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Abstract

In previous era, malware attacks have achieved serious heights. As information
technology field strengthens, the activities of cyber-criminals are also updated. Cyber-
criminals always look for those methods to attack which are not much suspicious. Attackers
started to use approaches like steganography to conceal the scripts. With the wide use
of images on social media and other platforms like World Wide Web (WWW), attackers
started to embed the malwares in images. With the growth of malware attacks through
images, it is high time to introduce a technique which would detect the malicious images.
Proposed study aims the detection of images which are concealed with different scripts.
We used a dataset of JPEGs, containing 1100 malicious and 1100 benign images to employ
the detection method. Our method of malicious image detection would help everyone to
prevent the malware attacks which are carried through images.
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Chapter 1

Introduction

Today there are many ways that attackers are using to harm networks, systems and
databases etc. While evolving the old age techniques into advance forms, the malware
activities are also get updated. Attackers achieve different goals by attacking systems
and networks; those goals may include to steal important information from networks or
databases and sometimes to get remote access of the systems. There are some benefits
for which those attacking activities are led by the cyber-criminals. Advancement in
technology and different means of attacks are updated in parallel. With new discoveries
and innovations in technology, attackers always modernize their methods to attack.

Attackers have found a new way to attack which involves images, as images are
known to be harmless. It is learnt that malicious codes are concealed into different formats
of images by using different techniques. Online Social Networks (OSN) [21] is a new
platform targeted by cyber-criminals for malware attacks by using malicious images. A
lot of content is shared on social media across the world based on images which makes
attacker’s job easy. Payloads are easily transferred into systems since social media users
are oblivious about malware attacks based on malicious images.

Payloads can be greatly damaging for systems and databases because attackers can
easily get remote access of systems by execution of those payloads. Now it is need of the
hour to prevent remote access of systems and loss of information by applying some new
detection methods. Limited work has been done for detection of malicious images. It is
required to introduce a prolific method by using deep learning for detection of malicious
images.
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Introduction 2

Different techniques are used to conceal malicious codes in images. Now Steganogra-
phy is also used to conceal payloads in images. It is a technique to hide a message or a
file in another file. This technique can be applied on many file formats, best known for
images and audios. For images, you can hide an image in another image without anyone
knowing. Only one image will be visible while other will be hidden in it. This process also
losses little information of those images. Effect of those is barely discernible for human
eye. Now it has got attention of the attackers to hide malicious codes in images.

It is learnt that the most effective cyber-criminal activities [4, 2] use JPEG image
formats to carry the script. Two reasons to that:

1. JPEGs are mostly used format across Word Wide Web (WWW).

2. JPEGs are easy to embed with malicious content without anyone’s suspicion.

JPEGs header can contain different scripts e.g. JavaScript and PHP commands etc.
Different steganography related methods (not publically available) are used to embed
scripts in JPEGs. JPEGs comprise of different segments in the header. Segments are
represented by the markers which contain Hexadecimal values, section 3.1 describes about
structure of JPEGs. The script is inserted in those hexadecimal values.

For the detection purposes of malicious JPEGs, the hex values of dataset are read
in Byte form. Some of the Number Systems are discussed in section 3.2 along Base64
Encryptions technique because different browsers e.g. Google Chrome and other targets
read images in Base64 form and decode the image content to display it, figure 1.1 shows.
Hence Base64 is also used to encrypt the scripts to make it compatible to carry malware
scripts in images.
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Figure 1.1: Google Chrome Reading JPEGs in Base64

That byte form of Hex is converted to 8-bit grayscale image. A deep learning based
technique named as Convolutional Neural Network (CNN) is employed on grayscale
images for detection of malicious image. Our problem is a two class problem comprising
of Benign class and Malicious class. Benign class, as name suggests is class to represent
benign images and Malicious class is for malicious images which carry the scripts.

1.1 Motivation and Problem Description

There are numerous new techniques used to embed malicious script in different file
types. Images are most preferred file type for attacks because they seem to be harmless
and non-risky. Malicious codes are embedded in images by using different techniques
[4, 2] e.g. Steganography to attack social media networks and other systems. Vulnerability
of systems and networks can be easily exploited by using malicious images which could
result in important information loss or system damage. It is needed to study and develop a
tool for malicious image detection.

1.2 Research Contribution

1. Designed CNN based classifier for malicious image detection.
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2. Documented the image format and structure of the image format which is used for
malicious attacks.

3. Explored different techniques for incorporating malicious codes in images e.g.
Stegosploit.

4. Cross validated and well tested the results of research and compiled and analyzed in
the final documentation.

1.3 Thesis Organization

Thesis consists of 6 chapters. This chapter is followed by chapter 2 which includes
detailed literature of background knowledge and script embedding techniques. In chapter 3,
the structure of image format and number systems with encryption technique are included.
Chapter 3 is followed by chapter 4, where methodology of proposed study is discussed with
the detailed discussion for data preparation and description about data is added. Chapter 5
includes results and discussion of experiments performed. At last chapter 6 has conclusion
of our research work.



