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Abstract

Generating and understanding the 3D shape of objects in the world is a crucial step
for many areas of robotics. Across object categories, shapes are used for classification.
Within each category, fine shape details and textures contribute to successful manipulation.
Existing generation methods usually rely on sketches and meshes, new objects generated
by obtaining and merging patterns and components from the database. The major drawback
of such techniques is that they cannot produce a complete 3D object from a 2D image.
Given a 2D image of a chair taken from front view missing back legs, in its corresponding
3D object this information will not be present.The architecture of the proposed model,
employees 3D Vectorization and Generation using Generative Adversarial Network, that
forms 3D-objects by leveraging the probabilistic space taking advantages from novel
developments in volumetric convolutional networks and generative adversarial nets. The
main advantages of the proposed method are: It uses an adversarial model that is capable of
implicitly getting the object formation and to produce quality 3d objects. A mapping of 3D-
object is learned from a low dimensional probabilistic space. The adversarial discriminator
gives a compelling 3D shape descriptor.
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Chapter 1

Introduction

1.1 Introduction

Understanding 3D structure of an object is a challenging task for many areas of
computer science like computer vision, artificial intelligence, robotics, and computer
graphics. 3D objects are used in many applications of computer science like VR(virtual
reality), robotics interaction. In the past, to extract 3D structure from an image different
sensors were used(real-scene cameras). Major drawback of these techniques they required
a single scene to be captured from different angles to gain depth of the image. Though,
It’s not feasible to examine each surface of an image before remodeling this guides to
inadequate 3D shape with extended holes.

Standard procedures utilize the traditional cost-effective depth-sensing tools like cameras
to retrieve 3D object formation from occupied intensity pictures. These methods normally
need many depths pictures from various viewing points of an object to appraisal the entire
3D composition [2, 3, 4]. But, in tradition, it’s not always possible to examine all surfaces
of the subject before regeneration, this drives towards the inadequate 3D objects having
occluded areas and big openings. Additionally, obtaining and preparing many depth scenes
to demand extra computation power, that is not perfect in several models that demand
real-time execution.

Interestingly, people are surprisingly great at answering such doubtfulness by inherently
leveraging antecedent experience. For instance, given the picture of the table with two
back legs blocked by front legs, people undoubtedly competent to infer the most suitable
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Introduction 2

shape beside apparent pieces. Current progress in deep neural networks and data-based
methods give encouraging outcomes.

Figure 1.1: Figure of same table from different view point [1]

Figure 1.1 shows the image of a table from two different preparatives. One on the right
side missing the back legs, and one on the left side all four legs are visible. Generating
a 3D object for an image on the right side is a challenging task as it contains missing
information (back legs are not visible) on the other hand generating a 3D object for an
image on the left side is a less challenging task as contains complete information (all four
legs are visible). By using the the approaches [2, 3, 4] on these images will produce the
different results as they contain different level of information.

We attempt to resolve the dilemma of divining the entire 3D composition of the object.
It’s a noteworthy job as a partial view of an object (detail of picture from a single per-
spective) correlate to an endless amount of feasible illustrations. Conventional restoration
techniques normally apply interpolation procedures like plane-fitting, Laplacian openings
filling [5, 6] to predict the underlying 3D composition. Though, they could only retrieve
very inadequate closed or disappeared areas, e.g., tiny openings or cracks due to image
compression and decompression artifacts, sensor noise, and inadequate infrastructure
details.

While most recent deep learning techniques [9, 10] for 3D-shape restoration from a
particular intensity to obtain promising outcomes, are restricted to inadequate intentions,
normally at the rate of 323 pixel grids. This cultured 3D composition leads to granular
and fallacious. To form greater perseverance 3D objects with effective reckoning, Octree



1.1 Introduction 3

description has been lately presented in [11, 12]. Though, raising the frequency of product
3D object also unavoidably impose a big test to acquire the geometric specifications for a
high-resolution 3D image, that is still being investigated.

