the application targeting

local media houses as well as regulatory bodies.

In addition to smart retrieval, the extracted and recognized text can also be employed to develop

a number of useful applications. The system, for instance, can be extended to work on live video

streams rather than archived content. This in turn would allow development of keyword based

user-alert systems where an alert is generated whenever one of the keywords of interest for a

given user appears in the video stream. Likewise, the extracted textual content can be employed to

develop a summary of News flashed on a given News channel in a given duration of time. Natural

language processing techniques can also be incorporated to compare and analyze the reporting of

same events by multiple News channels.
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6.3 Summary

This chapter introduced potential applications that can be developed exploiting the text detected

and recognized from video frames. We presented the details of one such application, textual content

based video indexing and retrieval, that was developed in our study. In addition, system level

performance of the retrieval application was also discussed. In the next chapter, we provide our

concluding remarks and discuss possible future directions both from the research and application

perspectives.
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Conclusion and Future Work

7.1 Conclusion

Text appearing in videos contains rich semantic information that can be exploited to develop a

number of useful applications. The core modules of such applications include the extraction and

recognition of textual information from video frames and made the subject of our study. More

specifically, our research was aimed at development of techniques for detection and recognition

of Urdu caption text appearing in video frames. We investigated the latest deep learning based

techniques for detection as well as recognition of caption text and developed techniques reporting

high performance using standard evaluation metrics.

For detection of textual content, we adapted deep learning based object detectors by tuning the

models to learn to discriminate between text and non-text regions. The investigated techniques

included Faster R-CNN, YOLO, SSD and R-FCN while models like Inception and ResNet trained

on Miscrosoft COCO dataset were employed as the base networks. Text detection and script identi-

fication were then combined into a single hybrid model. For recognition, an implicit segmentation

based technique was employed that relies on a combination of CNN and RNN followed by the

CTC layer. Text line images extracted from video frames along with the ground truth transcription,

are fed to a CNN for feature extraction and the extracted feature sequences are provided as input

to a recurrent net for predicting the most likely character sequence. Finally, CTC decoding is

applied to convert the raw network predictions into meaningful text. The experimental study of the

system was carried out on more than 11,000 video frames and an over all F-measure of 0.91 was

reported by the detector using a Faster R-CNN with Inception. Likewise, a character recognition

rate of 97.63% is realized by the CNN–LSTM combination. Furthermore, we also integrated the

detector and the recognizer to develop an indexing and retrieval application. System level retrieval

experiments also reported a high F-measure reading 0.89 demonstrating the effectiveness of the

proposed techniques and their potential employment in real world applications. The UTiV dataset

of video frames collected and labeled as a part of this study has been made publicly available

and the ground truth information allows evaluation of text localization, text recognition and script
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identification tasks.

We recall the key aspects of this research in the following.

• UTiV (Urdu Text in Videos) dataset has been collected, labeled and made publicly available.

• A hybrid text detector and script identifier has been developed primarily targeting the content

on our local News channels.

• A number of pre-processing techniques were investigated to segment text from background

for effective recognition.

• A joint convolutional-recurrent network based recognition engine has been developed to

recognize Urdu caption text.

• Detection and recognition modules are combined in a single system to support development

of high level applications.

7.2 Future Work

The presented study proposed text detection and recognition techniques using Urdu caption text

as a case study, however, the findings can be generalized to other cursive scripts as well. In our

further work on this subject, we intend to extend the detector and recognizer to process wild scene

text as well. In addition, the present study primarily focused on horizontally aligned text. Tech-

niques can be developed to detect and recognize text at other orientations as well. From the view

point of recognition, the performance can be further enhanced by incorporating a post-processing

stage that may include dictionary validation as well as the semantic contextual information to pre-

dict the most likely word given a sequence of words and hence improve the recognition performance.

From the view point of application development, we intend to optimize the system to work in

real time allowing users to set keyword based alerts in live video streams. Likewise, the transcription

of textual data in videos can be processed further to develop News category classification, automatic

summarization and content mining systems. Furthermore, in addition to textual content, the

visual and audio content can also be exploited to complement the text-based applications. Spoken

keywords contain useful information that can complement the textual content. Likewise, the visual

information containing key individuals, objects and locations etc. can also serve as a useful index.

This can lead to a comprehensive video analytics system that can serve regulatory bodies, media

houses and general public. It is expected that the findings of this study would be useful for the

pattern classification community in general and researchers targeting detection and recognition of

text in particular.
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Edit Distance Example
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Figure B.1



Appendix C

Ground Truth Labeling Tool

This appendix presents screen shots illustrating different features of the ground truth labeling tool.

Figure C.1: A single frame loaded in the labeling Software and key components of the tool
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Figure C.2: (a): Ground truth information on bounding box of a text region and the frame (b):
Transcription of text with information on text type and text script



Appendix D

Sample Images of Hybrid Text Detector
and Script Identifier

Figure D.1: Hybrid text detector and script identifier output: Express News
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Figure D.2: Hybrid text detector and script identifier output: Samaa News

Figure D.3: Hybrid text detector and script identifier output: Dunya News
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Figure D.4: Hybrid text detector and script identifier output: Ary News



Appendix E

Preliminary Experiments–Recognition
using Holistic Technique

Holistic recognition technique employs ligatures as units of recognition. As a first step, ligatures

need to be extracted from the binarized text line images. Ligatures are extracted using connected

component labeling and the secondary ligatures (dots and diacritics) are associated with their parent

primary ligatures by performing morphological dilation (with a vertical structuring element). For

the preliminary experiments, a total of 130,000 ligatures are extracted from 8000 text lines. In

order to prepare the training and test data, these ligatures are organized into classes (clusters) where

each class is a collection of images that correspond to a single ligature. The total number of unique

ligature classes in our study sums up to 900 with an average of 70 images per class.