Chapter 2

Literature Review

2.1 Malware classification in other file types

There is a lot of research work on malware classification in different file types.
Unknown malwares types aren’t classified previously but Lui et al. [25] proposed a
method for classification of malware among different malware families and clustering
of new detected malware types. Proposed method is composed of three steps; first one
is feature extraction, second is selection of decision making and third is new malware
detection. For feature extraction 3 methods were used, e.g, gray-scale images, import
function and Opcode n-gram. For grayscale image, malware files were converted to binary
files by using interactive disassembler (IDA). Content of binary file were divided into 8
bit units. Then that file was represented as grayscale image. For Opcode n-gram, IDA
pro was used, which exploits the coding function flow of malware files. They produced
control graph, which helps for texture feature extraction. They combined 3-gram and
CFG to extract feature for malware. They also used counts of dll files which are being
called in import function of Windows and they used those counts as feature for malware.
Information gain was used to check the effectiveness of features and to reduce the number
of features used. Shared nearest neighbor (SNN) was used because of its performance with
high dimensional features. Dataset was collected from VX Heaven, ESET and NOD32.
21,740 instances of dataset were used which were divided into 19,740 training and 2,000
test samples. 7 different classifiers were used for accuracy performance based on gray
scale image, Opcode n-gram and combined features. SNN method was used to cluster

5
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those malware. Proposed system achieved 98.9% accuracy to classify and for new malware
detection proposed system was limited to 86.7% accuracy.

Previous techniques were used to detect malware by using code analysis but with
obfuscation in codes it was difficult to detect malwares. Ajit el al. [20] proposed a system
which classify android apks as malware or benign by visualizing. They performed training
on random forest (RF), decision tree (DT), K nearest neighbor. Performance was measured
based on precision, recall and accuracy. Data set had 246 samples among which they had
108 benign apks and remaining 138 were malware apks. DT had worst results as it had
76% average accuracy. However, RF had better performance, producing 86% accuracy for
all formats’ feature set and it had 91% for features based on gray-images.

2.2 Malicious code embedding techniques

2.2.1 Stegosploit

Malicious code embedding techniques in images are mentioned by cyber security
researcher in different articles and conferences’ presentations. A few are discussed
below. Images are known for being non-risky and non-harmful. It is learnt that now
images are also targeted by the attackers for malicious code execution. An algorithm
can leak information on system or it can damage a system. Sumail Shah [4] explained
how a JavaScript code can be embedded in image and that can be executed through a
browser. Shah named the technique“Stegosploit” referring from word Steganography.
He described how a malware attacker can attack and send or receive information. In this
technique malicious code is concealed in pixel data. A HTML5’s <canvas> tag is used
for this purpose which reads image data as JavaScript code. Browser reads a jpg image
and executes pixels data where malicious code is decoded and then that code is executed.
He referred JavaScript code within image as“IMAJS”.

There are different image formats which support Stegosploit. For different image
formats, there are different ways for concealing malicious codes. APP0 segment of JPEG
supports malware code insertion. For PNG it is stored in tEXt chunk. Script is inserted at
the end of image in BMP and GIF formats, which is then refered by HTML <img> tag and
script runs when malicious image is called in <script> tag.

2.2.2 Comment segment injection

Murray [2] explained a technique where he embedded asp.net code to a JPEG file.
He basically performed it in different way than Shah did. He injected another comment
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field in JPEG metadata. Comment field contained all malicious code from the attacker. In
this demo for execution of code, he changed JPEG extension with .aspx extension which is
asp.net’s extension.

2.2.3 ZeusVM

Jerome Segura [1] wrote about the case where he found malware in JPG file. It is
said that ZeusVM was used with steganography to implement that malware in JPG. Image
caring malware was a common image he got its sample images from Google Search. He
analyzed original and malicious image by converting JPG to bitmap.

Figure 2.1: Image in bitmap form

He analyzed the malicious image in hexadecimal viewer. The segmented code was
visible at the end of image pixel code.

