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Abstract 

 

This study aims to investigate the time dependent squeezing flow of nano-fluid flow 

comprising carbon-nanotubes (CNTs) of dual nature say single-walled carbon-nanotubes 

(SWCNTs) and multi-walled carbon-nanotubes (MWCNTs) amidst two parallel disks. The 

upper disk is moving (towards and away) from the lower stationary and permeable disk. 

Numerical simulations of the proposed model are conducted accompanied by Cattaneo-

Christov (CC) heat flux in a Darcy-Forchheimer permeable media. Additional impacts of 

homogeneous-heterogeneous (HH) reactions are also taken with melting heat.  Relevant 

transformations procedure is implemented for the transition of partial differential equations 

to ordinary one. A computer software-based MATLAB function bvp4c is implemented to 

handle the envisioned mathematical model. Sketches portraying impacts on velocity, 

temperature, and concentration versus involving parameters are given and deliberated well. 

It is witnessed that Darcy-Forchheimer coefficient show an opposite trend on radial velocity 

and temperature field. It is further perceived that melting parameter and radiation parameter 

has a retarding effect on temperature profile. Skin friction coefficients (SFC) and local 

Nusselt number (Nul) are evaluated via graphical illustration. Our results demonstrate that 

the SFC fall for porosity parameter and Nul is boosted for higher values of melting parameter 

and is reduced in case of high radiation coefficient. 
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Chapter 1

Introduction and literature review

1.1 Introduction

Nano-�uids are solid-liquid compound substances that have an ability to transfer heat

beyond a small temperature di¤erence. These �uids acquire metaphysical features such

as viscidity, consistency and speci�c heat etc. for heat transit applications. Adding nano-

sized particles in the base �uid e:g:; water becomes nano-�uid. These nano-sized particles

are called nano-particles and can be form of carbon nanotubes, metals and oxides and

consumed to enhance the thermal conductivity and accomplishment of heat transporta-

tion. In comparison with conventional �uids, the standard heat transit �uids intrinsically

have weak thermal conductivity. Smaller channels would get hindered in case of standard

�uids which comprise milimeter or micrometer sorted particles. Advancement of nano-

�uids is one of the modern technologies. By dissipating nano-particles less than 100 nm

in diameter, nano-�uids are extra ordinary pro�cient heat transit �uids. Improvement in

nano-�uid thermal conductivity plays a vital role in innumerable industrial applications.

Having four properties nano-�uids have outstanding characteristics:

� Enhancement of thermal conductivity using low concentration of nano-particles

� Potent temperature dependent thermal-conductivity
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� Nonlinear development in thermal-conductivity using nano-particles and

� Augmentation in boiling crucial heat �ux.

The existence of homogeneous-heterogeneous reactions plays signi�cant role in chem-

ical reactions. Sometimes, in certain cases the process of chemical reactions is slow. In

this case, the existence of a catalyst is must to subdue this perplexity. The interac-

tion amongst homogeneous and heterogeneous reactions is very tangled at distinct rates

into the �uid and onto the surface of catalyst in case of manufacturing and depletion of

reactant species. some examples are combustion, catalysis, and bio-chemical processes.

Carbon nano-tubes (CNTs) are cylindrical-shaped graphene plates. The CNTs are single-

walled carbon nano-tubes (SWCNTs) or multi-walled carbon nano-tubes (MWCNTs).

The CNTs are expressed as the extraordinary stu¤s of the present times due to their ad-

vanced physico-chemical appearance, and the thermic and mechanical aspects. Recently,

with vast applications in technological and industrial systems squeezed �ow amidst two

parallel disks has attained great attention. Many devices such as stirring piston in en-

gine, hydraulic brakes, and chocolate �ller are based on the �ow principle amid squeezing

regions. Squeezing �ow is involved in nasogastric tubes and syringes with the e¤ect of

moving disk. Having the property to change their shape, squeezed �ows are expectedly

unstable �ows.