Lately, deep generative models accomplish impressively greater achievement in mod-
eling complex high-dimensional data patterns, with Generative Adversarial Networks
(GANs) [13] because it is a robust architecture for generative learning, including an image
as well as text creation [14], and also latent space learning [15]. In preceding years, re-
searchers used generative patterns to determine possible space they can describe 3D object
forms, in succession doing jobs like novel image creation, object grouping, identification
and retrieving shapes.

Forming 3D objects in a generative-adversarial mode allows extra unique benefits.
One, it becomes feasible to inspect unique 3D shapes of a probabilistic latent space
like Gaussian distribution or the normal distribution. Tow, discriminator of generative-
adversarial architecture offers informational characteristics for 3D object identification,
From a distinctive viewpoint, alternately learning a singular characteristic illustration for
both creating and identifying objects.

The GAN structure gives every object it has undergone to a locality in a latent space. The
rest of this space can enable the formation of new lifelike objects, it is only possible when
the GAN training has converged fortunately to the data distribution. For uncomplicated
data distributions, like objects from a singular group, a simplistic network architecture
such as linear interpolation may answer. Complicated data distributions, like those made
by the cutting changes among various object classes, guide to difficult training problems.

We tried to illustrate the likely solution for forming objects that are new and vivid by
using the general-adversarial setting. Our strategy merges the advantages of both general-
adversarial modelings [13] and VCN [16]. Distinctive from common heuristic models, in
such a way that generative models present an adversarial discriminator, for the purpose
of distinguishing between fake and authentic objects. It can be a helpful architecture
for generating 3D shapes. As 3D shapes are well structured, unlike the self-supporting
heuristic ones. Generative models have the power to learn and generate 3D shapes.
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1.2 Motivation and Problem Description

Generating 3D objects is a challenging task for machine learning. With the emergence
of Neural Networks and later Deep Neural Networks it attracted researchers. More recently
the Generative Adversarial Networks (GAN’s) were given a new direction to the task of
image generation and many others like text generation, poetry generation. Take advantage
of the generative power of the GAN’s we tried to use them for generating 3D objects.

1.3 Research Contribution

The key contributions to this research are as follow:

• An automated system is developed to generate 3D objects.

• New 3D objects can be generated by merging two or more objects. It will lead in
creating new designs, that will help the designers to craft new designs.

• A publicly available dataset is used to validate the findings of this research.

• Worked on two objects of the dataset tables and chairs.

1.4 Thesis Organization

Whole work is divided into 5 parts. In chapter 2 review of Literature is presented. The
methodology of the proposed solution is discussed in chapter 3. The complete analysis of
experiments and results are discussed in chapter 4. Chapter 5 summarises the whole work.



Chapter 2

Literature Review

2.1 Literature Review

Generating and understanding 3D objects is a challenging task in AI, robotics and
many other areas of computer vision. In the past researchers used various techniques to
generate 3D objects. With the emergence of deep learning, the field attracted more interest
of the researchers and a lot of work done by using deep learning. With the emergence
of GAN’s, it has given totally a new direction to 3D object generation and classification.
Following is the overview of the different techniques used by the researchers to generate
and classify 3D objects.

2.1.1 Techniques Based on Sketch and Skeleton

Constructing 3D objects remained a vast domain of research within Computer Vision and
Artificial Intelligence. Aron et al. used plane fitting that rebuilds the minute unavailable
parts [17]. Pauly et al., M.R. Oswald et al. and Sipiran et al. used symmetry of shapes to
fill in holes [18, 19, 20]. Such methods expected to disappoint when desiring or closed
areas are comparatively large. A related attachment pipeline support database priors. By
inputting a partial shape, alike or suitable 3D model is regained and joined by incomplete
scan in [21, 22]. Though, these strategies explicitly consider the database comprises same
or very related shapes, therefore being incapable of inferring the new objects or classes.

2.1.2 Techniques Based on Deep Learning

H. Su et al. stated a collective embedding space filled with 3D as well as 2D objects,
where the distance among the enclosed entries indicates the correlation within the 3D and
2D objects [23]. The embedding space constructed by using a 3D object correlation means.