Over social media it is now easy to attack through images and get remote access of the
system. In a study, Rakesh et al. [21] suggested framework architecture to detect malicious
code presence in images. It is studied that Online Social Networks (OSNs) are now attack
oriented places where payload can be easily transmitted and executed by using malicious
image. In this research some Steganography tools were mentioned along their respective
detecting Steganalysis tools. Proposed architecture is based on 3 phases. First phase
is Steganalysis of captured images; image is analyzed with techniques like Histogram
analysis attack and Chi-square attack. Then it has second phase, if first phase indicate
presence of malicious code, metadata is extracted to get to know about stego-image and it
is analyzed whether concealed file is executable or not by considering .exe, .dll and other
extensions. In third phase file is unpacked so that code could be analyzed and on those
bases real-time antiviruses would be updated.
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Malicious attacks through android applications increased with increase in the usage
of android operating system. Shikha et al. [12] proposed a method where JPEG/PNG
image formats were used to carry malicious codes in form of android application. They
used different combination of concatenation (for hiding code by using UNIX ‘cat’
command), obfuscation (for code transformation by using ProGuard), cryptography (for
code transformation by using XOR encryption) and Steganography (for hiding code by
using Outguess 0.1 Algorithm) to embed malicious codes in image resource of android
apks. They concatenated malicious code at the end of pixel data. In another method they
used Steganography technique e.g. Least significant Bit (LSB) to embed malicious codes in
images. Resources were split and decrypted and then extracted malware app was invoked
by using DexClassLoader and Reflection. Detection of malware was validated across 10
malware detection Software. Only one instance of concatenation implied resource was
detected by only one android based anti-virus.

2.3 Steganalysis

Steganalysis is used to detect Steganography in images. Dong-Hyun et al. [18]
proposed a method based on Deep Learning for Steganalysis of Least Significant Bit
(LSB). They used Convolutional Neural Network (CNN) to detect Stego-images based on
BOSS and SIPI databases. Highly pass filter (HPF) used for noise extraction. Model had 2
convolutional layers and 2 fully connected layers. They collected 10,000 cover (original)
images and 20,000 Stego-images. 80% of images were used for the training and 20%
for testing. Method produced the results with 90% accuracy for LSB Stego-images with
different keys and 98% accuracy for LSB Stego-images with same key.

Jian et al. [30] proposed a method for Steganalysis which is based on CNN. Truncated
linear unit (TLU) activation function was used. For evaluation 3 Steganography algorithms
were used, which are known as S-UNIWARD, HILL, and WOW. With activation functions
ReLU and TLU, first convolutional layers’different initialization strategies were analyzed
to evaluate their performance. Datasets used for training were BOWS2, AUG (augmented
data by using BOWS2 and BOSS datasets) and BOSS and for testing BOSS-test was used.
TLU’s another version Selection-Channel-Aware SCA-TLU was also used. Proposed
model was compared with hand crafted features set SRM and Selection-Channel-Aware
maxSRM2d. It was also learnt that more the payload ratio, better the detection performance
of suggested model gets. The table 2.1 gives short overview of literature.
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Table 2.1: Related research work done

2.4 Watermarking

The protection of data authorization is necessary due to increase of attackes which
manipulates data. To prevent unauthorized use of images, the area of digital watermarking
is recognized to protect the copyright information. B. Kaur et al. [17] presented a scheme
of steganography for hiding image in discrete cousin transformation (DCT) domain to
provide resistance to image processing attacks. To embed the watermarks, mid frequency
band of DCT was used because watermark information is not scattered to most visual parts
of the image. They used 512x512 grayscale‘Lena’ with logo of 64x64 grayscale image
of copyright for watermark. Various types of noises like Gaussian noise, salt and pepper
noise and speckle noise were subjected on cover image and result for each type of noise for
maximum extent that can be tolerated, results were presented. Proposed method explored
the DCT domain for watermarking over the gray scale images.

Images are manipulated for unauthorized use which losses the authenticity of an
image, Ching-Y. Lin et al. [24] proposed a system which is used to ensure authenticity
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of image. It distinguishes malicious manipulation from lossy compression of JPEG.
Invariance properties (which can be preserved during lossy compression of JPEG) are
used. Image authenticator was tested on different manipulations of“Lenna” image.3
experiments performed with different compression ratios i.e 9:1, 6:1. Performance of
the system was analyzed on the probability basis of miss and success. It is noted that as
JPEG quality factor increases the median values of miss, decreases. And as manipulated
values goes away from 0 in positive or negative direction the median values of probability
success decreases. Proposed method distinguishes lossy compression of JPEG from other
malicious manipulations.

Many tools and methods for malware detection and classification are proposed for
other file types, where malware after detection is classified into existing malware families.
In some studies, it is explained about methods to embed malicious codes in images by
using different techniques. But solutions for malware detection in images have not been
discussed.



Chapter 3

Related Concepts

It is important to have proper knowledge of JPEGs before going further into depth
of JPEGs and detection process. In this chapter the structure of JPEGs and the Number
System & Encryption are discussed.

3.1 JPEG Structure

JPEG is a digital image file type. It is used for lossy compression of digital images. To
carry JPEG stream, multiple file formats are used which includes JPEG/SPIFF (Still Picture
Interchange File Format), JPEG/CIFF, JPEG/Exif( Exchangeable Image File Format) and
JPEG/JFIF (JPEG Interchangeable File Foramat) [3].