The �rst scienti�c work on thermal radiation was developed by Della-Porta in 16th

century. At the end of 18th century, Prevost [1] determined the theory which states that

all bodies radiate heat, the greater the temperature the higher the radiation e:g:; two

bodies with distinct temperatures, the heated body will transfer heat to the colder one

till they reach the uniform temperature which is known as Prevost Theory of Exchanges.

Afterwards, in the beginning of 19th century Davy and Rumford studied the aspects of

thermal radiation. Thermal radiations has many applications in engineeing �eld, space

and in material and mechanical sciences. Radiative heat transfer in many processes such

as space vehicle, fossil fuel combustion energy, cosmological �ows and in solar energy

technology performs a very important role. In �ow and heat transfer phenomenon it is of
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major interest operating at high temperature in the structure of various innovative energy

renovation systems. E¤ects of thermal radiation play a signi�cant role in case of large

di¤erence among the surface and ambient temperature. The phenomenon of melting and

liquid freezing over the half-space surface was the work subject of Stefan [2] at the end

of 19th century. Melting heat transfer has abundant signi�cance in composition of frozen

ground defrosting, laser fabrication, metal molding, magma solidi�cation and storage of

thermal energy.

Heat conduction Fourier�s law has been a criterion benchmark in many practical

applications to estimate the behavior of heat transmission. Nevertheless, in view of

parabolic-heat equation due to an initial disorder system su¤ers alot. Cattaneo [3] tack-

led this drawback of the Fourier model through addition of thermal time relaxation.

Hence, this modi�cation has created the hyperboli-heat equation for temperature �eld.

Also, within �nite speed the heat transmisssion is permitted to circulate through thermal-

waves. Christov [39] modi�ed Cattaneo�s model by introducing thermal relaxation time

in terms of Oldroyd�s upper-convicted derivative to achieve the material-invariant formu-

lation. Tibullo and Zampoli [4] have worked on innumerable practicable applications i:e:;

to nano-�uid �ow from skin-burn detriment model. Henry Darcy [5] (a civil french engi-

neer) de�ned the �uid �ow over a porous surface based on the outcomes of experiments

on the �ow of water over cribs of sand, on hydro-geology, in the earth sciences. For the

water �ow, he studied the aspects of sand �lters. After his experiments, he deliberated

that viscous forces dominate around inertia forces within spongy media. Afterwards,

which become Darcy-law. Darcy-law presumes laminar �ow of the �uid in the absence

of density (inertia term) which indicates that absence of inertia term is not the case in

classical Navier-Stokes equations. An immense surface area in a spongy media is subject

to �uid �ow which is the innate supposition of Darcy-law.

Darcy-law has tremendous importance in oil estates, ground water structures, petro-

leum engineering and grain stoke. This is not appropriate nearby the wall because of

high �ow rates of porous media. Keeping this in mind, one has to become thoughtful
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of the non-Darcian impacts by spongy media in the analysis of �uid �ow and rate of

heat-transfer. Philippe Forchheimer [6] while heat passing throughout coal frame ex-

posed the non-linear relation amongst potential gradient and rate of �ow at high amount

of velocity. Initially, he concluded that this augmentation in non-linearity is due to tur-

bulance in �uid �ow but afterwards it is discovered that this is because of porosity of

media. Hence, Forchheimer mechanism was determined for high �ow rate. This was the

modi�cation in Darcy-law with addition of quadratic term in equation of motion and

this modifcation is called Darcy-Forchheimer statement. For higher Reynolds number, it

was termed as Darcy-Forchhimer term by Muskat [7]. Substantially, for higher �lteration

velocities a quadratic drag appears in equation of motion for porous media. Because of

solid obstructs, this drag is poduced and at the surface it becomes identical with surface

drag through resistance. There are countless examples of �nite situations where these

inertia e¤ects are considerable with no use of Darcy-law. Hence, Darcy-Forchheimer law

has a vital role in the �uid �ow with high velocity.