5
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R Girdhar et al. proposed an architecture known as TL-embedding capable of learning
embedding space [24]. It cotains two components, 1 auto-encoder, 2 CNN. The introduced
model can also be utilized to divine voxel from 2D shapes.

As point clouds are important data structures. Qi et al. designed a model for classification
of objects that uses point clouds [25]. For the object categorization job, the input point
cloud is either inspected directly from a shape or pre-segmented from a picture point cloud.
It outputs k scores for all k number of groups.

H. Su et al. used 3D models to train CNN for viewpoint estimation [26]. The foremost
objective of their study to determine the viewpoint for the 2D input image. The viewpoint
appraisal dilemma formalized as organizing camera circumrotation parameters within fine-
grained classes. By utilizing fine-grained viewpoint grouping formulation, an evaluation
was informational and reliable.

Wu et al. stated a deep convolutional model to describe the geometric 3D appearance
being a likelihood distribution regarding twofold variables on the 3D voxel grid [9]. The
proposed model capable of collectively understands and restore objects of an indivisible
view 2.5D extent map.

Xiang et al. presented Deep Pano an extensive explanation for 3D shape grouping
and retrieval [27]. Picturesque scenes are created of 3D objects, and illustrations are
acquired. Then a modification of CNN is particularly meant for understanding the deep
illustrations straight from these compositions is applied. Distinctive from standard CNN, a
max-pooling in a row-wise manner is interpolated among convolution and entirely coupled
layers, affecting the extracted descriptions invariant to the circle about a primary axis. The
weakness of this model is that it is alike to various past view-based methods, expecting the
primary axes of 3D-objects, that can be disappointing in identifying 3D objects by severe
deformation.

Choy et al. presented a novel RNN structure they named it 3D-R2N2 [28]. It detects a
mapping from pictures of objects so the under consideration 3D molds of a large number
of polymerized data. It reads single or multiple pictures of an object from a random
view-point and returns restoration regarding object in a state of a 3D possession grid. This
model doesn’t need either picture explanations or object group tags for training or testing.
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Sharma et al. proposed an auto-encoder based model that acquires volumetric illustration
from noisy data by calculating voxel possession grids [29]. Given a group of shapes of
different objects and their various postures, it detects the image patterns of different
groups by prophesying the disappeared voxels of remaining. Next, they used the learned
embedding for image identification and incorporation activities. They used the production
skills of auto-encoder structure for divining an improved copy of contaminated descriptions.

Rezende et al. introduced a structure that can learn effective extensive generative patterns
of 3D compositions, and revive those compositions from 2D pictures through probabilistic
assumption [30]. Their model manipulates the generative method, which first forms the
3D illustration and then projects to the region of the examined data.

Yangyan et al. introduced a collective embedding space filled by both 3D objects and
2D shapes of objects, where the gaps among embedded objects display correlation among
the objects [31]. The collective embedding expedites similarity among objects of each
kind and permits cross-modality extraction. They constructed the embedding location
using 3D object correlation ratio since 3D objects remain clear and perfect as compared
to representation within images, heading to more vigorous interval metrics. They apply
CNN to clarify objects by softening confusing parts. It has the ability to fit the image to a
particular location in embedding space, therefore, it comes very closer to the 3D object one
represented within the image. This capacity of CNN is achieved by the cooperation with a
huge number of training examples containing images manufactured from 3D objects.

2.1.3 Techniques Based on GAN’s

I. Goodfellow proposed the structure of GAN [13]. Denton et al. introduced the
generative parametric structure that has the ability to generate great quality scenes like
natural photographs [32]. Their method utilizes a cascade of CNN inside the Laplacian
pyramid ("The Laplacian pyramid is a linear invertible image representation consisting of
a set of band-pass images, spaced an octave apart, plus a low-frequency residual [33].")
structure to produce pictures in a coarse-to-fine procedure. Using GAN on every step of
pyramid a generative Conv-net model was trained.