Most common file formats for JPEG are JPEG/Exif and JPEG/JFIF. These file formats
are used for different purposes. Both file formats follow approximately similar structure.
The major difference of these file formats have is in the Application segment. Exif and
JFIF differences are following

3.1.1 Exif

• Exchangeable image file format.

• Used by digital cameras (including smartphones), scanners.

• APPn stores information about camera state (shuter, white balance).

11
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3.1.2 JFIF

• JPEG File Interchange Format.

• Used for software saving and for word wide web.

• APPn stores information such as copyright and captions (IPTC text) and profile
information for color management (icm data).

JPEG files has several segments, each of the segments contains different type of data.
Segments are delimited by markers which are 2 byte codes. Markers are hexadecimal
values which begin with 0xFF byte, followed by a byte which indicates the type of marker.
Some markers have these two bytes and in some markers these two bytes are followed by
high then low bytes, which indicate the length of marker-specific payload data. Entropy-
coded data follows some of the markers, here padding are used, 0xFF byte indicate fill
byte. This kind of padding is used for those markers which are following entropy-coded
scan data. Entropy-coded scan data is compressed data of the JPEG [10].

A 0x00 byte is inserted by encoder after 0xFF byte if 0xFF occurs within entropy-
coded data. This method is known as byte Stuffing. This prevents framing error. While
decoding 0x00 are skipped by decoder within entropy-coded data. There could be indepen-
dent chunks of entropy-coded data. To isolate these independent chunks, Reset markers
are used to allow parallel decoding. These makers are indicated by 0xD0 to 0xD7 bytes.
These markers belong to entropy-coded data.

Then there is SOI (start of image) marker which indicates the start of the image, this
marker opens the file. 0xD8 is the byte used to indicate this marker. After this there is
SOF0 and SOF2, start of frame markers. These markers are indicated by 0xC0 and 0xC2
byte respectively. In the jpeg another important markers are for the Huffman tables and
Quantization tables. 0xC4 byte is used to indicate DHT (define Huffman table) and 0xDB
byte is used for indicating DQT (define Quantization table) [10].

Intervals between RSTn markers are specified by DRI (define Restart interval) marker,
which has fixed size of 4 bytes and indicated by 0xDD byte. RSTn markers aren’t used
if DRI marker is not present. For Top-to-Bottom scan of the image SOS (start of scan)
marker is used. This marker identifies the slice of data it will have. It is followed by
entropy-coded data. 0xDA byte is specified for this marker.

In JPEG most important marker type is APPn (Application). This segment indicates
the file type of JPEG. For the JFIF, JPEG has APP0 marker and for Exif, JPEG has APP1,
APP2 segments. For APPn segment byte value 0xEn is used. APP1 segment contains
the metadata of JPEG image. APP0 segment stores picture dimensions and thumbnail
information.
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COM (Comment) segment is used to contain simple text comments. It is associated
with 0xFE byte. EOI (End of Image) is the marker which indicates the end of the image.
0xD9 byte is used to indicate end of image [10]. Table 3.1 gives short overview of markers
in JPEG structure.

Table 3.1: Markers in JPEG structure.

3.2 Number System and Encryption Technique

It is important to understand various number systems, because in various methods the
script is encoded or translated into another system which could help to reside the script
inside the image. As the literature suggests [1, 2] that there are many methods where script
is encoded and inserted into various parts of image, and to make our script supported by
that image part, it is necessary to convert the script into a form which could be easily
embedded into the image.

Some of the methods are explained below for number systems.

3.2.1 Binary

It is a number system where we have base (or radix) 2. 0 and 1 are the two symbols
which are used to represent binary number system [22]. This number system is based on
the positions. It uses power of 2 to determine the value. The bits which are left-most are
known as MSB (Most Significant Bit), and the bits which are right-most are known as the
LSB (Least Significant Bit). The arithmetic operations like addition, subtraction, division
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and multiplication can be performed on this number system. Every symbol is denoted by a
bit and any value can be represented by the sequence of bits [8].

3.2.2 Hexadecimal

This number system is of base 16. Sometimes this is denoted with hex word. There
are 16 different symbols used for this number system [22]. It has first 10 values indexed
like decimal numbers from 0 to 9, after decimal numbers it uses 6 alphabet values from A
to F. Power of 16 is used to determine the values in this system. Hex is a positional number
system which follows same most significant and least significant digits as binary system or
any other system follows. This number system is used in transfer encoding Base16, where
a byte of plain-text is broken into two 4-bit values and two digits of hex are used for that
byte representation. 4 binary digits are used to represent one digit of hex and a byte can
have values from 0000 0000 to 1111 1111 and its representation in hex is like 00 to FF [9].
In programming languages i.e. c language, the representation of hex involves prefix 0x or
suffix. For example a value of hex is (2CA4)16 and in programming language it would
denote the value as 0x2CA4, where 0x is prefix.

