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Abstract

Drug-drug interactions (DDIs) are one of the crucial concerns in pharmaceutical research.
In the past decade, many researchers developed some machine learning based methods,
but these ML methods focus on whether two drugs interact with each other not. The
research in DDIs domain shows us that different subsequent even could be caused by
DDIs which can be adverse effects or slowing the recovery process of a patient which is
consuming multiple drugs at a time so for investigating the hidden mechanism behind the
usage of multiple drugs at a time the prediction of drug-associated events can be more
useful. Drug-to-drug interaction occurs when a patient consumes more than one drug at a
time. Hence, due to using different drugs, any drug can influence the effect of another drug.
The drug-to-drug interactions (i.e., DDI) are detected or identified using the pathways
and enzymes interactions, therefore machine learning and deep learning techniques are
used to find the DDI with each other. The deep learning models i.e., CNN, LSTM’s, and
RNN are used to analyze the DDI based on the 65 different types of drug interaction and
its associated events using the selected database. The inputs used, in our model, out of
the 65 types of drugs are smiles of drugs, enzymes, pathways of the drug to target, and
the target. Therefore, the different number of layers, activation function, and features of
drugs for the multi-model CNN, RNN, and LSTM’s is used to achieve better accuracy, as
compared to traditional prediction algorithms. We have done different experiments in terms
of using different numbers of layers, activation functions, and different features of drugs
the multi-model CNN model achieved an accuracy of 0.9000, F1-score of 0.8286, AUPR of
0.9478, AUC of 0.9981 the multi-modal LSTM’s models achieved an accuracy of 0.8902,
F1-score of 0.7792, AUPR of 0.9407 and AUC of 0.9978 and the multi-modal RNN’s
model achieved an accuracy of 0.8866, F1-score of 0.7779, AUPR of 0.9395 and AUC
of 0.9979. The various computational experiments show that a combination of various
drug features is performing better than one separate feature of drugs. Compared with
other proposed methods like DDIMDL, DeepDDI, CNN-DDI, RF (Random Forest), KNN
(K-nearest neighbor), LR (Linear Regression) our multi-modal CNN and LSTM’s model
method has better performance as compared to the other proposed methods mention above.
While the RNN model results are better than LR, KNN, RF methods but approximately
equal DDIMDL methods.
Availability The source code, complete results and data set are available in my GitHub
repository. https://github.com/waqarkaleemkhan/Thesis-code-iteration-on-every-feature
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Chapter 1

Introduction

1.1 Introduction

In the last few decades, the speedy growth in the development of drugs has bestowed
medical practitioners with additional options for treating the disease of patients. Therefore
taking multiple drugs together can lead a patient to DDI. DDI occurs when a patient
consumes more than one drug at a time together and one of which may influence the
effectiveness of another drug. In the USA, a survey has been done in 2011 which shows
that about 67% of senior citizens are consuming four or more different drugs at a time[1],
hence consuming more than one drug at a time can lead to negative drug-drug interaction
events or adverse drugs effect which can lead a patient to death[2],[3]. The observation of
DDI has gotten substantial attention in drug safety surveillance and public health safety. For
avoiding such types of events it is important to know more about DDI and the more DDIs
we know it can also help in the fast cures of diseases like cancer, AIDS, asthma because
the patient with these diseases needs a well-organized pair of drugs to interact positively
and help in fast recovery. To make sure a positive impact on the treatment of patients,
safe prescriptions, and avoid adverse effects it is important for medical practitioners to
understand the DDIs, but mostly the DDIs are noticed after patients consume the drugs
which cannot avoid the negative interaction of drugs on the patient health and cannot
ensure the safety of the drugs. Using wet experiments for identifying DDIs is time
taking, labor-intensive, and costly. For making the DDI prediction process more cost-
effective and efficient many researchers proposed different calculation methods. There are
three categories of computational prediction models which are similarity-based, network-
based, and knowledge-based. The method based on knowledge-based uses text mining
and statistical techniques for the extraction of DDIs from electronic medical records,
spontaneous reports, and scientific literature. The similarity-based method is based on the
two similar drugs may interact with each other or not. The method based on network-based
methods uses the properties of drugs and the network structure of drugs to deduce the
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2 Introduction

lack of interaction between drugs. From various sources like reports, literature, etc, many
researchers have collected drug data and built different databases like Drug-bank, BioSNAP,
and BindingDB which can help in the computational prediction method development for
drug-drug interaction prediction. In this research, we will use multimodal deep learning
and a Drug Bank version 5.0 data set for drug-drug interaction prediction.

1.2 Problem Statement

For the quick recovery and using combinations of the drugs is increasing in modern
medication. This increase in combinations of drugs sometimes leads to adverse drug-
drug interaction events and can cause health problems or slow down the recovery of a
patient. Using the traditional method for predicting drug-drug interaction (i.e., DDI) is very
slow, for quick recovery, it is important to speed up the process of predicting drug-drug
interactions. Most researchers collected drug-related data and make it available publicly,
which can be used for drug-drug interaction prediction using computational methods. For
DDIs prediction various machine learning models are introduced but every model has
its inherent issue. Currently, many researchers are exploring deep learning models for
better accurate and effective DDIs predictions. In our proposed study we will be using a
drug-bank dataset (reference required) and will apply various variations in the methods for
better results as compared to the base paper.

1.3 Objectives

Below are some of the objects which will lead to major objectives Predicting Drugs
Chemical Interaction using Deep Learning.

1.3.1 Existing Domain Work Analysis

Previous work in the field of drug-drug interaction prediction will be summarized and
analyzed in literature review form. Which will help us to understand a detailed preview of
what considerable techniques and models of deep learning and, machine learning is used
for the drug-drug interaction prediction and previously and also the data-sets that are used
for training the model mostly and will also help us in the identification of the research gap
that is being tried to full-filled in our thesis.

1.3.2 Data-set Selection

A sufficient and valid data-set for the validation and training of the model will be selected.
In the selection of data-set we will focused on the four drugs features like chemical
structures, enzymes, pathways, target and interaction of drugs.
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1.3.3 Tunning Hyper Parameters of Model and Applying Different Models

For the implantation and finer understanding of the problem, domain knowledge will be
required. Different deep learning models like CNN, LSTM’s, and RNN will be applied to
the data set and the results of that models will be compared and will test, and tuned the
models with different hyperparameters for better results.

1.3.4 Final Implementation

Finally we will apply different models on the data-set for achieving the desired results.

1.4 Limitation and Scope of Research

Drug bank available is recently designed, therefore none updated current or old data set or
drug-bank is available. Therefore, we are applying the variation in the methods to check
the results of the given base paper.

1.5 Structure of Thesis

Our thesis has five chapters which the first chapter is an introduction which is an intro-
ductory part of the thesis which includes the aspects which bring the public eye into the
research problem. The sections include in the introductory chapter the study background,
objectives of study, limitation, and scope of the study, and structure of the thesis. The
second chapter is Literature Review this chapter includes the detailed literature review or
we can say a background study for developing the objective of studies, hypothesis, and
research questionnaire. In this chapter, we will discuss and analyze the prediction of drug-
drug interaction, work done previously according to different deep learning and machine
learning approaches. The third chapter is Proposed Methodology and Design of Research
in this chapter we will discuss in detail the adopted methodology and utilized research
approach, research parameters, incorporated research strategies, literature resources used,
and theoretical framework. The fourth Chapter is Analysis and Evaluation in this chapter
we will discuss the implementation of different models and the last part will contain the
results of that models, and the last chapter is Conclusion in this chapter the work will be
concluded.
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Chapter 2

Literature Review

2.1 Traditionally Used Approaches for DDIs Classifications

In the discovery of drugs detection of drug-drug interaction is one of the most important
tasks. Traditionally two approaches are used for drug-drug interaction detection are the
following first one is Vivo which refers to when work or research is done within or with a
whole living organism i.e. animal models studies and the second type is Vitro which refers
to when the work or research done outside of leaving organism i.e. cell studies in culture.
Also, there are other types of studies for the detection of DDIs which include preclinical and
clinical studies. Preclinical have two types of studies which are (Evaluating Metabolism-
Based Drug Interaction) and (Evaluating Transporter-Mediated Drug Interactions). In the
Evaluating Metabolism-Based Drug Interaction different test systems can be used which
include CYP enzymes recombinant, tissue of the human liver, and microcosms of the
subcellular liver which can help the enzymes to identify that metabolize an investigational
drug and find out whether the drug is the enzyme inducer or inhibitor. In Evaluating
Transporter-Mediated Drug Interactions used a test system in which a cell-based and
membrane vesicles system is included. These test studies can be used for whether the
drug is an inhibitor or a substrate of different transporters Clinical has two types of studies
(Substrates Index and Perpetrators Index) and (Expected Concomitant Use Drugs) In the
Substrates Index and Perpetrators, Index knew enzymatic subtractors or inhibitors are
co-administered with the investigational drug for the simulation of worst-case scenarios.
In Expected Concomitant Use Drugs, the transporter-mediated DDIs are investigated.

