

ECG- Based Arrhythmia Classification by Using Convolution Neural Network Classifier

Ву

Mehwish Kiran

01-243172-011

Supervised By

Dr. Awais Ahmed

A thesis submitted in the DEPARTMENT OF COMPUTER SCIENCES BAHRIA UNIVERSITY, ISLAMABAD

> For the degree of Master of Science in Computer Science

> > In 2019

Bahria University Discovering Knowledge

MS-13

Thesis Completion Certificate

Student's Name: Mehwish Kiran

Registration No. <u>01-243172-011</u>

Program of Study: <u>Master of Science in Computer Science</u>

Thesis Title: ECG- Based Arrhythmia Classification by Using Convolution Neural Network Classifier

It is to certify that the above student's thesis has been completed to my satisfaction and, to my belief, its standard is appropriate for submission for Evaluation. I have also conducted plagiarism test of this thesis using HEC prescribed software and found similarity index at 15% that is within the permissible limit set by the HEC for the

MS/ Mphil degree thesis. I have also found the thesis in a format recognized by the BU for the MS/ Mphil thesis.

V **Principal Supervisor's Signature:**

Date: 15-june-2019

Name: Dr Awais Ahmad

I dedicate my work to my Father and Family, Thank you for all the provision and support along the way.

ACKNOWLEDGEMENT

In the name of God, the most Kind and Beneficent

Foremost praise is to GOD, for giving the opportunity, power of mind to do the research. His continuous mercy was with me through my lifetime and always during the tenure of my study. I would like **to thank** and express my deep and sincere **gratitude to** my supervisor Dr. Awais Ahmad for his supervision and understanding and his support through each step of my thesis. In addition, I am grateful to my family who encouraged and facilitated me at every single period of my personal and educational life. I dedicated this effort to my generous father and caring mother. Every breath of my life is devoted to my family.

Bahria University Discovering Knowledge

MS-14A

Author's Declaration

I, Mehwish Kiran, state that my thesis titled "ECG- Based Arrhythmia Classification by Using Convolution Neural Network Classifier." is my identifiable work and has not been submitted previously by me for taking any degree from the university <u>BU</u> or anyplace else in the world.

At any time if my statement is found to be incorrect even after my Graduate the university has the right to withdraw/cancel my MSCS degree.

Nel Metury

Scholar's Name: Mehwish Kiran

Submission Date: 15-June-2019

Bahria University Discovering Knowledge

MS-14B

Plagiarism Undertaking

I, solemnly declare that research work presented in the thesis titled "ECG- Based Arrhythmia Classification by Using Convolution Neural Network Classifier" is solely my research work with no significant contribution from any other person. Small contribution / help wherever taken has been duly acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Bahria University towards plagiarism. Therefore, I as an Author of the above titled thesis declare that no portion of my thesis has been plagiarized and any material used as reference is properly referred / cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis even after award of PhD degree, the university reserves the right to withdraw / revoke my PhD degree and that HEC and the University has the right to publish my name on the HEC / University website on which names of students are placed who submitted plagiarized thesis.

Student / Author's Sign:

Networkfirts

Name of the Student: Mehwish Kiran

Abstract

An Electrocardiogram (ECG) plays an important role in medical field for detection of cardiac arrhythmia. Moreover, ECG signal contains different types of artefacts, Power line interface, Electromyogram (EMG) Noise, Baseline Wander and Motion artifacts, those are necessary to remove for better prediction of cardiac condition. Therefore, for denoising the discrete wavelet transform method is applied along with band pass filter and derivative method is applied for ECG signal normalization. Although, previously features are extracted manually which increase the computational complexity and time delay problem. Therefore, to cope with these constraints this paper presents a deep convolutional neural network for automatic feature extraction. Spatial pyramid pooling layer is added with CNN layer which enhance the classification performance while reducing the computational cost by giving most useful information to Fully connected layer (FCL). Although, the ECG signals are selected from MIT-BIH arrhythmia database, and for the training and testing of the proposed scheme. Hence, the features are extracted and compressed in CNN architecture. Therefore, Arrhythmias are classified by applying fusion and deconvolution technique. The overall sensitivity and positive predictively of classification is 81.66 and 96.45%, respectively. The results show a significant improvement over previous reported studies and results for automated heartbeat classification systems.