3.2.3 Octal

Base of octal number system is 8. In this system 0 to 7 symbols are used for
representation of the system and the power of 8 determines the value [22]. Octal number
system has standards of most significant and least significant digits same as the above
two methods have. Modern computing platforms use 16, 32 or 64 bit words and on those
platforms, 3 octal digits are represented by 1 byte and most significant digit of octal
represents two binary digits [11]. Table 3.2 gives the representation of above explained
number systems.
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Table 3.2: Hex, Dec, Octal, Binary digits represntations.

3.2.4 Base64

Base64 is a system which uses 64 indexed values. Starting from 0 to 63, base64 uses
capital alphabets from A to Z for first 26 representations of the indexed values, then it has
small alphabet values from a to z for next 26 values. At the end it uses + and / symbol
for 62 and 63 values’ representation [26]. The table 3.3 shows base64 character along
indexes.
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Table 3.3: Base64 digits represntations.

6 bits are used to represent each base64 digits. Four 6 bit base64 digits would be
represented by 3 bytes or we can say 24 bits [7].

Encoding

Base64 is an algorithm which is widely used for cryptography purposes. Main purpose
of cryptography is to convert the information into a variation which is not understandable
and unreadable by unauthorized person. Base64 is basically used for binary to text encoding
[26]. Base64 follows simple steps for encoding

• Convert text to ASCII code

• Convert ASCII value into binary values of 8 bit

• Combine the last 8 bits to 24 bits

• Produce 4 fractions of 24 bit into 6 bits

• Convert each 6 bit segment into a decimal value
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• Convert decimal values into base64 digits w.r.t indexed values of base64

Important property of this binary to text transformation is that there is no any key or
password involved [7].

ASCII

American Standard Code for Information Interchange is used for character encoding
[5]. ASCII codes are used for text representation in computer systems. It is an English
alphabet based encoding standard which uses seven bit integers to encode 128 characters.
95 characters of ASCII include uppercase alphabets A-Z, lowercase alphabets a-z, digits
0-9 and some printable punctuation symbols.
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Table 3.4: ASCII values represntations.

The extended ASCII codes were added which included index values from 128-255.
The character encoding of extended ASCII is based on 8 bits. Extension further introduces
128 characters for European and Latin American languages [6].

3.3 ConvNet Architectures

CNN based models are composed of two segments, one is the convolutional base and
the other is the classifier. We use the convolutional base of some model to learn the features
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based on our dataset. And we feed those features to some classifier which is basically
composed of fully connected layer. We can use pre-trained models for multiple purposes

• Training the entire model: we use the architecture of some pre-trained model and
we train entire model on our dataset.

• Fine-tune a pre-trained model: we freeze some of the layers in convolutional base
and fine-tune the high-level layers of network.

• Use CNN as feature extractor: we freeze convolutional base of a model and we pass
the data through the network and feed the features to another classifier.

In our scenario dataset is small and it is different than the dataset of models which they
have been trained on. We have used different ConvNet models and fine-tuned them and
trained some of the layers in the architecture. For binary classification we fed the features
to a sigmoid based classifier.

3.3.1 AlexNet

In ImageNet competition Alex Krizhevsky et al. [19] proposed a neural network
architecture which is similar to LeNet-5 [23] architecture. Input to the proposed method
has 227x227x3 dimensions which are then fed to convolutional layers where 96 filters of
11x11 are used with stride 1. Output of 55x55 is fed to pooling layer of 3x3 filters with
stride 2, followed by couple Fully Connected layers with 4096 neurons for each layer. Then
there is Fully Connected layer with 1000 neuron for 1000 classes with softmax function.
Total parameters learnt are 60 Million. The activation function used in AlexNet is ReLU
instead of tanh or sigmoid. Because ReLU is faster and produces the same accuracy with
speeding up the process 5 times[23]. To reduce the problem of overfitting Droupout layer
is used after each of the Fully Connected layer.

3.3.2 VGG

VGG architecture is introduced by Visual Geometry Group, which improves the
AlexNet with help of using multiple small filters instead of large filter sizes [27]. Multiple
3x3 filters are used instead of 11 and 5 filter sizes in first two layers. In this architecture
multiple small size filters increase the depth of the network with complex features but
the cost of learning remains low. Only size of 3x3 filter is used with stride 1 in every
Convolutional layer. And padding is 2x2 with stride equal to 1. Parameters learnt are 138
million.
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3.3.3 Inception V1, V2, V3

The previous CNN based models were just to stack convolutional layers deeper to get
better performance but in inceptions, wide architectures are introduced [28]. Computational
cost is reduced with inception. For each layer, V1 uses 5x5 transformation of convolution
and 3x3 convolution with max pooling. The results of these layers are concatenated in
single output. 1x1 convolution is introduced which controls the depth. Global average
pooling is used at the end of the network which take the average of a feature map and
get a scalar value against each feature map. The parameters are reduced to 4 million.
Softmax based two auxiliary classifiers are introduced to compute the performance within
the network which helps to kept middle part alive. Auxiliary loss is used in training which
is then added to total loss with a weight of 0.3. Version 2 introduces batch normalization
which can help to avoid covariant shift [16] and version 3 introduces an architecture where
factorization is involved which helps to minimize the multiplication cost [29].