2.2 Deep Neural Network (DNN)

A DNN is a type of artificial neural network with a certain level of complexity, or we can
say a neural network that has at least one hidden layer between the input and the output
layer. There are various types of deep neural networks but these DNN always contain

5



6 Literature Review

the alike components like weights, functions, neurons, and biases, etc. The above-named
components function similar to the human brain and we can train these networks like any
other machine learning algorithm[4][5]. In this study[6] the drug features were generated
for 5000 drugs using smiles (“simplified molecular-input line-entry system”) which is
downloaded from a database named drug-bank for prediction of drug-drug interaction later
then use these features of drugs to predict 80 types of DDIs in DNN. The DNN used in this
study has 1 input layer, 4 hidden layers, and an output layer. Where the input layer has a
drug pair of two drugs and 4,432 features of those pairs and the output layer shows the 80
different types of DDIs in form of probability these different 80 DDI types are presented
by (“one-hot”). In the first hidden layer, there are 2000 nodes, in the second layer, there are
1000 nodes, in the third layer there are 500 nodes and in the last layer there are 250 nodes
and the activation function is used in the between of every two layers is (“ReLu”). For the
prediction of DDIs, numerous methods based on ML have previously been proposed but
many of them predict the interaction between two drugs. In this study,[7] a framework of
multi models deep-learning has been proposed which for DDI events prediction combine
multiple features of drugs with deep-learning the model name is (“DDIMDL”). The model
“DDIMDL” initially builds sub-models based on a “deep neural network” by using these
features of drugs “pathways, targets, substructure, and enzymes” and then for combining
the submodels use a DNN joint framework to learn the representation of cross-modality
of a pair of drugs. The working of the model is that in the first step for calculating the
similarities of drug-drug using four features of drugs and after calculating the similarities
use it as a representation of drug. Then fed the representation to the submodels after
that the submodels are combined to learn the drug pair’s “cross-modality representation“
after learning the representation the DDIs predicted. The dataset used in this study is
named drug bank and KEGG the interaction of drugs in drug banks are described by many
sentences which in terms of DDIs events hard to understand so for understanding the DDIs
easily the authors define a new DIIs representation in terms of a tuple structure which are
“action”, “mechanism”, and “drugA and drugB” where the action is the increase and the
decrease in the lemmatization and the mechanism means the effects of drugs for dividing
the DDIs in a structure of four-touple “StandfordNLP is used”.

2.3 Support Vector Machine (SVM)

SVM is the supervised learning model in machine learning with associated learning
algorithms that analyze data for regression and classification analysis. support vector
machine builds a hyperplane or hyperplanes set in an infinite or high dimensional space
which we can use for the regression and classification or finding outliers detection in data.
The hyperplane with a high margin or distance a good separation can be archived or in
general, we can say the higher the distance or the margin the classification generalization
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error will be lower[8]. As we know that many proposed computational models for DDIs
prediction but these methods are facing many challenges in DDIs prediction because of
the not verified negative samples experimentally for overcoming this problem the authors
come up with a new solution and proposed a model named “DDI-PULearn”[9] to predict
drug-drug interaction on large scale. The model use (“OCSVM”) and (“KNN”) for reliable
negative seeds generation. Then use the negative seeds which are generated and all the
valid DDIs (Positive labels) for training. For identifying the negative seeds from samples
which is unlabeled the model is using an iterative “SVM” then by a method based on
similarity the model represents abundant drug properties as a vector in form of positive
label and negative identified seeds. Then the model uses PCA (“Principle Component
Analysis”) for transforming the vectors into low-dimensional space and uses the vector for
binary classification as an input. Four different datasets are used from the (Drug-Bank)
dataset substructures of chemical, substituents of drugs, and targets of drugs are extracted,
from the second dataset named (DrugCentral) the targets of drugs are extracted, from
the third dataset named (SIDER) side effects of drugs are extracted and from the last
dataset name (CTD) pathways of drugs and drug indication are extracted. This study[10]
intended to build a machine learning (ML) model using support vector machines (SVMs)
for the prediction of DDIs from multiple similarity measures which include 2D molecular
structure, interaction profile fingerprint, target, 3D pharmacophoric, and drug adverse
effect. These similarity measures were extracted from two different databases named Drug-
Bank and Side Effect Resource(SIDER). For every drug-drug pair, the above-mentioned
five similarities were computed and for each similarity, a separate database was created to
store the calculated similarities and then use these five databases to calculate the similarity
matrix for every drug pair and after creating the similarities matrix for the classification
of the DDIs a pairwise kernel was implemented which is used to train the model of SVM
classification on the matrix of similarity to classify the interaction between in a pair of
drugs in the form of True or False.

2.4 Graph Convolutional Network (GCN)

A GCN is a semi-supervised learning approach on graph-structured data. This network-
based on a convolutional neural network that operates on the graphs directly. The big
difference between GCNs and CNNs is that the CNN is particularly built to work on
structured data which is regular (Euclidean) and where the GCNs are the generalized
CCNs version where the nodes are irregular or (non-Euclidean) and the number of nodes
connection. The motive of the research paper [11] was to predict DDIs from the drug
network structure features as we know that the detection of DDIs in wet-lab experiments is
a very costly and time taking process so for rapid DIIs prediction it is extremely needed to
provide computational methods. Normally for DDIs prediction available computational
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methods are using biological and chemical features of drugs that they extract from various
drug-related properties. But some properties of a drug are not available easily or open
source so sometimes it can be very costly to get those properties for DDIs predictions. The
authors proposed a new model named “DPDDI” in which the network structure feature
of the drug will be extracted from the network of DDIs using a “graph convolutional
network” DDIs and a deep neural network is used to predict the interaction between
drugs. In the network of DDIs, the topological relationship is captured by GCN to learn
the “low dimensional feature representation of drugs”. For the possible prediction of
“drug-drug interaction” of any of two drugs, latent feature vectors concatenate as a feature
vector of the same 5 drug pairs by DNN predictor. The data sets used in this paper
are the drug bank 4.0 version which has 1562 drugs and 180576 explained drug-drug
interactions. To evaluate the strength of the model the drug bank version 5.0 dataset has
been used which has 1934 different types o drugs and 230,887 interactions of drugs. For
comparing network base features of the model with other derived drug features using
various drugs also used chemical structures and “ATC” codes from drug bank data. The
DPDDI has three phases i) Using GCN model to extract “low dimension embedding latent
features” from the network of DDIs; ii) For representing the pairs of drugs the latent
feature vectors (i.e Zi and Zj) of drug di and dj is aggregated; iii) To predict the DDIs the
fused feature vector is fed to DNN. In the first step of the model ”DPDDI Framework”
framework, a two-layer GCN is built for obtaining latent drug features which will capture
the complicated relationship between nodes of drugs in the DDIs network. Then in the
next step the corresponding “latent feature of drugs” are concatenated and every pair of a
drug is presented as a feature vector. In the last the feature vectors which are generated
in the second step fed into DNN for training the predictor and predicting the possible
DDIs. Many computational methods for DDIs predictions are depending heavily on the
various drug-related features but for datasets of large scale the important features of most
drugs are unavailable and another problem is robustness which can lead the model to be
sensitive for the test dataset in terms of information pairwise similarity. To overcome these
two problems the researchers [12] used (Graph representation learning) for accurate DDIs
predictions. In a large dataset sometimes many features of drugs are not available which
can affect the results of the model for avoiding this problem the DDIs prediction was done
by the related drug information which is easily accessible. The model is taking input
(SMILES) inform of canonical representation where the SMILES canonical representation
is a molecule linear notation. RDKit is used for converting SMILES pairwise representation
into a graph of molecular pair. And using RDKit we can take out an atom list and a matrix
of multi-channel adjacency structural information from a molecular graph and in the next
step, this information was fed to (Siamese GCN) to predict the interaction of drugs. This
research is an escalation of a preceding publication and was a data build up[13]. Take 1923
Drug Target Interactions from benchmark data sets and formulate a new data set which
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involves 708 drugs from DrugBank 5.0 data set and 1412 targets from HPRD9.0. For
calculating the similarities between drugs used textbfTanimoto coefficient based on the
respective drugs chemical structures and for calculating the similarities between drugs used
textbfSmith-Waterman Score which uses primary sequences for calculations. A drug target
heterogeneous network is constructed and extracts the nodes and edge information of the
network for fully understanding that how numerous aspects come into play for the DTIs
predictions through the analysis of drug-target attributes. For the feature representation
learning of each node, an adversarial graph encoder is used and a LightGBM-based
classifier was used for the measuring DTI interactions score. The model was divided
into 3 network parts the first network is for drug-drug interaction, the second network for
target-target interaction, and the third for drug-target interaction. True False Positive, False
Positive Rates, and True Positive Rates were used for calculating the model performance.
For the consideration of data imbalance, the Area Under Curve and Precision-Recall Curve
were used. In GAN l=50, k=200 was set for Weight Matrix settings, and the number
of samples was set to 900. The researchers use the heterogeneous graph of drug-target
nodes for drug-target interaction prediction by using the deep learning techniques and for
showing the entire interaction heterogeneous graph the encoding and decoding techniques
are used[14]. The model can be summarized as a multi-label link prediction algorithm.
The model has a 5 interaction network and two similarities networks like drug-protein,
drug-drug, protein-protein similarity drug protein-side effect, drug-disease, drug-drug
similarity, and protein-protein. At least one of the relations will be contained in each edge
of the graph network. Based on node neighborhood topology each node interacts with
other network nodes. Normalization constants and ReLU activation function are used for a
trainable matrix concerning the neighborhood nodes. By stacking the previous layer output
which becomes an input to the next layer the encoders are created along with the activation
functions. The reconstructed edge labels are used by the decoders. The sigmoid function is
used for calculating the probability and for the training optimization the cross-entropy loss
function is used. The data-set used in this research has been extracted from Drug Bank
Database version3.0 for the Drug-Protein and Drug-Drug interactions and the protein-
protein data has been extracted from the HPRD database. Drug-Protein and Drug-Disease
side effects were taken from the Comparative SIDER and Toxicogenomics database. For
the comparison, the AUROC method is used and for the estimation of performance, the
ten-fold cross-validation was used in the form of AUPR and AUROC.