Table of Contents

Chapt	ter # 1 Introduction of the Work	1			
1.1	The Problem Statement	3			
1.2	The Research Work Contributions	4			
1.3	Thesis Distribution	5			
Chap	Chapter 2 The Related Work				
2.1	Manual Method For Feature Extraction And Classification				
	2.1.1 The Decision Tree Algorithm and its working	<u>6</u>			
	2.1.2 The Ensemble Decision Tree and its working	7			
	2.1.3 The Support Vector Machine Algorithm (SVM) and its working	7			
	2.1.4 Hybrid Features	8			
2.2	Automatic Feature Extraction And Classification	9			
	2.2.1 Denoise with Wavelet Transform and Neural Network	9			
	2.2.2 Denoising and Classification by DTCWT	10			
	2.2.3 MLP and CNN	10			
	2.2.4 Ventricular Arrhythmia Classification by NN	11			
	2.2.5 Deep Learning	11			
	2.2.6 Neuro Fuzzy Network	12			
Chap	ter 3 Applied Methodology	15			
3.1	Overview of the proposed methodology				

3.2 Overview of Discrete wavelet transform (WT)	
3.3 Overview of Convolution Neural Network (CNN)	
3.4 Network Architecture of CNN	
3.5 Proposed Algorithm	
3.5.1 The ECG signals	
3.5.2 ECG signal Preprocessing	
3.5.3 Feature Extraction	25
3.5.4 Arrhythmias Classification	
Chapter # 4 The Experiments and Results	
4.1 Dataset MIT-BIH	
4.1.1 TheTraining database	
4.1.1.1 Dataset used for denoising and Classification	30
4.2 Training and Testing	
4.3 Experiments	
4.3.1 Denosing	
4.3.2 R peaks detection	
4.3.3 Heart Rate calculated	
4.4 Classification of Arrhthymias	36
4.5 Results of proposed scheme	
4.6 Comparision with Existing Schemes	
4.7 Conclusion	

Tables List

Table 1: The Assessment of different proposed schemes	. 13
Table 2: The detail of CNN network	. 19
Table no 3: The performance evaluation	39
Table no 4: Comparison Table	.42

List of Figures

Figure 1	Normal hear	tbeat signal represe	entation			2
-		methodology				
		itecture of the featu				
Figure3.5.1	L Normal ECO	G signal representa	tion			21
Figure 3.5.	2 ECG signal	and DWT impleme	ntation fo	or decomposition		23
Figure 3.5.	3 Step by Ste	ep representation o	of feature	extraction		25
Figure 3.5.	4.1 Classifica	ation of arrhythmia	s and its t	ypes		26
Figure 3.5.	4.2 Proposed	d Scheme represen	tation			27
Figure 4.1.	1.1 PQRST re	epresentation in EC	G signal			29
Figure 4.3.	1.1 ECG signa	l representation tha	t contains	noise and artifac	ts	30
Figure 4.3.	1.2 Present s	state of the ECG sig	nal			31
Figure 4.3.	1.3 Denoisin	g of the ECG signal.				31
Figure 4.3.	1.4 Noisy sign	als and filtered sign	al represe	entation denosing	with DV	VT32
Figure 4.3.	1.5 Noisy sig	nals and filtered sig	gnal repre	esentation		33
Figure 4.3.	1.6 Normaliz	ing of the ECG sign	al			33
Figure 4.3.	2.1 ECG R pe	ak detection and p	lotting			34
Figure 4.3.	3.1 Heart rat	e calculation and r	epresenta	ation		35
Figure 4.3.	3.2 The com	parative ECG R pea	ks detect	ed		36
Figure 4.4.	1 Ventricula	r Tachycardia				37
Figure 4.4.	2 Supraventi	ricular Arrhythmias				37
Figure 4.5.	1 Accuracy g	raph of proposed s	cheme			
Figure 4.5.	2 ROC curve					40

Figure 4.5.3 sensivity result	41
Figure 4.5.4 sepecificity result	41
Figure 4.6 Comparison graph of both the schemes	.42