3.3.4 ResNet

Residual Networks are considered as breakthrough which helps the development of
deep networks. Researcher observed that adding more layers would have negative effect
on performance of the network [14] because of the vanishing gradient problem. This
problem occurred when while back propagating in deep network to earlier layers would
make gradient very small because of repeated multiplications. ResNet introduced identity
shortcut connection which skips layers and also known as residual block. We can use a
skip connection to a traditional network to make if residual network.

3.3.5 Xception

This architecture introduces a depth wise separable convolution which basically
minimizes the computational cost. It is interpretation of inception modules. It is the
extreme version of inception [13]. Traditional convolutional is all about the correlation of
spatial and depth but in this architecture the spatial correlation is mapped for each channel
separately and then 1x1 convolution is performed for cross channel correlation. Hence
there are two operation of convolutions are involved, first with channel wise convolution
then point wise convolution with 1x1 convolutions.



3.3 ConvNet Architectures 21

3.3.6 DensNet

DensNet architecture introduces the idea of utilizing the features of the earlier layers.
The DensNet architecture is similar to the ResNet architecture, which has produced better
results than ResNet [15]. Dense blocks are used instead of Residual blocks in DensNet.
Layers in DensNet are narrow which produce smaller number of features. Instead of
summing the features, they are concatenated. And transition layer is introduced, which
reduces the size of input. Transition layer has convolution with kernel size of 1 it is
followed by 2x2 average pooling with stride equal to 2.



Chapter 4

Methodology

In this chapter we will discuss about the approach which is followed for classification
purposes of malicious and benign images. There is couple of steps before directly training
our deep learning based network. To make JPEGs malicious it is learnt that there segments
are manipulated where scripts are concealed by the cyber-criminals. First those segments
are converted to an image, which is then used in deep learning based approach.

4.1 Dataset

The dataset for our problem has been collected from CRC lab Bahria University.
Files included in our dataset, are collected from honeypots installed at various locations.
Dataset comprises of all JPEG files which are of JFIF format of JPEGs. There are various
malicious files in the dataset which were used for malicious activity. They carry different
scripts in their segments to achieve different objectives.

Dataset has 2200 files. Both classes has equal ratio of files in the dataset.There are
1100 files for Malicious class and 1100 for Benign class. Data preparation is implemented
on the collected files, where script concealble segments are identified and converted to
gray-scale images of fixed size of 24x24. Deep learning based approach can easily be
implemented for classification of malicious and benign images.

22
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4.2 Data Prepration

This phase comprised of two step, firs is identifying concealable segments and second
is conversion into gray-scale images for further training process.

4.2.1 Segment Identification

It is learnt that JPEG’s JFIF format is widely used for malicious attacks [4, 2] and
there are certain segments of images which are targeted by the cyber-criminals to carry the
script. The structure of the JPEG is already discussed where the section 3.1 explains the
segments in the JFIF format. The concealable part starts from very first marker known as
start of image (SOI) marker, to the start of scan (SOS) marker. Segments between these
markers are manipulated. After SOS marker the compressed data of image is present till
the last marker which is end of image (EOI) marker.

4.2.2 Gray-Scale Conversion

Data between SOI and SOS is read in the hex from. To form the hex data
into gray-scale image, hex vector H ={h1,h2,h3,. . . ,hn} is converted to byte vector
B ={b1,b2,b3,. . . ,bm}. The length of the data can have little variation because of differ-
ent JPEGs and the scripts’ length embedded in images. Figure 4.1 shows the steps of
conversion the dataset into gray-scale images.

Figure 4.1: Conversion Process to gray-scale image

On visualizing the data it is learnt that malicious and benign images have little
difference in their patterns of gray-scale images. Size was fixed to 24x24 dimensions for
the images. For variation in the lengths of the segments data zero padding is added for the
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additional pixels of the gray-scale to make it 24x24. Visual representation of the malicious
and benign images are shown in figure4.2.

Figure 4.2: Benign and Malicious gray-scale images visulization

6 images from each class in above figure show that there are some pattern difference
between the pixels of the malicious and the benign images. Using a deep learning based
network can help to classify they benign or malicious images. We have employed Convo-
lutional Neural Network (CNN) to extract features automatically and classify images with
embedded script. In the following section overview of CNN is presented.