For recognition of ligatures, we investigated a number of deep convolutional neural network ar-

chitectures. More specifically, we employed a number of pre-trained CNN models using the transfer

learning framework. These include the classical AlexNet [296], VGG Nets [298], GoogLeNet [299],

InceptionV3 [335] and ResNet101 [311]. In transfer learning, a pre-trained model can be used as

a feature extractor (using convolutional layers only) and these features can be fed to a separate

classifier similar to the traditional machine learning framework. Another common technique is to

replace the last fully connected layer of a pre-trained network with class labels of the dataset under

study and continue back propagation (either on all or few last layers of the network) to adjust the

network weights. In our study, we investigate both the possibilities employ pre-trained models as

feature extractors as well as fine-tuned them to our set of ligatures. A summary of the networks

considered in our work is presented in Table E.1.

For experimental study, we employ 6,500 text lines in the training set and 1,500 in the test

set. The ligature classes corresponding to the same set of 6,500 and 1,500 lines are employed in

the training and test sets respectively. Performance is quantified using ligature recognition rate

computed as the fraction of ligatures correctly recognized by the system.
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Table E.1: Summary of pre-trained models employed in our study

Model Input Size Depth FC Layers
Alex-net [296] 227×227×3 8 3
VGG-16 [298] 224×224×3 16 3
VGG-19 [298] 224×224×3 19 3
Google-net [299] 224×224×3 22 1
Inceptionv3 [335] 299×299×3 48 1
Resnet-101 [311] 224×224×3 101 1

The recognition rates realized in our experiments are summarized in Table E.2. The results are

presented for both fine-tuning and feature extraction using multiple pre-trained models. Comparing

the performance of various pre-trained models, it can be seen that fine-tuning outperforms feature

extraction for all models. The observation is natural as fine-tuning allows adjusting the weights

of the network according to images under study hence the extracted features are likely to be more

effective. The highest recognition rate is reported by AlexNet reading 83.50%. It is interesting to

note that AlexNet has the least depth among the investigated pre-trained models. This observation

is consistent with previous findings on the recognition of ligatures in video [48] as well as printed

(scanned) documents [278]. This observation can be attributed to the fact that all these models

are trained on the ImageNet [336] dataset which contains colored images of objects. We, on the

other hand, deal with binary images of ligatures representing a different scenario. Consequently,

networks with relatively fewer convolutional layers are able to learn the discriminative features

reporting acceptable recognition rates.

The initial study using ligatures as recognition units led us to the following findings.

• Segmentation of text into ligatures in caption text is highly error prone due to low resolution

of text as opposed to scanned document images.

• Preparing training data for such a technique is a highly tedious task as ligature clusters are

required to be created.

• The total number of unique classes in such a technique would be very high even if dots and

diacritics are removed.

• Re-association of secondary ligatures with primary ligatures can introduce post-recognition

errors.

• The recognition rates in preliminary experiments are relatively very low (when compared to

printed text) even with a small set of ligature classes.

These findings suggested us to investigated analytical recognition techniques which do not

require an explicit segmentation, the training data needs to be labeled only with transcription of

text and the number of unique classes remains manageable.
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Table E.2: Recognition Rates of Analytical and Holistic Techniques

Model Recognition Rate
Feature Extraction Fine-Tuning

AlexNet 78.27 83.50
VGG16 76.60 82.95
VGG19 76.79 82.96
GoogleNet 79.28 82.60
InceptionV3 76.91 81.47
ResNet 67.94 75.15



Appendix F

List of Keywords used in Indexing
Application

Figure F.1: List of 100 Urdu keywords for indexing and retrieval application
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Figure F.2: List of 100 English keywords for indexing and retrieval application



Appendix G

Recognizer Performance with Different
CNN-LSTM Designs

Figure G.1: Recognition rates as a function of number of convolutional layers

Figure G.2: Recognition rates as a function of number of LSTM stacks and hidden units
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Awards & Achievements

• Winner of Best (PhD) Poster Award–3rd IAPR International Summer School on Document

Analysis (SSDA)–Islamabad, Pakistan, 2019.

• Won the IAPR Full Funding to attend the 2nd IAPR International Summer School on

Document Analysis (SSDA)–La Rochelle, France, 2018.

• Received the Best Paper Award for the paper titled "Urdu Caption Detection using Textural

Features" at the 2nd IAPR International Mediterranean Conference on Pattern Recognition

and Artificial Intelligence, MedPRAI, Morocco, 2018.

• Received Full Funding (from the Higher Education Commission, Pakistan) to attend the

2nd IAPR International Mediterranean Conference on Pattern Recognition and Artificial

Intelligence, MedPRAI, Morocco, 2018.
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