2.5 Neural Networks

Neural Networks also called Artificial Neural Networks are a set of algorithms that are
inspired by the human brain which are developed to recognize patterns[15]. The base of
neural networks is on the collection of connected nodes or unites which are called artificial
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neurons. Each node or artificial neuron receives the signal and then processes that signal
and then signals the connected node or neuron. The signals are the real numbers and for the
computation of the outputs some nonlinear function like ReLU, Softmax is used. We can
also be called edges to connections. For the adjustment of learning processes, the edges and
neurons have weights. The weights are used for the increase and decrease of the strength
of the signal at the connection. This study[16] aimed to provide a computational model for
unknown drug-drug interaction prediction using numerous data about drugs. The authors
proposed a model named “NDD neural network-based drug-drug interaction model”. The
similarity of drugs depends on the target, pathways, side effects, the substructure of a drug,
off-label side effects, and indication data. To attain high-level features the “NDD” model
first uses a selection process of “heuristic similarity” and then after getting the similarities
to combine it with the “non-linear similarity fusion method” then use “neural network” for
the prediction of the interactions. The model is working in four steps which are first for
every pair of drugs the drug similarity and “GIP Gaussian Interaction profile” is calculated
in the second step select the subset of the similarities which have more details and less
redundancy in the third step matrix of integrated similarity is obtained by integrating the
similarities which have been selected which results in one matrix of all the details in the last
step the matrix is fed to the neural network for the interaction prediction. There are four
data sets used in this article which are “drug bank”, “SIDER”, “KEGG”, and “PubChem”.
Researchers proposed a model which uses a hybrid of neural network architectures being
Fully Connected Neural Network and Convolutional Neural Network[17]. The proposed
model predicts both negative and positive interactions between related targets and drugs
through the use of chemical structures of drugs called SMILES and the protein amino acid
sequences. Used four different types of data-sets named DrugBank, BioLip, BindingDB,
and Yamanishi et al’s and compile a new dataset. The SMILES and protein sequences are
encoded into integer values according to the encoding schema. For the normalization of
the categorical values, one hot encoding is used which also converts encoded sequences
into binary vectors. Before applying the max-pooling patterns are found through SMILES
and protein sequences and then a single feature vector is produced. And then the produced
feature vector is fed to (FCNN) and for overcoming the over-fitting drop-out is applied
and in the last, the output layer returns binary values which specify either it is a positive
or negative interaction. The proposed model is then compared with other deep neural
and machine learning techniques like Support Vector Machine(SVM), Fully Connected
Neural Network(FCNN), etc. The parameters used for comparative analysis are F1-
Score, Accuracy, Sensitivity, Specificity, Area Under Precision-Recall Curve. Researchers
proposed a method named DeepDDI[18] and developed a neural network based method
for the prediction of 86 types DDIs. The DDIs are collected from Drug Bank database and
the deep learning model based on the chemical substructure.
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2.6 Autoencoders

Autoencoders are the type of artificial neural network which are used for learning the
codings of data efficiently in an unsupervised manner[19]. In the autoencoders, the inputs
are the same as outputs. The inputs are compressed into a lower-dimensional code and
then from that representation reconstruct the output. There are three main components of
autoencoder which are encoder, code, and decoder. The encoder part compresses the inputs
and produces a code and the decoder part uses that code and reconstructs the output from
that code and where the codes are the "Compression" or "Summary" of the given inputs.
For secure and extra efficacious co-prescription of drugs, it is very important to predict the
effects of drug-drug interactions. As we know that for many diseases like AIDS, cancer,
and asthma therapy of multi-drug is becoming very promising because multi-drug therapy
can increase the efficacy of the drug, decrease the toxicity of the drug, or can reduce the
resistance of the drug. Also, multi-drug therapy can cause drug-drug interaction which
can lead to adverse drug events. Thus the accurate prediction of the drug-drug Interaction
effect is very important. The objective of this research paper[20] is to improve the accuracy
of classification of previous studies a new deep learning model was proposed by the
authors which are using the known functions and the supplementary features of the target
genes. Instead of using “TSP”, “GSP”, and “SSP” combined they constructed separately
three structure similarity profiles because the input size of the above three combined
profiles is very large and used autoencoders for reducing the features. After reducing the
feature dimensions the reduced pairs are concatenated and fed to a feed-forward deep
neural network to predict DDI type. In this study[21], the authors initiate the adversarial
autoencoders with knowledge graphs (KG) embeddings to develop a new framework for
the DDIs prediction the base of the autoencoders is on (Gumbel-Softmax relaxation) and
(Wasserstein distances). The purpose of developing a new (KG) embedding framework is
that the existing methods of (KG) for the prediction of DDIs is generating the negative
samples using the uniformly random mode, as a result, training an effective model these
samples are very oversimple. The autoencoder used in the proposed method is employed for
generating a high-quality negative sample and the autoencoder hidden vector is considered
a convincing candidate for the drug. After generating the negative samples these samples
and the positive samples are fed to the discriminator to improve the performance of the
embedding model. For solving the vanishing gradient problem (Wasserstein distance) and
the (Gumbel-Softmax relaxation) are used to train the model. There are two different
datasets are used named (DeepDDI) which is generated from a drug bank database in this
dataset there are 1,710 drugs, 86 various interactions, and 192,284 pairs of drugs and the
other dataset name is (Decagon) the dataset has 637 drugs, 200 interactions and 1,121,808
pairs of drugs. Existing Methods for DDI prediction is mostly distributed into 3 groups
which are “knowledge-based, similarity-based and, network-based” newly studies have
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exhibited that for high accuracy development heterogeneous drug features integrations
are very important but it also comes up with many more challenges like incomplete data,
nonlinear relations, and heterogeneous properties. So the authors proposed a method
named “DDI-MADE” [22] for the prediction of DDIs. Multi-model deep autoencoders to
learn from a network of various drug features simultaneously a unified drug representation.
Then for the representation of drug pairs on the learned drug embeddings, various operators
are adopted, and then for the DDIs predictions used the “random forest” to train the model.
The method has a shared hidden layer and various channels of auto-encoders after the
process of training in the hidden layer the “low dimensional space” is we want to obtain.
The dataset used in this study is drug bank version 5.1.0 which is characterized in 314
pathways, 285 enzymes 699 chemical substructures, and 2367.

2.7 Convolutional Neural Network (CNN)

CNN or(ConvNet) is a type of deep neural network which is specialized for the recognition
of image[23]. ConvNet was developed in the mid of 1980s[24]. But for a while, the
ConvNet was forgotten because for the real-world application it was impractical with
complicated images. After 2012 when they are revived most of the computer vision fields
were conquered by ConvNet and are growing at a rapid pace[25]. The ConvNet consists
of three types of layers first one is input layers, the second is hidden layers and the last
is output layers. The hidden layer in the convolutional neural network includes layers
that perform convolutions. Commonly in the hidden layer of ConvNet includes a layer
that performs convolution kernel dot product with the input matrix layer’s commonly
used activation function is ReLU[25] and usually the product is Frobenius inner product.
Features maps are generated by the convolutional operations which act as an input to the
next layer and then followed by other layers like normalization layers, fully connected
layers, and pooling layers. The purpose of the research article[26] was to predict accurately
drug interactions. Earlier the prediction of drug interactions was interpreted ambiguously
because in small quantities of drugs the tests were performed in person. Many methods of
machine learning have recently been proposed to predict DDI but over-fitting is a major
problem with these models. So in accurately predicting DDI, these models did not work
very well. To manage the over-fitting issues the authors have proposed an "integrated
convolutional mixture density recurrent neural network" in the proposed model CNN,
RNN, and MDN are integrated. The proposed model working is described as follows. For
capturing the high dimensional input features using 1D CNNs. Next, use the LSTM-RNN
for time series data modeling. The output layer consists of a mix of Gaussian densities
to improve the accuracy of the forecast. (NCI-ALMANAC)this data set is constructed
by collecting synergies of drugs over 3 institutions “NCI’s Frederick National Lab, SRI
International, and Cancer Study” data set contain 29000 features. This study[27] intended
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to develop a method that can predict DDIs from multiple data sources. As we know that
many approaches of data-driven DDIs prediction depend on the single data source for
improving the prediction of DDIs it is important to use multiple sources of data. Different
machine learning techniques are used but these techniques are ineffectual in terms of
dealing with the skew in data. Predicting DDIs from multiple sources of data the authors
present a new approach of “Machine Learning”. There are three different datasets named
“Drug-bank”, “PharmGKB”, and “KEGG” which have 12,000 drug features these features
of drugs are integrated using Knowledge graphs. For training, the prediction model
different approaches of embedding are used for embedding the nodes in the graph. While
using different embedding approaches from the results it is showing that the better method
for embedding is complex embedding which is created using “PyTorch-BigGraph” with
the combination of prediction models of classical machine learning and “Convolutional-
LSTM”.