4.3 Convolutional Neural Network

This deep learning method is most popular method for extracting feature and em-
ploying classification based on extracted features. CNN has achieved a certain height
specially regarding to the image classification problems. This method is different to the
traditional classification problems where hand-crafted features are involved with some
classifier e.g. Random Forest, Decision Tree, SVM etc. In CNN instead of hand-crafted
features, automatically learnt features are used.

Features in CNN are learnt by passing the training data through multiple convolutional
layers along with other layers. It is to note that the earlier layers in CNN model learn more
general and high level features and as we go deep in to the network the learnt feature are
more specific and more complex. CNN is basically comprises of two bases, one is feature
extraction and other is classification.
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A CNN comprises of many layers stacking up on each other. The layers in ConvNet
have neurons arranged in 3 dimensions: width, height and depth. The layers in the CNN
are briefly described below.

Input

This layer comprises of the input image which is fed to the Convolutional layer of
neural network.

Convolutional Layer

Convolution in mathematics is merging of two sets of information. In this layer
number of different filters convolve around the input image and produces the feature map
in response to each filter in that layer. Features learnt could be squares or semicircles
which are then fed to the next layer.

ReLU Layer

ReLU is an activation function like tanh and sigmoid. It is preferred on Tanh and Sig-
moid because network trains very fast than the network with Tanh and Sigmoid activation
functions without affecting the performance of the network. ReLU activation is applied
on the output of the convolutional layer which results in all positive values. The ReLU
changes all negative value to zero and positive values remain same as the input to ReLU
activation. The equation is following where x is input to ReLU:

f (x) = max(0,x)

Figure 4.3: Graphical representation of ReLU activation
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Pooling Layer

Pooling layer is applied on the feature map. Pooling basically serves two purposes,
one is to reduces the parameters and second is to reduce the over fitting which results a
better generalization. Pooling layer performs the down sampling on the activation map.
Most important of Poolings are Max pooling and average pooling. In max pooling max
value in receptive field is the output and in average pooling output is the average of all
values in receptive filed.

Fully Connected Layer

This layer is usually stacked before the classifier is applied. This layer turns the
feature maps to a 1D array. This basically flattens the feature maps. It keeps all the values
of the feature maps to a 1D vector form. It is stacked after convolutional and pooling
layers. Last FC layer has number of neurons equal to the number of classes. In binary
classification if we apply Sigmoid, there would be one neuron in last layer suggesting the
probability P of one class. And probability of other class is 1−P.

Putting all layers together to form a proper Neural Network for 2 class image classifi-
cation problem is shown in figure 4.4.

Figure 4.4: Architectural diagram of CNN

4.4 Model

The architecture of our CNN base approach is based on many convolutional layers,
max pooling layers, dropout layers and dense layers. We have used 32 filters of size 9x9 in
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the first convolutional layer with ReLU activation function and we used padding 1. Then
we applied another convolutional layer with 32 filters of size 5x5 and used same activation
function as above. We applied the max pooling layer with pooling size 2x2 with same
stride. Further two convolutional layers are used with same number of hyper parameters
which have 64 filters of size 3x3 and added padding 1 to one of these convolutional layer .
Activations function is same as above convolutional layers. Then the activations of 4th
convolutional layer is converted to vector form. After that fully connected layer of 64
neurons is implemented with a Dropout layer having dropout rate to be equal to 0.5. After
it another dense layer of 32 neurons is used with ReLU activation function. Then a fully
connected layer with 2 neurons with ReLU and at the end Sigmoid based classifier is used
with 1 neuron due to binary classification problem. The structure of our model is present
in figure 4.5.
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Figure 4.5: Our CNN based Model diagram

We have used same hyper parameters for all the architectures. 25 epochs are used
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to train the networks with batch gradient descent. An epoch is a hyper-parameter, which
controls the number of complete passes of training instances through the network. We
used Batch Gradient Descent which means that all training examples are passed through
the network before the model’s internal parameters are updated.

BatchSize = Sizeo f TrainingSet (4.1)

(4.2)

where ∆w represents weight to be updated, η is learning rate, t is target output, o is
output and x represents training instances.

We are using Sigmoid based classifier for our binary classification problem, the loss
function we are using is binary cross entropy. The mathematical representation of binary
cross entropy/ log loss is following

(4.3)

where N is total instances and y represents class labels (0 for Benign class and 1 for
Malicious class).

Some pre-trained ConvNet architectures are used to evaluate the performance of
our architecture. Detailed discussions of these architectures are included in section 3.3.
Experiments and results based on these architectures are presented in next chapter.
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Experiments and Results

This chapter includes the results of the experiments carried out while employing deep
learning based approach. The results are combined of various graphs and charts which
depict the accuracies and the loss while training of our Convolutional Neural Network.

