ROBUST INTEGRAL OF SIGN OF ERROR BASED ATTITUDE CONTROL OF 2-DOF TWIN ROTOR SYSTEM

FARHAN AHMED QURESHI REG # 51178

BAHRIA UNIVERSITY ISLAMABAD KARACHI CAMPUS

AUTHOR'S DECLARATION

I, <u>Farhan Ahmed Qureshi</u> hereby state that my MS thesis titled <u>"Robust Integral</u> of Sign of Error based Attitude Control of 2-DOF Twin Rotor System" is my own work and has not been submitted previously by me for taking any degree from <u>Bahria University Karachi Campus</u> or anywhere else in the country/world. At any time if my statement is found to be incorrect even after my graduation, the University has the right to withdraw/cancel my MS degree.

Name of Scholar: Farhan Ahmed Qureshi

Date: 15-07-20

Plagiarism Undertaking

I, solemnly declare that research work presented in the thesis titled <u>"Robust Integral</u> of Sign of Error based Attitude Control of 2-DOF Twin Rotor System" is solely my research work with no significant contribution from any other person. Small contribution / help wherever taken has been duly acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Bahria University towards plagiarism. Therefore I as an Author of the above titled thesis declare that no portion of my thesis has been plagiarized and any material used as reference is properly referred / cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis even after award of MS degree, the university reserves the right to withdraw / revoke my MS degree and that HEC and the University has the right to publish my name on the HEC / University website on which names of scholars are placed who submitted plagiarized thesis.

Catarnan

Scholar / Author's Signature: _

Name of Scholar: Farhan Ahmed Qureshi

ACKNOWLEDGMENT

I am thankful to the Creator of whole mankind The Allah Almighty to have guided me all through this research at each step and for every new thought which You setup in my intellect to improve it. Undoubtedly I might have done nothing without Your priceless help and guidance.

I would like to express my profound and earnest appreciation to my research supervisor, Engr. Muhammad Yasir Amir Khan, Senior Assistant Professor, Department of Electrical Engineering, Bahria University Karachi Campus, for giving me the opportunity to do research and providing his invaluable guidance throughout this research. It is not an overstatement that without his support this research would not be possible. I would not forget to offer my sincere appreciation to my co supervisor Dr. Farah Haroon, Associate Professor at Institute of Industrial Electronics Engineering (IIEE). Her vision, sincerity and inspiration have profoundly motivated me. She has taught me the methodology to carry out and to present the research as clearly as possible. It was a great honor for me to work and study under her guidance.

I owe my special thanks of gratitude to my control teacher Prof.Dr. Vali Uddin Abbas, currently Vice Chancellor of Sir Syed University Karachi, for providing such a decent support and guidance, inspite of the fact that he had busy schedule managing the corporate affairs. It is pertinent to mention that he is the one who taught us how to flourish in the field of control engineering which leads to such a quality research.

I would also like extend my warm thanks to Mr. Adnan Sharif, my class fellow for his

tremendous support and cooperation. I appreciate his patience and guidance throughout the whole thesis.

Finally, I would like to specific my appreciation to all the people who have rendered profitable help to my research and study.

ABSTRACT

Attitude stabilization of 2-DOF Twin Rotor System (TRS) is always a challenging problem from the control point of view due to nonlinearity and instability in the openloop and high cross-coupling effects. This paper proposes a controller to stabilize the pitch and yaw angles of 2-DOF TRS using Robust Integral of Sign of Error (RISE) based control. The proposed controller guarantees asymptotic tracking with bounded disturbances. It can also compensate various parametric uncertainties and modeling errors. Where cross coupling is considered as disturbance to each other. The stability of the proposed controller is shown by using lyapunov based analysis. In order to prove the effectiveness of proposed controller, Sliding Mode Controller (SMC) is taken as bench mark. MATLAB simulation results of both the controllers are compared critically. These simulation results are then validated by implementing RISE on TRS hardware.

keywords: Twin Rotor system (TRS), Robust Integral of Sign of Error (RISE), , 2-DOF, SMC, Lyapunov

Table of Contents

Chapter	Title	Page
	Acknowledgment Abstract Table of Contents List of Tables List of Figures	vi viii ix xi xii
1	Introduction	1
	 1.1 Overview 1.2 Statement of the Problem 1.3 Objectives and Scope 1.4 Motivation 1.5 Assumptions and Limitations 1.6 Methodology 1.7 Thesis Outline 	3 4 4 5 5 6
2	Literature Review	7
	2.1 Control of Twin Rotor System2.2 RISE based Control2.3 Summary	7 8 9
3	Mathematical Modeling of 2-DOF Twin Rotor System	11
	3.1 Forces on Pitch Axis3.1.1 Torque due to Pitch Rotor3.1.2 Torque due to Yaw Rotor	11 12 12
	 3.1.3 Disturbances on Pitch Axis 3.2 Torque on Yaw Axis 3.2.1 Torque of Pitch Rotor affecting Yaw Axis 3.2.2 Torque due to Yaw Rotor 3.2.3 Disturbance on Yaw Axis 3.2.4 Parametric Values of TRS 3.3 Summary 	13 16 16 17 17 20 20
4	Linear Controller Implementation on TRS	21
	 4.1 State Equations of TRS 4.2 Linearization of TRS 4.3 Controller Implementation 4.3.1 PID Controller 4.3.2 State Feedback Controller 4.3.3 LQR Controller 4.4 Summary 	21 22 25 25 26 27 29
-		30
5	RISE Feedback Control Development	30
	5.1 Control Law for RISE 5.2 Prerequisite of RISE Control Implementation	31
	5.2.1 Bounded Disturbance on Pitch Axis	31
	5.2.2 Bounded Disturbance on Yaw Axis	

	5.3 RISE Feedback Control Design	35
	5.4 Stability Analysis	37
	5.5 Summary	42
		40
6	Simulation and Experimental Results	43
	6.1 Simulation Results	43
		52
	6.2 Hardware Results	
7	Conclusion and Future Work	59
		59
	7.1 Conclusion	60
	7.2 FutureWork	00
1	endix A: Laws of Physics in Ch-3	67
Appe	mult A. Daws of I mysics in One	