L. Metz et al. stated a DCGAN("deep convolutional generative adversarial networks"),
it has special structural restraints, and express that they remain a powerful competitor for
unsupervised learning [34]. Being trained on different image based datasets, they exhibited
reliable indication that their deep convolutional adversarial couple determines a hierarchy of
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descriptions of object elements to views in either of generator and discriminator. Moreover,
they used the learned characteristics for different jobs expressing the applicability as
comprehensive picture descriptions.

Wang et al. factorize image formation method and introduced S2-GAN [35]("Style and
Structure Generative Adversarial Network"). The model has two parts: Structure-GAN
produces a surface normal map, output of first model goes Style-GAN that generates a 2D
representation. Aside from an authentic vs. formed loss function, they use loss between
estimated surface-normal forms created pictures. In the first step, both networks are trained
separately and later joined collectively by collective learning.

Zhu et al. proposed to acquire the original picture manifold right of data applying a gen-
erative adversarial neural network [36]. They determined the class of picture modification
methods, and restrain their outcome depending on the acquired manifold at all times. The
architecture itself can adjust the results retaining each edit as vivid as feasible. All their
directions are formulated in the form of restrained optimization and implemented.

Creating lifelike pictures a longstanding purpose regarding machine learning. Im et
al. stated a technique to form images using repetitive adversarial network [37]. Their
model forms an image in a sequential way. They don’t force a coarse to fine (or any other)
composition on the production method. Rather they allow the model to learn the best
method itself.

Brock et al. presented a variational autoencoder based on voxel and also developed
an interface for visualization of the potential scope of 3D generative compositions [38].
They also developed a deep CNN for grouping. They mainly focused on the challenges
that are critical to the voxel exhibition and showed their ability to voxel exhibitions within
discriminative assignments.

Arsalan et al. used multi-view depth maps for acquiring a generative model and for
producing a 3D object from these images they used deterministic rendering procedure [39].
As 2D depth maps contain rich information the generation of 3D objects can be produced
much more detail.
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Study Technique Dataset Remarks
Denton et
al. [32]

Deep Generative Adver-
sarial Network for natu-
ral scene generation.

LSUN
scene
dataset

They used GAN’s to
generate Natural scene
images. The Gener-
ated images were real
enough that it was dif-
ficult for the humans to
differentiate.

Radford et
al. [34]

DCGAN for unsuper-
vised learning.

Imagenet-
1k, Faces
dataset.

Deep convolutional ad-
versarial learn a hierar-
chy of descriptions from
image components.

Wang et al.
[35]

Style and Structure Ad-
versarial Networks for
image generation

NYUv2 They used two differ-
ent GAN models to gen-
erate images by utiliz-
ing the concept of image
as a group of style and
structure.

Zhu et al.
[36]

GAN’s for Natural Im-
age Manifold.

ImageNet They used the GAN
architecture for edit-
ing the image manifold.
They also applied color
editing and resizing.

Im et al.
[37]

Recurrent adversarial
networks for image
generation.

CIFAR10 They used idea of Re-
current neural networks
and combine it with
GAN’s to generate im-
ages.

Arsalan et
al. [39]

GAN to model Multi
composition depth
maps.

ShapeNet
Core

Table 2.1: Illustration of different GAN based techniques

2.2 Summary

Table 2.1 provides a summary of different techniques in which GAN’s used. It can
clearly be seen that researchers used GAN’s for solving different types of problems, and
transformed them according to their requirements, and gained promising results. By
studying these methods it can be inferred that we can use GAN architecture for generating
things like (images, text content, and poetry, etc.). By utilizing the generative power
of GAN’s we tried to generate 3D objects. They used different datasets to evaluate the
performance of their models and complied their results.



Chapter 3

Methodology

3.1 Introduction

This chapter, we discussed the proposed method of generating 3D objects. We try to
create 3D objects by using GAN’s. Figure 3.1 exhibits a summary of the stated model.

The dataset we use consists of different categories of images of day to day objects. We
will use only two categories from it, tables and chairs. The reason for selecting only two
categories is to make the generator diverse in generating new 3D objects like these.