The results of the proposed method comprise of analysis of CNN with various
parameters. We are feeding the network with the input of gray-scale images. The gray-
scale images are of a fixed size which is discussed in Methodology. The dimensions are
24x24 for each image of both Benign and Malicious classes. The approach used in our
experiments is well explained in Methodology.

5.1 Performance Measure

The performance of our proposed approach is computed against accuracies. We have
split our data with the ratio of 3:7. 70% of our data is used for training and 30% of our
data is used for the testing purposes. Our data is evenly distributed among both Benign
and Malicious classes. For the summary of predicted results of our binary classification
problem, we used Confusion matrix. Predictions with correct and incorrect class labels are
summarized which includes the percent of count with each class. Precision and Recall are
presented along confusion matrix. To measure the performance of binary classification we
have used receiver operating characteristic (ROC) curve.

30
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5.2 Experiment based on binary Classification using
CNN

The dataset in gray-scale prepared from the header of malicious and benign images.
The concealable segments of each JPEG are read in hex form. The concealable part starts
from Start of Image SOI maker and ends at the Start of Scan marker. The values of hex
vector are converted to byte format, which are then converted to gray-scale images, details
in section 4.2.2. The gray-scale images are of 24x24. We applied CNN model to train on
our dataset using training set and then compiled the results using test set. Our CNN model
has achieved high accuracy of 96% with low loss which is equal to 0.14.

Figure 5.1: Graphical representation of training results

Figure 5.1 shows that with increasing the number of epochs it is learnt that the
accuracy of our model during training increases. There is significant increase in the
accuracy of our model with proportion to increase in epochs till 15 epochs. After 15 epochs
the accuracy of our model gets minor increase with proportion to the increase in number of
epochs. The loss as shown in above graph decreases constantly having significant change
with increase of number of epochs. After 17 epochs, loss of our model starts to decrease
constantly with a little lower rate till 25th epoch.

5.2.1 Evaluation and Credibility

We have plotted the confusion matrix for analyzing the predicted capability of our
model. The accuracy on test data is 96% and the loss on test data is 0.14.
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Figure 5.2: Confusion Matrix on test results

Confusion matrix on test results of binary calssification problem is presented in figure
5.2. It shows that 3% of images of Malicious class were classified as Benign image. And
there is 4% of Benign images are predicted as Malicious image. The precision and recall
of our model is presented below. The recall for benign and precision for malicious images
is equal to 0.97. F-measure is same for both of the classes.

Table 5.1: Precision and Recall with other measures

ROC curve is at the following which shows our predicted results of binary classifica-
tion problem. As the curve shows it has higher specificity (False Positive Rate) associated
with higher sensitivity (True Positive Rate).
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Figure 5.3: Graphical representation of ROC curve

5.3 Experiment on Pre-trained Models

We have used some pre-trained neural network. These networks are discussed in
section 3.3. To fine tune these pre-trained models we prepared dataset to have 75x75
dimension for each image. The hyper parameters are similar to the parameters used in our
CNN model.

The given chart shows the accuracy and the loss of these architectures.

Figure 5.4: Loss and Accuracy of ConvNet Architectures on test data
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It is learnt that the simpler model produces better results on our dataset. While
training, the performances of ConvNet architectures were better but the results on test
data of VGG, ResNet and Xception are not satisfactory. AlexNet performed way batter as
compare to other pre trained models.

Training of the pre trained networks produces acceptable results. 25 epochs are used
in training with batch gradient descent. The accuracy increases with increase in number of
epochs and the loss decreases with increase in number of epochs.

Figure 5.5: Loss and Accuracy of ConvNet Architectures while training
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Conclusion

In proposed study, the detection of malicious JPEGs is employed using a deep learning
based technique. We have trained and well test Convolutional Neural Network.Segments
which are concealable with malicious scripts, are segmented out by identifying different
markers in JPEG structure. That JPEGs segments are in Hexadecimal form, which are then
converted into gray-scale image. Experiments are carried out on those gray-scale images
using CNN.

It was a binary classification problem where one class named Benign represents
the harmless images with no manipulation and other class is named as Malicious which
represented the JPEGs with malicious content. The cyber-criminal activities through JPEG
images can be minimized which would assure the security of the systems, databases and
some social network sites. Our proposed approach has achieved acceptable results for
malicious JPEGs detection. The neural network has achieved 96% accuracy with minimum
loss.

Further studies include, carrying the detection process to other image formats. The
deep learning methods for the detection of those images can be employed with some
mature classifiers. Further extension can be the extraction of the malicious script and
analysis of that script, so that purpose of cyber-criminal activity can be identified. And
other precautions related to security can be assured.
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