1.2 Literature review

Having astonishing heat-transit characteristics in contrast with usual heat transit �uids,

nano-�uids with extraordinary heat transit characteristics is the most discoursed subject

of present time [8-9]. In universal heat transit �uids e:g:; water, oil, and ethylene glycol

etc. Nano-�uids contain nanoparticles with size under 100nm. Sensational advancement

in the thermal e¤ects of host �uids is produced when a very slight quantity of nano-

particles suspended thoroughly and dissipates constantly in the base �uids. To create

steady and highly conducted nano-�uids one step and two step methods are used but cre-

ating nano-particles both methods endure cluster of nanoparticles. This is the crucial is-

sue in industrial science including nano-powder. The solution over cluster of nanoparticles

is to dissipate mono-sized nanoparticles to produce extra-ordinary steady nano-�uid is

studied by Uddin et al. [10]. Sheikholeslami et al. [11] reported the squeezing nano-�uid
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�uctuating �ow amid two parallel surfaces by Adomian-Decomposition-method (A-D-M).

Mittal and Pandit [12] investigated �rst time �ow of squeezing nano-�uid �uctuating �ow

amid two parallel surfaces with wavelets. A signi�cant study over nano-�uid �ow has

been deliberated by Ramzan et al. [13]. Some recent explorations regarding nano-�uids

are given at [14-17].

Carbon nano-tube is a large stretched, thin and cylinder-shaped molecule of pure

carbon, around 1 to 3 nano-meters (1 to 3 billionth of a meter) in breadth (diameter),

and 100 to 1000s of nano-meters long. Iijima [18] introduced the theory of carbon-

nanotubes. CNTs are classi�ed in SWCNTs and MWCNTs based on structure with

wide applications i:e:; �at-panel displays, conductive plastics, radar-enthralling covering,

antifouling paint, technical textiles, gas stowage, micro and nanoelectronics etc. Having

high compatibility with biomolecules like puri�cation of contaminated drinking water,

DNA and for proteins, CNTs are accustomed in biosensors and medical appliances [19].

Hayat et al. [20] studied the squeezing �ow of CNTs amidst two parallel disks on Darcy-

Forchheimer porous media. It is concluded that the temperature increases with high

nanoparticle volume fraction.

Stefan [21] proposed the idea of squeezing �ow in 1874. Afterwards, many researchers

explored the problems regarding squeezing �ow. The theoretical investigation regarding

squeezing �ow amid parallel disks is presented by Leider and Bird [22]. Qayyum et al.

[23] discussed the time-dependent squeezing Je¤ery �uid �ow amid two parallel disks.

Haq et al. [24] scrutinized the MHD nano-�uid squeezed �ow based on water with car-

bon nanotubes amidst two-parallel disks. It is concluded that temperature and velocity

pro�les increase with high nanoparticle volume fraction. Hayat et al. [25] discussed about

squeezed nano-�uid �ow-based carbon-nanotubes with impacts of thermal radiations on

Darcy-Forchheimer spongy media. He deliberated that an augmentation in nanoparticle

volume fraction causes reduction in both velocity and temperature of the �uid. Hashmi

et al. [26] investigated the analytical simulations for squeezing nano-�uid �ow amidst

parallel disks. Analytic simulations for heat transfer and squeezing �ow past a spongy
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surface are obtained by Mehmood et al. [27].

Henry Darcy [5] de�ned the �uid �ow over a spongy surface based on the outcomes

of water �ow experiments over cribs of sand and on hydro-geology. He �rst de�ned

his idea of �uid �ow over a spongy media in 1856. Later, due to its limitations of small

velocity with weaker permeability, this perception couldn�t get fame. Afterward, Philipps

Forchheimer [6] modi�ed the momentum equation by velocity square within Darcian

velocity. This was afterwards known as Forchheimer term designated by Muskat [7].