2.8 Embedding Approach

An embedding is a relatively low dimensional space into which high dimensional vectors
can be translated. Three types of embeddings are used in the below research which
are SMILES strings drug structure embeddings, relational data embeddings, and image
embedding of drug structures. Researchers utilize multiple knowledge sources[28] for
using rich drugs representation to propose an effective approach for the prediction of DDI.
For learning an embedding of drugs the Drug-Target Interaction Network has been used
by using the metapath2vec algorithm and the Variational Auto Encoder has been used to
gain the representation of drugs from rich chemical structure representation of drugs. The
problem of DDI prediction is modeled as a link prediction problem in the network of DDI
which contains known interactions of drugs. The nodes in the DDI network are represented
as their embeddings. A link prediction algorithm which based on Graph Auto-Encoders for
the prediction of additional edges in the network, which are the potential interactions. The
proposed method is evaluated with the three DDI data-sets named BioSnap, SemMedDB,
and DrugBank and the experimental results show that the proposed method outperforms
the earlier method in terms of (AUC, AUPR, and F1-score) on the above three data-sets
and achieved an AUC of 0.73 on DrugBank data-set, 0.76 on SemMedDB data-set, and
0.76 on BioSNAP data-set. Researchers use different types of data sets for the prediction
of DDI [29] the data used in this study are in form of images and strings. They have used
three types of data the drug structure images, string of chemical substructures (SMILES),
and relational representation of different associations between the protein and drugs like
(target, enzymes, and transporter). For learning a similarity metric from drug structure
image embeddings used a Siamese architecture in which the inputs are mapped into a target
space the distance between the mappings is minimized for the similar pairs of example in
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the target space and for the dissimilar examples the distance is maximized. The siamese
architecture is consists of two identical sub-networks and each sub-network takes an image
of size 500x500x1 of gray-scale as input and the network consist of 4 convolutional layers
with the filter of 64,128,128, and 265 respectively. For each convolutional layer, the kernel
size is 9 x 9 and the relu is used as an activation function. For the embeddings of the
relational data, the DDIs can be considered as the characterization of the relationships
between the different proteins and drugs like transporters, and enzymes using different
features like metabolism, excretion, distribution, absorption, etc. For the drug, structure
Smiles strings embeddings used SMILESVec model in which the strings of SMILES
divide into various interacting sub-structures after that another method named word2vec
is used for generating the embeddings for these sub-structures and then all of the above
embeddings are then combined to generate the drugs final embeddings. After generating
all the three different types of embedding then aggregate the embedding for generating the
lower-level representation. For both cases SMILES string and image embeddings use a
size of 100 x 1. The proposed method achieved an accuracy of 0.884.

2.9 Knowledge Graph and Graph Neural Networks (KG and GNN)

The knowledge graph is used to organize multiple source data, capture information in a
given domain about entities of interest for example (places, people, and places), and pro-
duce the connection between them[30]. Knowledge graph neural networks are connection
models which pass the messages between the graph nodes for capturing the dependency
of the graph. Unlike standard neural networks, graph neural networks retain a state that
can represent information from its neighborhood with arbitrary depth. The Researchers
propose an end-to-end framework called "Knowledge Graph Neural Network" [31] to
resolve the issue of the previous studies in which smaller attention is paid to the potential
correlation between other entities and drugs like genes and targets and the (KG) adopted
for the recent studies in the prediction of DDIs learn node latent embedding directly but
obtaining the rich neighborhood in information’s they are limited the proposed method
can capture the drug and its potential neighborhoods effectively by mining their associated
relations in KG. For extracting both semantic relations and high-order structures of the KG,
for each entity in KG, the model learn from neighborhoods as their local receptive and then
neighborhood information is integrated with the bias from the current entity representation
using this method the drugs potential long-distance correlations and the receptive field
can be naturally extended to various leap away to model high-order topological informa-
tion. Researchers developed a multi-scale feature fusion deep learning framework named
MUFFIN[32] the framework can learn jointly the representation of drug based on both the
knowledge graph and the drug-self structure information with rich biomedical information.
In the framework, a bi-level cross strategy is designed which includes scalar and cross-level
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components to fuse multi-modal features well and the restriction of limited labeled data can
alleviate deep learning models by crossing the features learned from drug molecular graph
and the large scale KG where the cross-level is the aggregation and extraction of global fea-
tures and local features by operating cross product for various features and the scalar level
using the element-wise product to extract many fine-grained fusion features. The proposed
framework includes three modules the first one is the representation learning module the
message passing neural network and the knowledge graph representation method are used
to the semantic features and the molecular structure feature from knowledge graph and
molecular graph, accordingly. The second module is a feature fusion module in bi-level
strategy is designed which includes two units named cross-level and scalar-level. The
third module is named the classifier module in which the features learned from the above
modules are concatenated and then for the prediction of DDIs used different classifiers
according to the different classification tasks.

2.10 Convolutional LSTM’s

Convolutional LSTM’s are typically used for the prediction of Spatio-temporal which
has a convolutional structure in both transitions of state-to-state and input-to-state. The
Researchers introduce a novel deep learning framework named Deep Heterogeneous Drug
Target Affinity for Drug Target Interactions[33]. The framework is divided into three
parts the first part uses Dense Net augmented with SE operation for learning the protein
structures, the second part uses a heterogeneous graph network for learning the topological
representation of drug molecules, and the third part uses bidirectional Convolutional
Long Short-Term Memory(ConvLSTM) architecture to learn the sequential SMILES
characteristics of input compounds. Then for calculating the affinity scores out of the
ConvvLSTM is used. For encoding the amino acid sequences the Polypeptide frequency of
Word Frequency is used which provides features of the protein. Attaining the polypeptide
frequency through the model portion is inspired by DenseNet which has three blocks of
dense convolutional where each block is carrying the sum of information from its forerunner
block. For channel exciting and squeezing the Squeezing and Execute block is used which
combined regional average pooling for creating the Global Average Pooling to create
channel descriptors for the entire input channel and for the three-channel model a features
space encoding feature vectors to 1 x 1 x F is created by using the sigmoid function and for
capturing the channel’s nonlinear interaction the excitation process is used. The features
of Drugs are learned through the SMILES conversion into a graphical representation
used RDKit. For the preserving of all meta-path information, the Heterogeneous graph
Attention Network is used instead of a simple Graph Attention Network because simple
GAN only focuses on nodes but the nodes of a heterogeneous network are linked from
various similarities through abundant paths. For achieving the GANs the weights of the



16 Literature Review

neighboring nodes are learned per meta-path and then calculated the meta-path differences
for fetching the ideal weight combinations. The semantic path values are then concatenated
because the variance increases when each semantic path produces its own path values. For
converting the Smiles to vector notations the Smi2vec method is used then the matrix of
converted smiles is fed to bi-directional ConvLSTM. The output layer of the model has
three fully Connected Layers with 512,768 and 1024 nodes. For avoiding the over-fitting
dropout layer is used and used a Mean Squared Error for loss. This research has been done
for fasting the development of a suitable vaccine for CoVid-19. The framework achieved
the highest Concordance Index of 0.924 and 0.927 and Mean Square Error of 0.195 and
0.11 on two different data sets called Davis and Kiba.

2.10.1 Summary of Literature

Existing work mostly focuses on the interaction of two drugs, or some of the studies like
[8] predict the interaction of specific diseases drugs or some of the studies only used one
feature drug like the researches of [18] uses only one feature of drug which is chemical
substructures for the prediction of 86 types of DDIs events. The authors of DDIMDL[7]
used four features of drugs and used a deep neural network based on sub-models for every
feature of the drug for the prediction of DDI associated events and the results show that
using multiple features of drugs and using sub-models perform better in the prediction of
DDI associated events. We have also used four features of drugs same as DDIMDL and
instead of using a simple deep neural network we have used three deep learning methods
which are CNN, LSTM, and RNN based on sub-models and our three models perform
better than above mentioned work in terms of accuracy, precision, recall, AUC, and AUPR.
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References Problem Statement Techniques and Al-
gorithms

Results

[26] To overcome over-fitting and ef-
ficiently predict drug-drug inter-
action using deep learning

(CNN), (RNN),
(MDN), (LSTM-
RNN)

ACC of 98.4%

[11] drug-drug interaction prediction
without using the various drug-
related properties

(GCN), (DNN), (5-
fold CV)

ACC of 94.0%

[20] For decreasing the size of ev-
ery single profile autoencoders
perform well rather than using
(PCA) and the prediction accu-
racy is increasing whenever used
just (SSP).

(Autoencoders),
(FeedForward
DNN)

ACC of 94.0%

[16] Combining similarity selections
and similarity integration with a
neural network to built accurate
DIIs predictor.

(Neural networks),
(GIP), (SNF), (5-
fold CV)

AUC 99.2%

[22] For the prediction of DDIs how
to use multiple drug datasets and
how the multiple structures of
the nonlinear network can be cap-
tured.

(DNN), (Deep Au-
toencoders), (3, 5-
fold CV)

ACC of 99.5%

[27] From three different data sources,
12,000 features of drugs are used
which is integrated using knowl-
edge graphs, and a complex em-
bedding method was created

(Convolutional-
LSTM), (Knowl-
edge Graphs),
(5-fold CV)

(AUPR 93.0% )

[6] From drug bank, dataset gen-
erated features of drugs using
Smiles and used the generated
features in DNN to predict 80 dif-
ferent DDIs for a pair of drugs.

(DNN), (SVM) ACC 94.0%

[7] A joint framework of DNN is
used for prediction of DDIs

(DNN), (Stand-
fordNLP), (Similar-
ity Matrix), (5-fold
CV)

ACC of 88.5%

Table 2.1: Literature Summary part 1.0
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References Problem Statement Techniques and Al-
gorithms

Results

[9] Using (one-class support vector
machine) and (KNN) to gener-
ate the negative seeds from un-
labeled data and uses in classifier
for better DDIs prediction.

(SVM), (OCSVM),
(KNN), (3, 5-fold
CV)

F1-score 86.2%

[12] GCN was used to solve the prob-
lem of robustness and model sen-
sitivity to a test dataset interm
of pairwise information similar-
ity by using drug-related infor-
mation instead of various drug
features.

(Siamese GCN),
(Single Layer NN),

AUC of 80.0% on
large scale dataset
and on small scale
dataset AUC of
94.02%

[10] Combining vector-based and
similarity-based models of ML
with different training datasets
and set of similarities which are
well defined to check the DDIs
prediction .

(SVM), (10-fold
CV)

AUROC of 98.0%

[21] Autoencoders was used with
(KG) embedding for generating
the high-quality negative samples
for improving the (KG) embed-
ding for DDIs prediction.

(Autoencoder),
(KG embedding),
(Wasserstein
distance), (Gumbel-
Softmax relaxation)

PR-AUC 76.0%

Table 2.2: Literature Summary part 1.1



Chapter 3

System Architecture and Research
Design

This Chapter has two parts the first part contains the details about the data-set used in the
study and the second part contains the proposed methodology for this study.