3.2 Dataset

To generate a more sensible dataset including authentic 3D objects, we use the
ShapeNet table category with 4,704 instances for training and 1,200 for testing. For
chair object category with 10,668 instances for training and 1,200 for testing [40]. These
3D CAD models built by human artists to realistically describe original objects. We
focus on only these two object categories to explore intra-category variation by getting
detailed descriptions for many object instances. We chose the table and chair classes from
ShapeNetCore as they have a significant variation in geometry and appearance.

Figure 3.1 shows sample images taken from dataset of chair class. A clear intra class
variation can be seen. Chair class contains 10,668 images in training set and 1,200 in test
set. These images explains how much different they are from one another. More over each
image taken from 12 different preparatives which means that each object has 12 different
images taken from 12 different viewpoints.

10
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Figure 3.1: Images from dataset for chair class

Figure 3.2 shows sample images taken from dataset of table class. A clear intra class
variation can be seen. Chair class contains 4,704 images training set and 1,200 in test
set. Those images explain how much different they are from one another. More over each
image taken from 12 different preparatives which means that each object has 12 different
images taken from 12 different viewpoints.

Figure 3.2: Images from dataset for table class
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3.3 (GAN) Generative Adversarial Net

Ian Goodfellow and his research team introduced the GAN in 2014. Potentially
GAN’s are very broad, as they can imitate any data configuration. They could be taught to
learn and generate the world’s any domain. They are like human artists but reboots, and
their output is outstanding. A GAN is a category of Machine Learning methods. It has
two Neural Networks that compete with one other. The network that generates is called
Generator. The network groups the output of Generator is called Discriminator.

3.3.1 The Generator

In GAN settings Generator is a network that forms new objects. Usually, it takes
input from a random normal distribution and generates the output.

3.3.2 The Discriminator

In GAN settings Discriminator is a neural network that receives input from the
Generator network and the dataset under consideration. It tries to differentiate whether the
input is coming from dataset or Generator network.

3.3.3 How it works

The generator creates new data objects. These newly generated objects alongside the
objects from the dataset are supplied as input to the Discriminator network that attempts
to discriminate among the objects formed by using Generator network and objects from
the dataset. The generator creates new objects and expects they will be marked genuine
although they not real. The purpose of the generator network is to generate distinct objects
in such a way that discriminator cannot catch. On the other hand, the objective of the
discriminator network is to identify the objects that are produced by the generator.

• Input to the generator is a random number.

• The generated object alongside the objects in dataset fed to the discriminator.

• The discriminator gets the both real and fake object as input.

• The discriminator returns a number in a range from 0 to 1 where 0 means the input
was from the generator a fake object and 1 means input were from dataset under
study real.

• The discriminator is in a feedback circle with objects from the dataset
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• The generator is in feedback circle with the discriminator so the next time the
generator comes with an output that looks more real.

Figure 3.3: Flow layout of GAN

Figure 3.3 shows a flow diagram of the GAN model. The generator is initialized with
noise vector taken from a random normal distribution. Gradually it tries to learn the
distribution of a dataset. The output of the generator and the samples from the dataset are
given as input to discriminator that attempts to differentiate among the examples of the
dataset and produced through the generator. With every training, step generator comes up
with a sample that looks more likely to samples in the dataset. After every training step,
it becomes harder for discriminator network to differentiate among original and bogus
objects.

3.3.4 How to Train GAN

Weights of discriminator are updated to maximize the likelihood that any object coming
from dataset classified as a real object. While decreasing the likelihood of an object
approaching from generator belongs to the dataset. On the other hand weights of the
generator are updated to increase the likelihood that any object coming from the generator
is classified as it is coming from the dataset.

GANs need more time to train than traditional neural networks. On an individual GPU,
this may require hours to train on CPU this may require days to train.
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3.3.4.1 Training of Discriminator

Figure 3.4 explains the training procedure of discriminator. The weights of the generator
are frozen and the loss of the network computed. Then calculated loss is backpropagated
into the network, and weights of the discriminator are updated.