Hayat et al. [28] scrutinized squeezing carbon-nanotubes based on water with thermal

radiations over a Darcy-Forchheimer spongy media. He deliberated that velocity and

temperature fall with increase in nanoparticle volume fraction and temperature increases

with increment in Darcy-Forchheimer number. Jha and Kaurangini [29] presented the

analytic solutions for Darcy-Forchheimer based spongy media relation. Nasir et al. [30]

investigated 3D Darcy-Frocheimer thermal radiative �ow of SWCNTs with generation

and absorption of convective heat along a rotating stretchable disk. It is found that

velocity falls with higher Darcy-Forchheimer number and temperature augments with

high estimates of radiation parameter. Khan et al. [31] discussed the in�uences of

HH reactions for Darcy-Forchheimer �ow. It is found that velocity reduces for higher

estimates of Darcy-Fochheimer number. Hayat et al. [32] reported the MHD nano-�uid

�ow against thermal radiations with partial slip. He concluded that rate of heat transfer

increases with rise in radiation parameter. Mukhopad-hyay [33] examined the impact of

thermal radiation in MHD�ow by exponential stretchable spongy surface. Sheikholeslami

et al. [34] investigated the MHD nano-�uid �ow with impacts of thermal radiations,

thermophoresis and Brownian motion parallel rotating disks. It is concluded that with

high thermal radiation concentration boundary layer thickness reduces. Mohyud-Din et

al. [35] scrutinized the e¤ects of nonlinear thermal radiations on squeezing Casson �uid

�ow amidst parallel disks. He deliberated that radiation parameter has a retarding impact

on temperature pro�le. Epstein and Cho [36] studied the time-independent laminar �ow

with melting heat transfer past a stationary plate. Hayat et al. [37] investigated the
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melting heat transfer e¤ects with HH reactions in the �uid �ow within CNTs. It is

concluded that melting parameter has reverse impact on �uid temperature and velocity.

Krishnamurthy et al. [38] scrutinized the impacts melting heat transfer with chemical

reaction of Williamson nano-�uid in spongy media. It is found that velocity increases

whereas temperature decreases due to high estimates of melting parameter. Christov

[39] studied on modi�cation of Maxwell-Cattaneo model which is known as CC thermal

�ux model. The analytic solution of visco-elastic in the existence of CC thermal �ux and

velocity-slip edge were investigated by Han et al. [40]. The in�uence of CC heat �ux �uid

�ow containing nanotubes is scrutinized by Lu et al. [41]. Ramzan et al. [42] scrutinized

the third-grade �uid �ow with HH reactions in the existence of CC heat �ux. Lu et al.

[43] discussed the mathematical-model of unsteady �uid �ow containing SWCNTs and

MWCNTs in the presence of CC heat �ux and HH reactions amidst two parallel disks.

From the aforesaid discussion, it is perceived that there is no such study with combined

in�uences of melting heat transfer, non-linear thermal radiation, CC heat �ux and HH

reactions on Darcy-Forchheimer porous media amidst parallel disks. Comparably, less

research work with carbon-nanotubes is done. So, the current analysis is to inspect the

melting heat transfer e¤ects in the carbon nanotubes based nano�uid �ow in a nonlinear

Darcy-Forchheimer porous media amidst two parallel disks with CC heat �ux and HH

reactions. Impacts of prominent parameters on SFC and Nul are portrayed via graphic

illustration. Numerical solution of present work is obtained by adopting bvp4c built-in

function of MATLAB scheme.
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Chapter 2

Preliminaries

This chapter is consists of certain perceptions, de�nitions and fundamental laws.

2.1 Fluid

A substance that can stream under an in�uence of shear force continuously is called �uid.

Some fundamental examples are water, oil, and blood etc.

2.2 Nano�uid

A �uid which consists of nanoparticles which are made of carbon nano-tubes, metals or

oxides is called nano�uid. These nanoparticles of the �uid are basically used to enhance

the tranfer of heat and the thermal conductivity of �uid.

2.3 Fluid mechanics

It is the form of science which deals with the characteristics of all type of �uid bahaviour

i:e:; in rest or movement. Fluid mechanics is categorized into two classes:
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2.3.1 Fluid statics

This class of �uid mechanics belongs to the study of �uid characteristics at rest.

2.3.2 Fluid Dynamics

This class of �uid mechanics belongs to the study of �uid characteristics in the state of

motion.