3.1 Data Set

The data-set used in this study was named Drug-Bank. Drug-Bank online is a broad,
free available, online database that contains drugs and drugs target information both
cheminformatics and bioinformatics resources. In a drug bank, the researchers combine
drug details for example (pharmaceutical, chemical, and pharmacological) data with
extensive drug target for example (structure, sequence, and pathway) information. Drug-
Bank online database is used widely by the students, physicians, medicinal chemists drug
industry because of its wide scope, detailed description of data, and broad referencing.
Drug-Bank database contains 12,151 drugs and its broad information which includes the
drug name, chemical substructure (SMILES) or we can say the chemical formula of drugs,
targets, enzyme, pathways, description, protein, etc, also contains 3844 drugs approved
from FDA and 5867 experimental drugs. we will be using different features of drugs like
name enzyme, chemical substructure, target, and pathways, and the DDIs of the drugs. The
target and enzyme of the corresponding drug can be obtained directly from the database
while for the interaction of drugs we will use the description of drugs which is in form of
a sentence for example "the process of metabolism can be increased when using DrugA
and DrugB”. We will be using the drugs which have all the above four features and have a
minimum of 10 or more interactions with other drugs. In the first step, we will process the
data which include extraction of drugs features (enzyme, targets, chemical substructure,
and pathways) then from the description extracting DDIs of the drugs and selecting drugs
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that have interactions with other drugs in the second step we will be preparing data in
terms of training data-set and testing data-set.

3.1.1 History of Drug-Bank

The Drug-Bank project is started in 2006 in the lab of Dr. David Wishart’s at Alberta
University. This project was begun for academic researchers to help them to get detailed
drug structure information. It became a part of "The Metabolomics Innovation Center"
(TMIC) in 2011. Then in 2015, the project was draw-out into "OMx Personal Health
Analytics In" because of the continued growth in scope and popularity. Below is the
complete history of Drug-Bank versions (1.0, 2.0, 3.0, and 4.0).
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Category v-1.0 v-2.0 v-3.0 v-4.0
No. of data fields per DrugCard 88 108 148 208
No. of search types 8 12 16 18
No. of illustrated drug-action pathways 0 0 168 232
No. of drugs with metabolizing enzyme data 0 0 762 1,037
No. of drug metabolites with structures 0 0 0 1,239
No. of drug-metabolism reactions 0 0 0 1,308
No. of illustrated drug metabolism pathways 0 0 0 53
No. of drugs with drug transporter data 0 0 516 623
No. of drugs with taxonomic classification informa-
tion

0 0 0 6,713

No. of SNP-associated drug effects 0 0 113 201
No. of drugs with patent/pricing/manufacturer data 0 0 1,208 1,450
No. of food–drug interactions 0 714 1,039 1,180
No. of drug–drug interactions 0 13,242 13,795 14,150
No. of ADMET parameters (Caco-2, LogS) 0 276 890 6,667
No. of QSAR parameters per drug 5 6 14 23
No. of drugs with drug-target binding constant data 0 0 0 791
No. of drugs with NMR spectra 0 0 0 306
No. of drugs with MS spectra 0 0 0 384
No. of drugs with chemical synthesis information 0 38 38 1,285
No. of FDA-approved small molecule drugs 841 1,344 1,424 1,558
No. of biotech drugs 113 123 132 155
No. of nutraceutical drugs 61 69 82 87
No. of withdrawn drugs 0 57 68 78
No. of illicit drugs 0 188 189 190
No. of experimental drugs 2,894 3,116 5,210 6,009
Total No. of experimental and FDA small molecule
drugs

3,796 4,774 6,684 7,561

Total No. of experimental and FDA drugs (all types) 3,909 4,897 6,816 7,713
No. of all drug targets (unique) 2,133 3,037 4,326 4,115
No. of approved-drug enzymes/carriers (unique) 0 0 164 245
No. of all drug enzymes/carriers (unique) 0 0 169 253
No. of external database links 12 18 31 33

Table 3.1: Drug bank history

* This table data is taken from DrugBank Wikipedia page [34]
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3.2 Proposed Methodology

In this part of the chapter, we will go over three different models and feature extractions
techniques which are used for the prediction of DDI events on the Drug-Bank Database
and will describe the architecture of the models.

3.2.1 Features Extraction

The first step in the proposed methodology is to extract the drug features vectors using
drugs data chemical substructure, enzymes, targets, and pathways. For getting the binary
features vector first we adopt encoding (0,1) where the values (1,0) of the features represent
the presence and absence of the components. For the above four features of drugs the
PubChem define different types of dimensional bit vectors for example there are 881
chemical substructure types, 202 enzymes types, 1162 targets types, and 957 pathways
types here we will take an enzyme for an example the enzymes drug feature can be
represented a 202 dimensional bit vector where the values are only 0 and 1 In which 1
represent the presence of enzymes and the 0 represents the absence of the types of enzymes.
Then in the next, we calculate the similarity metrics of drugs features which are chemical
substructure, enzymes, targets, and pathways by Jaccard similarity matrix. According to
measures of drug-drug similarity between two drugs the similarity bit feature vectors, we
measure. So we can get four similarity matrices of 572 x 572 and then we can represent
each matrix in form of S=

(
Sij

)
where the value of Sij is in between 0 and 1 also include

the 0 and 1 so the higher the value the higher the two drugs similarity. In the second step,
we fed the extracted features to model for the classification.

3.2.2 1-D CNN as a Model

Convolutional Neural Network or(ConvNet) is a type of deep neural network which
is specialized for the recognition of image[23]. ConvNet was developed in the mid
of 1980s[24]. But for a while, the ConvNet was forgotten because for the real-world
application it was impractical with complicated images. After 2012 when they are revived
most of the computer vision fields were conquered by ConvNet and are growing at a rapid
pace[25]. During the past decade for different machine learning and computer vision
operations, the convolutional neural network has become a de-facto standard. ConvNet
is the feed-forward networks with subsampling layers and alternating convolutional. A
2D deep CNNs with millions numbers of parameters and with a numerous number of
the hidden layer have the capability to learn complex objects and patterns providing that
can be trained on a huge size visual database. This distinctive ability makes these CNN’s
the main tool for different engineering applications for 2D signals like videos frames
and images. But this may not be a valid option in different applications like 1D signals
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mostly when training data is scanty or application-specific. To address the above issue 1D
CNNs have been proposed which instantly achieved a very good performance in different
types of application like classification of personalized biomedical data, structural health
monitoring, and early diagnosis and another huge advantage of 1D CNNs are that perform
1D Convolutions (additions and scalar multiplication) through which we can achieve the
desire results on real-time and low-cost hardware[30].

3.2.2.1 Our 1D CNN Architecture

In the first step we give four features of drugs like (chemical substructures, enzymes,
pathways, and targets) as an input for the drug-drug similarities calculations using the
similarities measures which are explained above in 3.2.1 part then uses that similarities
matrix as a representation of drugs and then that representation of drugs are respectively
fed into a sub-model based on 1D-Convolutional neural network. Then in the last step, we
combine the sub-model for learning the cross-modality representation of drug pairs and
predict events of DDI with cross-modality representation.

Figure 3.1: Proposed method 1 pipeline
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3.3 Recurrent Neural Network as a Model

Recurrent Neural Networks are types of Artificial Neural Network where the previous step
output is fed to the current step as an input[35] wherein the traditional neural network
the inputs and the outputs are independent of each other but in the scenario where we
want to predict the next sentence or the word, the previous record of the data is required
so it is compulsory to remember the previous record of the data thus with the traditional
approaches we can’t achieve this to overcome this problem the RNN came into existence
which uses the hidden layer to solve the above problem. The most important feature of the
RNN is the Hidden state which remembers the previous information about the sequence.
RNN has a "memory" that keeps the information which has been calculated previously.

3.3.0.1 RNN working structure

For Understanding the working structure of RNN we will take an example below, Let’s
suppose we have a deeper network with 1 input layer, 3 hidden layers, and 1 output layer so,
like other artificial neural networks each and every hidden layer of the network will have its
own set of biases and weights, lets suppose we represent the first hidden layer weights and
biases with (w1,b1), the second hidden layer weights and biases with (w2,b2) and for the
third hidden layer weights and biases with (w3,b3) which means that these layers are not
dependent on each other for example these layers do not remember the previous output.

Figure 3.2: Feed DNN with 3 hidden and one input and output layers
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Now RNN will apply the following steps. 1) In the first step, RNN will convert the
independent activation’s to dependent activation’s by providing all the layers with the same
biases and weights, thus lowering the complexity of increasing parameters and remem-
bering every previous output by feeding every output an input to the next hidden layer.
2) In the second step the three layers can be connect with each other like that the bias and
weights of hidden layers is the same, into s single recurrent layer.

Figure 3.3: Simple RNN stucture
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Current state calculating formula ht = f
(

ht−1,Xt

)
Where ht stand f or current state, ht−1 stands f or previous state and
Xt stands f or input state
Tanh activation function formula
ht = tanh

(
Whhht−1 + WxhXt

)
Where Whh stand f or weight at recurrent neuron and Wxh is weight at input neuron
Output calculation formulaYt = Whyht
Yt stands f or out put and Why is weight at out put layer

3.3.1 Our RNN Model Architecture

In the first step we give four features of drugs like (chemical substructures, enzymes,
pathways, and targets) as an input for the drug-drug similarities calculations using the
similarities measures which are explained above in 3.2.1 part then uses that similarities
matrix as a representation of drugs and then that representation of drugs are respectively
fed into a sub-model based on Recurrent neural network. Then in the last step, we combine
the sub-model for learning the cross-modality representation of drug pairs and predict
events of DDI with cross-modality representation.
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Figure 3.4: Proposed method 2 pipeline

3.4 Long Short Term Memory (LSTM’s)

Long Short Term Memory is a type of recurrent neural network in the RNN the output of
the last step is fed as an input to the current step. The Lstm was developed by Hochreiter
Schmidhuber the main agenda behind the LSTM’s was to overcome the RNN problem
of long-term dependencies in which the RNN can’t predict the words which are stored in
long-term memory but the recent information can predict accurately.
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3.4.0.1 LSTM Structure

LSTM’s has the structure of chain type which contains cells and four neural networks. Cells
are blocks of different memory. Cells are used to retain the information’s and the gates are
used for memory manipulations. There are three types of gates which are discussed below.