Figure 3.4: Block diagram of training Discriminator

3.3.4.2 Training of Generator

Figure 3.5 explains the training procedure of the generator. Loss of the network is
computed by freezing the discriminator’s weights. Then calculated loss is backpropagated
into the network, and the generator ’s weights are updated.

Figure 3.5: Block diagram of training Generator
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3.3.4.3 What is Latent Space

Meaning of the word latent is hidden. It is the most commonly used term in machine
learning especially in GAN’s. In GAN architecture, generative models learn to map points
in latent space to produce objects. By itself, latent space has no meaning, slightly the
meaning referred to it through GAN’s. The association between latent space and GAN
quite appealing. While working with images let’s say all data fall in some high dimensional
hyperplane. It’s very challenging to sample from this. Rather we like to draw from some
simple distribution and try to map it in the direction of the data distribution using the
Generator network. This simple to pick from the population is latent space.

3.4 Proposed Methodology

To do this task, we use GAN formulation it provides better visualization and diversity.
We took the advantage at the instance level correspondence between images and 3D shapes.
In our first step, we present a way to acquire a collective exhibition directly from pictures
and 3D objects followed by image-to-shape formation framework the image is mapped to
the latent space and concatenated with noise from the random normal distribution. The
resultant vector is pass to the Generator network which tries to generate a plausible shape
the formed shape is passed to the Discriminator network finally the loss is computed.
Finally, this loss is back-propagated in the system.

First, we will train an auto-encoder which will map 3D image to its corresponding labels.
That will map learned features from the auto-encoder to an n-dimensional vector v. Then
vector z which will be initialized from random normal distribution concatenated with vecot
v and passed as input to the GAN.

Figure 3.6: Description of the stated method
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Figure 3.6 describes of the introduced method. In the first step, a 3D image supplied to
the image-to-shape encoder as input. The resulting image mapped to the latent space and
concatenated with randomly initialized vector Z which taken from the normal distribution.
Then this vector is passed to Generator model. Then the output of the Generator Network
becomes the input of the Discriminator Network and overall loss computed.

3.4.1 Model

The proposed model has three parts.

1. An Encoder E:
It consists of 5 convolutional layers having a window dimension of 11, 5, 5, 5, and
8 with a step size of 4, 2, 2, 2, and 1 sequentially. Batch normalization and ReLU
applied as an activation map. In the end, a sampler used to sample 100 dimensional
vector.

2. A decoder (the Generator G):
It has 5 convolutional layers by a window size of 4x4x4 and steps size of 2. Batch
normalization and ReLU applied as an activation map. In the final layer used
Sigmoid as an activation function. Figure 3.7 explains the architecture of Generator
model.

Figure 3.7: Description of the Generator.

3. A discriminator D:
The Discriminator primarily reflects the Generator. The only difference between
Generator and Discriminator is the activation function. In Discriminator, we used
Leaky ReLU as an activation function.

We didn’t use polling or linear layers in our model. Binary-cross-entropy applied as
grouping loss and presented overall decline function as:
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Figure 3.8: Block diagram of the Discriminator

3.4.2 Loss Function

It is the principal function to train a GAN. It gives loss of estimations that are used to
compute gradients. Based on loss values the weights are updated. The following equation
describes the loss function.

L3D−GAN = logD(x)+ log(1−D(G(z)))

In which x is an original object in a 64x64x64 space. Z is a noise vector sampled
randomly from distribution p(z). Each dimension of z is sampled from a normal distribution
across [0;1]. The output from the discriminator is represented with D(x). The output from
the generator represented with G(z).

3.4.3 Evaluation Metric

IOU(Intersection over Union) among voxels formed and true shape voxels, indicating
the quality of the occupancy of the generated shapes, regardless of color. Models with
similar shapes are more likely to have higher IoU than dissimilar models. Mathematically
it can be presented as:

IoU(A,B) = A
⋂

B
A
⋃

B

It assigns each object a number between 0 and 1. Where 1 means the object exactly
match to the object that is in dataset, and 0 means don’t match at all.
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3.5 Summary

This section gives a comprehensive summary of the proposed model and selected
dataset. It also explains how to train a GAN, and the loss function. In the next chapter
results and performance analysis of the proposed model is discussed.