Figure 3.5: LSTM’s structure
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1) Forget Gate: The forget gate is used for removing the information which is no longer
useful in the cell state. Two inputs are fed to the gate and then multiply these inputs with the
weight matrix which is followed by the bias addition.

Figure 3.6: LSTM’s forget gate structure

2) Input gate: The input gate is used for the useful information addition to the cell state.
First used the sigmoid function for the information regulation and then for the remembrance
of the value filter the values like forget gate. Then used a tanh function for vector creation
which gives an output value of -1 to +1.

Figure 3.7: LSTM’s input gate structure
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3) Output gate: The output gate is used for useful information extraction from the
current cell state. First, apply tanh function on the cell to generate a vector then use the
sigmoid function to regulate the information and then filter the values to be remembered.

Figure 3.8: LSTM output gate structure
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3.4.1 Our LSTM’s Model Architecture

In the first step we give four features of drugs like (chemical substructures, enzymes,
pathways, and targets) as an input for the drug-drug similarities calculations using the
similarities measures which are explained above in 3.2.1 part then uses that similarities
matrix as a representation of drugs and then that representation of drugs are respectively
fed into a sub-model based on Long Short Term Memory. Then in the last step, we combine
the sub-model for learning the cross-modality representation of drug pairs and predict
events of DDI with cross-modality representation.

Figure 3.9: Proposed method 3 pipeline
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3.5 Cross-Entropy

Cross-entropy is widely used in deep learning and machine learning models as a loss func-
tion. Cross-entropy is a measure from the field of information technology that calculates
(p,q) two distributions of probability it is constructed upon entropy[36]. It is similar to
KLdivergence where KLdivergence calculates relative entropy between the probability
distributions, and the cross-entropy calculates the total entropy between two probability dis-
tributions. the cross-entropy between two probability distribution (p and q) can be define as
H(p,q) = −Ep[logq].

whereEp[∗] is the operator o f the expected value with respect to p distribution.

3.5.1 Categorical cross-entropy

Categorical cross-entropy is used as loss function in our three models (CNN, RNN,
LSTM’s) it is used for the multi-class classification tasks. Multi-class classification are
tasks where from multiple categories the output belongs to one class in our case we are
predicting 65 events of drug-drug interaction so for that reason we use categorical cross-
entropy. The mathematical formula of the categorical cross-entropy loss function is below.
out putsize

∑
i=1

ti.logyi.

3.6 Optimizer

Adam is used as an optimizer in the model which is presented by the researcher in
this article[37]. Instead of using the traditional stochastic gradient descent procedure
for the network weight updation iteratively based on training data we can use adam.
The researcher describes in the paper that the adam optimizer is combining the advan-
tages of two other stochastic gradient descent extensions which are Adaptive Gradient
Algorithm and Root Mean Square Propagation. The benefits of adam are given below.
1) It is easy to implement.
2)The Hyper-parameters required little tuning. 3) It work good on little memory 4)
Not Computationally expensive.

3.7 Drop Out

The drop out in neural networks refers to the dismissal of neurons in neural networks in
both visible and secret ways. Deep neural networks with a huge number of parameters
are very in demand in ML systems so in such a system the over-fitting is a very serious
problem[38]. Using large network are slow to use and also at test time while combining
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the prediction of numerous different huge neural networks makes it hard to deal with
over-fitting. So we use drop-out in our models for overcoming the above problem.

3.8 Batch Normalization

Training deep neural networks with more amount of layers is difficult because these layers
can be sensitive to the learning algorithm configuration and to the random initial weights.
Inputs distribution can be one of the possible reasons for the above difficulty where the
network may change when the weights are updated after each mini-batch iterations and
this can make the learning algorithm to chase moving target forever. So to resolve the
above issue we will use batch normalization in our models. Batch Normalization is an
approach to train deep neural networks where batch-normalization standardizes the inputs
to layers for every mini-batch.
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Chapter 4

Analysis and Evaluation

In this chapter we will discuss the implementation of different models on drug bank
database, experimental setups and the evaluation of the model.

4.1 Experimental Setup

PyCharm 2020 is used for code writing and implementation it is an IDE (Integrated
Development Environment). And for training and testing the model the system we have
used with following specification which are Dell Inspiron 3521 with 3rd gen 1.8 gigahertz
processor, 4GB DDR3 RAM, 512 HDD and Window10 as an operating system.

4.2 Models Implementation

We have used three different models in our study which are Convolutional Neural Networks
(CNN’s), Recurrent Neural Networks (RNN’s) and Long Short Term Memory Neural
Networks (LSTM’s) for the prediction of drug-drug interactions events on the Drug-bank
database below we will explained each and every model and its hyper-parameters.

4.3 Evaluation Measure

For the results we generate classification report in our study the evaluation measures
includes accuracy measures, F1-score, precision, AUC, AUPR and recall on both macro
and micro techniques. All the above measure will be used for the model results evaluations.
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4.3.1 Accuracy

Accuracy is the number of correctly predicted data points out of all the data points.
Mathematical Formula

Accuracy =
T P+T N

T P+T N +FP+FN

4.3.2 Precision

Precision is the fragment of true positive examples between the classified positive example
by the model.
Mathematical Formula

Precision =
T P

T P+FP

4.3.3 Recall

Recall is the fragment of positive examples between the total positive examples. It is also
known as sensitivity.
Mathematical Formula

Recall =
T P

T P+FN

4.3.4 F1-Score

F1-score is the harmonic mean of the recall and precision. A model can have high F1-score
value of 1 which can be consider a perfect model.
Mathematical Formula

F1−Score = 2 · precision · recall
precision+ recall

4.3.5 AUC

AUC stands for Area Under the Curve which measure the ability of the classifier to
differentiate between classes and is used as a summary of the ROC curve.

4.4 CNN as a model

First we use multi-modal 1D-CNN as a model on the drug bank data-sets for the prediction
of drug-drug interaction events and achieved an accuracy of 90.00%.
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4.4.1 Inputs to the model

In the first step we have input four features of drugs then calculate binary features vectors
by using on-hot encoding for each and every features of drugs then use similarity measures
like Jacard Similarity for the calculation of similarity matrices for Chemical Substructure,
Enzymes, Pathways and Targets which produces a metrics of (572 x 572 ) for each and
every features of drugs and then prepare these metrics for the CNN model.

4.4.2 Layers

1. The layers of the model are explained below.

• In the CNN model we use the input layer with the filters size of 1 and the
kernel size of 5 with the "tanh" activation function we use the "tanh" as an
activation function because while calculating the similarity matrix using the
jacard similarity measures it produces some negative values so we use "tanh" to
use both positive and negative values.

• Then we use the flatten layer to convert the data into one dimensional array for
inputting to the next layer.

• After flatten layer uses a dense layer of 1024,512,256 neuron and used an "elu"
as an activation function.

• And with each and every dense layer we use "BachNormalization" layer for
the normalization of the previous output layer and for avoiding over-fitting the
model and also use a drop-out layer of value 0.3 with every dense layer.

• Then we use a dense layer of 65 neuron as an output layer because we are clas-
sifying 65 different types of drug-drug interaction with the "softmax" activation
function.

4.4.3 Implementation Details

The details of the final CNN modal we have used for our research are given in table 4.1.
The D-Fun column represent Dense layer activation function, I-Fun column represent Input
layer activation function, BatchNorm column represent Batch-Normalization with every
dense layer and O-Fun column represent Output layer activation function of the models.
We have used python keras library for writing code of out model.

4.4.4 Optimizer

Adam (adaptive moment estimation) optimizer is used in the model for optimization.
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layers I-Fun D-
Fun

O-
Fun

Optimizer Loss-Fun Dropout Batch
Norm

Flatten
Layers

4 tanh elu softmax adam categorical-
crossentropy

0.3 3 1

Table 4.1: CNN Model Layers and Hyper-parameters

4.4.5 Loss Function

Categorical-Crossentropy loss is used in the model as a loss function.

4.4.6 Avoid Overfitting Techniques

1. For avoiding over fitting problem below two techniques are used.

• Bach Normalization : Bach Normalization layer is used with every dense layer
to avoid over-fitting.

• Drop Out Drop out of value 0.3 is added with every dense layer to avoid
over-fitting of the model.

4.4.7 Training and Testing Data

For training and testing the model the 5-k fold cross validation is used to divide data into 5
subsets and then use four subsets for the training of model and one subset for the validation
of the model.

4.4.8 Evaluation Measure

The model results reports are generated which includes all the measures like AUC,AUPR,
Accuracy, F1-score, Recall, and Precision.

4.5 RNN as a model

We use multi-modal RNN’s as second model in our study on the drug bank data-sets for
the prediction of drug-drug interaction events and achieved an accuracy of 88.66%.

4.5.1 Inputs to the model

In the first step we have input four features of drugs then calculate binary features vectors
by using on-hot encoding for each and every features of drugs then use similarity measures
like Jacard Similarity for the calculation of similarity matrices for Chemical Substructure,
Enzymes, Pathways and Targets which produces a metrics of (572 x 572 ) for each and
every features of drugs and then prepare these metrics for the RNN’s model.
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4.5.2 Layers

1. The layers of the model are explained below..

• In the RNN model we use a dense layer of 65 neuron for inputs .

• Then use three dense layers of 1024,512,256 neuron with elu "activation"
functions.

• And with each and every dense layer we use "BachNormalization" layer for
the normalization of the previous output layer and for avoiding over-fitting the
model and also use a drop-out layer of value 0.3 with every dense layer.

• Then we use a dense layer of 65 neuron as an output layer because we are clas-
sifying 65 different types of drug-drug interaction with the "softmax" activation
function.

4.5.3 Implementation Details

The details of the final RNN modal we have used for our research are given in table 4.2.
The D-Fun column represent Dense layer activation function, I-Fun column represent Input
layer activation function, BatchNorm column represent Batch-Normalization with every
dense layer and O-Fun column represent Output layer activation function of the models.
We have used python keras library for writing code of out model.

layers I-Fun D-Fun O-Fun Optimizer Loss-Fun Dropout Batch
Norm

4 None elu softmax adam categorical-
crossentropy

0.3 3

Table 4.2: RNN Model Layers and Hyper-parameters

4.5.4 Optimizer

Adam (adaptive moment estimation) optimizer is used in the model for optimization.

4.5.5 Loss Function

Categorical-Cross-entropy loss is used in the model as a loss function.

4.5.6 Avoid Over-fitting Techniques

1. For avoiding over-fitting problem below two techniques are used.

• Bach Normalization : Bach Normalization layer is used with every dense layer
to avoid over-fitting.
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• Drop Out Drop out of value 0.3 is added with every dense layer to avoid
over-fitting of the model.

4.5.7 Training and Testing Data

For training and testing the model the 5-k fold cross validation is used to divide data into 5
subsets and then use four subsets for the training of model and one subset for the validation
of the model.

4.5.8 Evaluation Measure

The model results reports are generated which includes all the measures like AUC,AUPR,
Accuracy, F1-score, Recall, and Precision.

4.6 LSTM’s as a model

We use multi-modal LSTM’s as a third model in our study on the drug bank data-sets for
drug-drug interaction associated events prediction and achieved an accuracy of 89.02%.

4.6.1 Inputs to the model

In the first step we have input four features of drugs then calculate binary features vectors
by using on-hot encoding for each and every features of drugs then use similarity measures
like Jacard Similarity for the calculation of similarity matrices for Chemical Substructure,
Enzymes, Pathways and Targets which produces a metrics of (572 x 572 ) for each and
every features of drugs and then prepare these metrics for the LSTM’s model.

4.6.2 Layers

1. The layers of the model are explained below.

• In the LSTM’s model we use a dense layer of 572 neuron for inputs and use
"tanh" as an activation function.

• Then use three dense layers of 1024,512,256 neuron with "elu" activation
functions.

• And with each and every dense layer we use "BachNormalization" layer for
the normalization of the previous output layer and for avoiding over-fitting the
model and also use a drop-out layer of value 0.3 with every dense layer.

• Then we use a dense layer of 65 neuron as an output layer because we are clas-
sifying 65 different types of drug-drug interaction with the "softmax" activation
function.
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4.6.3 Implementation Details

The details of the final LSTM modal we have used for our research are given in table 4.3.
The D-Fun column represent Dense layer activation function, I-Fun column Stands for
Input layer activation function, BatchNorm column represent Batch-Normalization with
every dense layer and O-Fun column represent Output layer activation function of the
models. We have used python keras library for writing code of out model.

layers I-Fun D-Fun O-Fun Optimizer Loss-Fun Dropout Batch
Norm

4 tanh elu softmax adam categorical-
crossentropy

0.3 3

Table 4.3: LSTM Model Layers and Hyper-parameters

4.6.4 Optimizer

Adam (adaptive moment estimation) optimizer is used in the model for optimization.

4.6.5 Loss Function

Categorical-Cross-entropy loss is used in the model as a loss function.

4.6.6 Avoid Over-fitting Techniques

1. For avoiding over-fitting problem below two techniques are used.

• Bach Normalization : Bach Normalization layer is used with every dense layer
to avoid over-fitting.

• Drop Out Drop out of value 0.3 is added with every dense layer to avoid
over-fitting of the model.

2.

4.6.7 Training and Testing Data

For training and testing the model the 5-k fold cross validation is used to divide data into 5
subsets and then use four subsets for the training of model and one subset for the validation
of the model.

4.6.8 Evaluation Measure

The model results reports are generated which includes all the measures like AUC,AUPR,
Accuracy, F1-score, Recall, and Precision.
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4.7 Results

All the models are trained on the drug bank data-set and achieved an accuracy of 90.00%
on the CNN model, 88.66% on the RNN model, and 89.02% on the LSTM’s model.

4.7.1 CNN model Results

First we train our CNN model on four features of drugs separately with jacard similarity
measures then use combinations of features for better results and different experiment show
that the following three features give best result which are Smiles (Chemical Substructures),
Targets, Enzymes. CNN model was trained on 29790 and tested on 7474 interaction. Below
tables have results for RNN model with different experiments of layers, activation functions,
features set and jacard similarity measure.

layers ACC F1 AUC AUPR Precision Recall
2 0.7631 0.6222 0.9664 0.8267 0.7425 0.6587
3 0.8963 0.8086 0.9981 0.9449 0.8859 0.7705
4 0.9000 0.8286 0.9981 0.9478 0.8840 0.7967

Table 4.4: CNN results on different numbers of layers

layers I-Fun D-Fun Similarity
Matrices

ACC F1 AUC AUPR Precision Recall

2 tanh tanh jacard 0.7631 0.6222 0.9664 0.8267 0.7425 0.6587
3 tanh tanh jacard 0.8826 0.7767 0.9979 0.9338 0.8840 0.7417
3 sigmoid sigmoid jacard 0.4166 0.4371 0.9664 0.3904 0.1926 0.0393
3 tanh elu jacard 0.8963 0.8086 0.9981 0.9449 0.8859 0.7705
3 tanh relu jacard 0.7952 0.5440 0.9961 0.8636 0.6775 0.5011
4 tanh relu jacard 0.8830 0.7779 0.9978 0.9344 0.8306 0.7512
4 tanh elu jacard 0.9000 0.8286 0.9981 0.9478 0.8840 0.7967

Table 4.5: CNN results on different activation function and Jacard Similarity measures
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Set of Features Similarity
Matrices

ACC F1 AUC AUPR Precision Recall

Smiles jacard 0.8861 0.8099 0.9983 0.9505 0.8377 0.7992
Target jacard 0.8441 0.7517 0.9977 0.9254 0.7931 0.7271
Enzyme jacard 0.6808 0.4584 0.9920 0.7691 0.5679 0.4102
Pathway jacard 0.8317 0.7357 0.9975 0.9169 0.7722 0.7165
Smiles + Target jacard 0.8986 0.8264 0.9985 0.9549 0.8611 0.8067
Smiles + Enzyme jacard 0.8933 0.7943 0.9976 0.9309 0.8548 0.7640
Smiles + Pathway jacard 0.8993 0.8294 0.9986 0.9552 0.8545 0.8131
Target + Pathway jacard 0.8509 0.7667 0.9980 0.9313 0.8001 0.7537
Target + Enzyme jacard 0.8658 0.7498 0.9972 0.9158 0.8059 0.7220
Pathway + Enzyme jacard 0.8635 0.7563 0.9973 0.9160 0.7995 0.7319
Smile + Pathway + En-
zyme

jacard 0.8998 0.8102 0.9981 0.9464 0.8536 0.7847

Smile + Target + Enzyme jacard 0.9000 0.8286 0.9981 0.9478 0.8840 0.7967
Smile + Target + Pathway jacard 0.8849 0.8077 0.9986 0.9530 0.8429 0.7879
Target + Pathway + En-
zyme

jacard 0.8672 0.7833 0.9976 0.9292 0.8229 0.7630

Smiles + Target + Pathway
+ Enzyme

jacard 0.8953 0.8164 0.992 0.9503 0.8694 0.7888

Table 4.6: CNN results on different on different features and Jacard Similarity measures

4.7.2 CNN Each Event Results

As we know that we have 65 types of different drug-associated events which are we
predicting in our work. There fore after the results of drug features further we investigate
the performance of our model for each of the events and the matrices score is calculated
for each independently by using real values and predicted scores. It is likely that the
events with higher frequency can gain better performances. Our models gives AUPR
scores greater than 0.5 for the events numbered from 1 to 46 as you can see in the below
screenshots except 39. Below are the screenshots of each and every event’s predictions
results of the CNN model.
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Figure 4.1: Each and every event evaluation measures values using CNN’s
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Figure 4.2: Each and every event evaluation measures values using CNN’s
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ROC graph of CNN’s model are given below

Figure 4.3: CNN’s ROC graph
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4.7.3 RNN model Results

For training and testing we have followed the same procedure as for CNN model which
has been discuss in section 4.5.1 below tables have results for RNN model with different
experiments of layers, activation functions, features set and jacard measures.

layers Similarity
Matrices

ACC F1 AUC AUPR Precision Recall

2 jacard 0.7841 0.6220 0.9554 0.8361 0.7155 0.6023
3 jacard 0.8738 0.6903 0.9973 0.9292 0.7806 0.6440
4 jacard 0.8866 0.7779 0.9979 0.9395 0.8503 0.7396