Chapter 4

Experiments and Results

4.1 Introduction

This section explains experiments conducted on the proposed model. Discussed how
the model was trained and results generated on Shape Net dataset.

4.2 Training

In the first step, we trained a deep convolutional autoencoder for classification. After
successfully training, we extracted the learned features from the encoder part of this
network. Then we trained our model for two categories from the dataset, which are table
and chair. One model trained for each class separately. For production, we sampled a 200
dimensional vector from a random normal distribution and concatenated it with the learned
features by the encoder and then passed this vector to the generator.

Figure 4.1 explains the structure of the discriminator network. It has three columns in
the first column name of the layer is written, in second column output shape is shown and
in third column number of parameters learned by each layer are written. Last three rows
explain the total number of parameters, trainable parameters, and non-trainable parameters.

Figure 4.2 explains the structure of the generator network. It has three columns in the
first column name of the layer is written, in second column output shape is shown and
in third column number of parameters learned by each layer are written. Last three rows
explain the total number of parameters, trainable parameters, and non-trainable parameters.

19
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Figure 4.1: Detail of the Discriminator Network

4.3 Experiments

First, we examined the results of the system to generate objects from the population
consisting of tables and chairs. Our method produces quality objects from different viewing
points. It was also a remarkably successful effort as the trained model generates diverse
and great quality objects. The quality of the produced objects can be using discriminator’s
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Figure 4.2: Detail of the Generator Network

loss. It allowed the model convergence to be traced easily and gives a clear clue when to
stop the training.

Figure 4.3 reveals the loss of GAN. It is clear that the generator is trying to maximize
its performance to generate objects that look like original ones. On the other hand,
Discriminator is trying to minimize the possibility of letting the fake ones go through. This
is the way how GAN models work.
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Figure 4.3: Loss of GAN model

4.4 Qualitative Results

Qualitative results of the proposed model are explained. Figure 4.4 and 4.5 show the
results of 3D object generation. The generated objects can be envisioned and correlated by
the ground-truth values taken from the dataset. The quality of the generated objects can be
examined by using IOU evaluation metric.

4.4.1 Generating 3D objects

Results of generated for chair and table class can be visualized in figure 4.4 and figure
4.5 respectively. For the production of new 3D objects, we sampled a 200-dimensional
vector from latent space and concatenated with the features learned from 3D Classifier.
This given the resulting vector is given as input to the Generator network.

4.4.1.1 Initial Settings

The model was trained for 10000 training steps. For training, it took 10 hours on
1070 Ti GPU system. Initially learning-rate for generator set to 0.008, for discriminator set
to 0.000005, and batch-size set to 32. We used only two classes of tables and chairs from
the shape net dataset. Figure 4.4 shows generated images for chair class alongside truth
images taken from the dataset. Figure 4.5 shows generated images for table class alongside
truth images of the table taken from the dataset. Generated objects are of good quality
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Figure 4.4: Shows the results for chair class. Row one shows images from the dataset.
Row two presents images produced with the proposed model. Row three shows images

from dataset. Row four shows images generated with the proposed model. The produced
images vary in quality. Some of the objects mapped perfectly to 3D object space while

others still having some missing information or having some overlapping regions.

this can be verified from figure 4.4 and 4.5. It’s also likely to determine the condition of
created objects by discriminator’s loss.

In comparison with earlier techniques, our model can manufacture quality 3D objects
including specified geometries. One thing is noticeable that generating low-quality 3D
objects is easy but it’s difficult to generate good quality 3D objects because of agile
extension in 3D space. Though, object portions are shown in high intention. The main
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Figure 4.5: Results for table class can be visualized. Row one shows images from the
dataset. Row two presents images produced with the proposed model. Row three shows
images from dataset. Row four shows images generated with the proposed model. The

produced images vary in quality. Some of the objects mapped perfectly to 3D object space
while others still having some missing information or having some overlapping regions.

concern of such models whether they are inferring the training data. Such models must be
designed and implemented by keeping generalization in mind.