Table 4.7: RNN results on different layers and Jacard Similarity measures

Set of Features Similarity
Matrices

ACC F1 AUC AUPR Precision Recall

Smiles jacard 0.8632 0.7623 0.9979 0.9334 0.8056 0.7402
Target jacard 0.8346 0.7434 0.9969 0.9145 0.7846 0.7190
Enzyme jacard 0.6747 0.4330 0.9911 0.7563 0.5230 0.3900
Pathway jacard 0.8218 0.7186 0.9970 0.9076 0.7462 0.7042
Smiles + Target jacard 0.8874 0.7890 0.9982 0.9460 0.8420 0.7650
Smiles + Enzyme jacard 0.8725 0.7484 0.9973 0.9185 0.8318 0.7108
Smiles + Pathway jacard 0.8846 0.7824 0.9983 0.9445 0.8287 0.7567
Target + Pathway jacard 0.8434 0.7446 0.9976 0.9220 0.7835 0.7209
Target + Enzyme jacard 0.8554 0.7325 0.9969 0.9072 0.8088 0.6965
Pathway + Enzyme jacard 0.8502 0.7115 0.9968 0.9051 0.7735 0.6874
Smiles + Pathway + En-
zyme

jacard 0.8856 0.7766 0.9979 0.9396 0.8483 0.7396

Smiles + Target + Enzyme jacard 0.8866 0.7779 0.9979 0.9395 0.8503 0.7396
Smiles + Target +Pathway jacard 0.8746 0.7732 0.9983 0.9447 0.8181 0.7479
Target + Pathway + En-
zyme

jacard 0.8583 0.7518 0.9974 0.9229 0.8100 0.7205

Smiles + Target +Pathway
+ Enzyme

jacard 0.8821 0.7785 0.9982 0.9433 0.8530 0.7449

Table 4.8: RNN results on different on different features and Jacard Similarity measures
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4.7.4 RNN Each Event Results

As we know that we have 65 types of different drug-associated events which are we
predicting in our work. There fore after the results of drug features further we investigate
the performance of our model for each of the events and the matrices score is calculated
for each independently by using real values and predicted scores. It is likely that the
events with higher frequency can gain better performances. Our models gives AUPR
scores greater than 0.5 for the events numbered from 1 to 46 as you can see in the below
screenshots except 39.

Below are the screenshots of each and every event’s predictions results of the RNN
model.

Figure 4.4: Each and every event evaluation measures values using RNN’s
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Figure 4.5: Each and every event evaluation measures values using RNN’s
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ROC graph of RNN’s model are given below

Figure 4.6: RNN’s ROC graph
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4.7.5 LSTM’s model Results

For training and testing we have followed the same procedure as for CNN model which has
been discuss in section 4.5.1 below tables have results for LSTM’s model with different
experiments of layers, activation functions, features set and jacard measures.

layers Optimizer Similarity
Matrices

ACC F1 AUC AUPR Precision Recall

2 adam jacard 0.7932 0.6024 0.9758 0.8486 0.7262 0.6321
3 adam jacard 0.8623 0.6461 0.9968 0.9165 0.7952 0.6912
4 adam jacard 0.8902 0.7792 0.9978 0.9407 0.8527 0.7530
4 adadelta jacard 0.8851 0.7104 0.9977 0.9381 0.8161 0.6671

Table 4.9: LSTM results on different numbers of layers and jacard similarity measures

Set of Features Similarity
Matrices

ACC F1 AUC AUPR Precision Recall

Smiles jacard 0.8645 0.7592 0.9977 0.9326 0.7922 0.7384
Target jacard 0.8384 0.7389 0.9970 0.9160 0.7565 0.7318
Enzyme jacard 0.6682 0.4164 0.9906 0.7497 0.5072 0.3769
Pathway jacard 0.8273 0.7193 0.9968 0.9090 0.7475 0.7027
Smiles + Target jacard 0.8855 0.7941 0.9982 0.9457 0.8270 0.7783
Smiles + Enzyme jacard 0.8736 0.7495 0.9971 0.9165 0.7949 0.7250
Smiles + Pathway jacard 0.8865 0.7915 0.9982 0.9451 0.8424 0.7702
Target + Pathway jacard 0.8429 0.7573 0.9975 0.9218 0.7879 0.7379
Target + Enzyme jacard 0.8593 0.7280 0.9969 0.9092 0.7810 0.6989
Pathway + Enzyme jacard 0.8547 0.7131 0.9968 0.9058 0.7721 0.6838
Smiles + Pathway + En-
zyme

jacard 0.8876 0.7792 0.9978 0.9383 0.8548 0.7441

Smiles + Target + Enzyme jacard 0.8902 0.7792 0.9978 0.9407 0.8527 0.7430
Smiles + Target + Pathway jacard 0.8752 0.7830 0.9982 0.9449 0.8265 0.7561
Target + Pathway + En-
zyme

jacard 0.8590 0.7481 0.9973 0.9227 0.8062 0.7178

Smiles + Target + Pathway
+ Enzyme

jacard 0.8844 0.7851 0.9980 0.9431 0.8444 0.7527

Table 4.10: LSTM results different features set and Jacard Similarity measures
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4.7.6 LSTM Each Event Results

As we know that we have 65 types of different drug-associated events which are we
predicting in our work. There fore after the results of drug features further we investigate
the performance of our model for each of the events and the matrices score is calculated
for each independently by using real values and predicted scores. It is likely that the
events with higher frequency can gain better performances. Our models gives AUPR
scores greater than 0.5 for the events numbered from 1 to 46 as you can see in the below
screenshots except 39.

Below are the screenshots of each and every event’s predictions results of the LSTM’s
model.

Figure 4.7: Each and every event evaluation measures values using LSTM’s
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Figure 4.8: Each and every event evaluation measures values using LSTM’s



54 Analysis and Evaluation

ROC graph of LSTM’s model are given below

Figure 4.9: LSTM’s ROC graph

4.8 Comparing Results

In this section, we have compared our results with previously proposed methods of deep
learning and machine learning. To show the robustness of our model MMCNNDDI,
MLSTMDDI, and MRNNDDI we compare our model with the following models which
are DDIMDL[7], DeepDDI[18] and CNN-DDI[39] and also consider some of the popular
classification methods which are random forest (RF), K-nearest neighbor (KNN), logistic
regression (LR) and build sub-models as our models like (MMCNNDDI, MLSTMDDI,
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and MRNNDDI). All the above methods are using the same drug features like targets,
enzymes, pathways, and chemical substructure except CNN-DDI and Deep-DDI for the
random forest we set the decision tree values to 100 and for KNN we set the neighbor
value to 4. As we have seen in the literature review of our work that most of the studies
focus on whether two drug interacts with each other or not or some of the studies have
only focused on the drugs which are used for specific disease like the authors of [8] predict
drug interaction for cancer drugs, and some of the studies used only one feature of drugs
like [18] used only chemical substructures for the prediction of DDIs and some of the
studies like CNN-DDI [39] used different multiple features from our set of features and
used simple CNN for the prediction of DDI associated events we can notice in table 4.11
that our two models MCNNDDI and MLSTMDDI perform better then CNN-DDI in all
evaluation matrices and MRNNDDI results are approximately equal to CNN-DDI in-terms
of Accuracy and AUC, and AUPR and F1-score of our RNN models are better then
CNN-DDI. The results show that using multiple drug features and using sub-models-based
deep neural networks perform well than using one feature or using simple structure-based
models for the prediction of DDIs associated events. The experiment results of all the
methods are shown in table 4.11.

Method ACC F1 AUC AUPR
MCNNDDI 0.9000 0.8286 0.9981 0.9478
MLSTMDDI 0.8902 0.7792 0.9978 0.9407
MRNNDDI 0.8866 0.7779 0.9979 0.9395
CNN-DDI 0.8871 0.7496 0.9980 0.9251
DDIMDL 0.8852 0.7585 0.9976 0.9208
DeepDDI 0.8371 0.6848 0.9961 0.8899
RF 0.7775 0.5936 0.9956 0.8349
KNN 0.7214 0.4831 0.9813 0.7716
LR 0.7920 0.5948 0.9960 0.8400

Table 4.11: Different Method Performance

4.9 Applying Drug-Drug Interaction Data set to Drug Target Inter-
action Existing Method

The drug-drug Interaction data-set used in our study can not be used for drug target
interaction purpose because for drug target interaction we need a positive and negative
interaction of drug target and protein targets which are not available in the data set we used
in our study. And this data set contain only interactions for the Drug to Drug interactions.
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Chapter 5

Conclusion

5.1 Conclusion

Recently deep learning techniques are used for the prediction of drug-drug interaction but
generally, these studies concentrate on one feature of drugs or whether one drug interacts
with another or not and have greatly contributed to understanding the DDIs better. However,
it has been divulged that drugs taken together may interact with each other, and unexpected
drug-drug interactions (DDIs) may lead to unexpected adverse drug events. Therefore the
more DDIs we know, the better we can take effective measures to stop such events In this
research study, we use deep learning multi-modal techniques on drug bank database which
was created by DDIMDL the following DL models are used CNN’s, LSTM’s and RNN’s
for the prediction of drug-drug interaction events. The data set has 572 drugs and their
diverse features like chemical substructures (SMILES), enzymes, pathways, and targets,
74528 interactions, and 65 types of drug-drug interaction events. The CNN model achieved
an accuracy of 90.00%, LSTM’s model achieved an accuracy of 89.02% and the RNN
model achieved an accuracy of 88.66%. The CNN model has a 1D CNN input layer with a
filter size of 1 and 5 kernel size, 3 dense layers of 1024,512,256 neurons and an output
layer of 65 neurons, 1 Flatten layer and have BachNorm and Dropout layer with 0.3 value
and use a combination of four drug features for the input of the model. The LSTM’s and
RNN models have one input layer, three dense layers of 1024, 512, 256 neurons, three
BachNorm layers and three dropout layers of value 0.3, and one output layer of 65 neurons.
we use four CNN, LSTM’s, and RNN sub-models for each and every feature of drugs and
then in the last, we combine these sub-models for drug-drug interactions associated events
prediction.
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5.2 Future Directions

For future work to improve the DDI associated events prediction we will consider using
more features of drugs for the prediction of DDI associated events, second enlarge the
event data set, and third we will use other deep learning techniques like transformers, berth
for improving the performance for the prediction of DDIs associated events.
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