4.5 Quantitative Results

Table 4.1 explains the quantitative results of the purposed model. The main objective
here is to verify that the generated objects are worthwhile. Results of IOU represented in
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table 4.1. It can be noted some of the objects are easier to construct and some are hard.
After the optimization to be predictable from object space, it can be seen that it maintains
overall regeneration completion.

4.5.1 Results of Intersection Over Union

Table 4.1 shows the results of the IOU. IOU calculated by the ground-truth object taken
from the dataset and the generated objects from our system. The table shows how much
two objects are similar. IOU is computed in three steps, one intersection of the ground
truth and generated objects is computed, two unions of the ground truth and generated
object is computed, and the third intersection of two objects is divided by the union of two
objects and final results are computed.

Sr. # Ground Truth Generated Object IOU Value

1 0.81

2 0.75
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3 0.78

4 0.70

5 0.79

6 0.65

7 0.73
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8 0.75

9 0.63

10 0.60

Table 4.1: Results of Intersection Over Union

4.6 Generation of new Objects

Figure 4.6 explains the transition from one table’s latent description to another when
trained on ShapeNet table class. It explains how new objects are formed that are unique in
their representations. Similarly, Figure 4.7 explains the transition from one chair’s latent
description to another when trained on ShapeNet chair class.
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Figure 4.6: New generated objects for table class

It can be seen how it proposed model handles the transition from one unique object
class and familiarization over another. The transitions in both of the figures 4.6 and 4.7 are
understandable and clear. This is a positive change in primary GAN method, that produces
objects with no sense at all. The proposed model’s clean and smooth transition from one
object to another that it was able to acquire a better arrangement of the observed target
location beside the latent scope so it can produce as many as possible unrealistic regions in
an object.

Figure 4.7: New generated objects for chair class
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4.7 Classification of 3D objects

Learned representations by the discriminator are evaluated. A typical way of doing so
is to use the learned features as classification. To get these features we train the model on
to classes table and chair of shape net dataset, in discriminator the output of second, third
and fourth Conv layer are concatenated and then apply the max pooling with a step size of
8,4,2. For grouping, we applied linear Support Vector Machine.

Table 4.1 exhibits the classification outcomes on the shape-net dataset. In the proposed
model, only table and chair classes of the shape-net dataset are used. We compared our
model with most recently proposed methods and our model outperformed these methods.
For table class, our model gained the classification accuracy of 74 percent and for chair
class 77.79 percent, that is greater than any previously proposed models.

Sr. # Method Classification Accuracy
Table Chair

1 Michael et. al [7] 67 percent 66.3 percent
2 Rohit et. al [24] 70 percent 71 percent
3 Abhishek et. al [29] 72 percent 77 percent
4 Ours 74 percent 77.79 percent

Table 4.2: Classification results on shapenet dataset for table and chair class

4.8 Summary

The results still need to be improved quality wise. But we perceive that our method
has the capacity to the much of our information is past unexplored. It has the capability
to construct a 3D image. If trained properly it can construct any 3D image, so we can
say there is no limit on the dataset. Certain baselines, though, are specific answers to one
of several jobs we can explain and frequently use extra information. As society begins
tackling frequently difficult 3D problems, we consider that our work provides a powerful
base to benchmark improvement.



Chapter 5

Conclusions

5.1 Conclusion

The presented scheme provides quality results but still needs a lot of improvements.
Once trained, the model can be used for producing new objects. It could be very helpful as
if we want to create a new design of table or chair by using this model we can easily achieve
this task. If trained properly on any dataset it can generate quality objects accordingly. We
hope that our contribution will be a valuable addition to the field.

5.2 Feature Work

As feature work, we want to improve the findings of the proposed model. We also
want to use a pre-trained-model for feature extraction use them as input to the generator
network.
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