2.4 Flow

It is speci�ed as a subtance that continually deforms �uently under the e¤ects of distinct

form of forces. Flow is further categorised into two classess:

2.4.1 Laminar �ow

It is a kind of �ow in which velocity is unchanged at each level and �uid �ow is in uniform

state.

2.4.2 Turbulent �ow

It is a kind of �ow in which velocity changes at each level and �uid �ow moves randomly.

2.5 Squeezed �ow

A �ow between two parallel or approximately parallel boundaries impending each other

in which a material is deformed, is called a squeezed �ow. Having the property to change

their shape, squeezed �ows are expectedly unstable and discordant �ows.
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2.6 Viscosity

It is the attribute of �uid which estimates the resistant force of �uid �ow over deformation

when innumerable forces are acting on the �uid. It can be classi�ed into two ways:

2.6.1 Dynamic viscosity (�)

It is the measure of resistivity of fuild �ow. Mathematically, it can be expressed as:

� =
Shear stress

Gradient of velocity
, (2.1)

or

� =
� yx

(du=dy)
. (2.2)

In units of system international, unit of � is kilogram
meter.sec with dimension [M=LT ].

2.6.2 Kinematic viscosity (�)

It is precised as the rate of dynamic viscosity (�) to the �uid density (�). Mathematically,

it can be displayed as:

� =
Dynamic viscosity
Fluid density

=
�

�
. (2.3)

Unit of kinematic viscosity � is meter
2

sec with dimension [L2=T ].

2.7 Newton�s law of viscosity

Fluids which demonstrate the continuous and direct relation amid shear stress and gra-

dient of velocity. Mathematically, expression for Newton�s law can be represented as:

� yx / (du=dy) ; (2.4)
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or

� yx = (�) (du=dy) . (2.5)

2.7.1 Newtonian �uids

A �uid which obeys the Newton�s law of viscosity is called Newtonian �uid. In this �uid,

a linear relation is found among � yx and du
dy
. Some fundamental examples are water, oil,

solutions of sugar, glycerin and alcohol etc.

2.7.2 Non-Newtonian �uids

A �uid which does not obey the Newton�s law of viscosity is called Newtonian �uid. In

this type of �uid, relation among � yx and du
dy
is not linear. Mathematically,

� yx / (du=dy)N , N 6= 1; (2.6)

or

� yx = (K) (du=dy)
N : (2.7)

Above expression is changed into Newton�s law of viscosity (Eq: 2.5) when K = � and

N = 1 i:e:;

� yx = (�) (du=dy) ; � = (K) (du=dy)N�1 : (2.8)

Fluids like honey, katchup, �our show the conduct of non-Newtonian �uids.

2.8 Density

It is ratio of mass of a subtance to its volume. Density is used to �nd how much matter

of a subtance is present in unit volume. Mathematically,
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� = (M=V ) : (2.9)

Its unit in SI system is kilogram
meter3 :

2.9 Pressure

It is the ratio of force applied (Fn) normal to the surface area (A). Mathematically,

P = (Fn =A) : (2.10)

Its unit in SI system is Newton
meter2 :

2.10 Magnetohydrodynamics

It is the combination of three words magneto (magnetic), hydro (water) and dynamic

(motion of an object under some force) which explains the magnetic impacts of �uid

under electric conduction.

2.11 Heat �ux

It is the energy transmission per unit time and area. It is also known as thermal �ux.

Mathematically,

Q = (�kA) (rT ) ; (2.11)

or

q = �k (rT ) ; (2.12)

which is called one-dim Fourier�s law. Its unit in S-I is watts
square meter .
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2.12 Cattaneo-Christov heat �ux

It is the modi�cation of Fourier�s law by two scientists Cattaneo [3] and Christov [39].

Mathematically,

q + "

�
@q

@t
+ V:rq � q:rV + (r:V ) q

�
= �krT: (2.13)

2.13 Chemical reactions

2.13.1 Homogeneous reaction

A reaction in which proportions remain unchanged throughout the whole process or a

reaction which occurs in a one phase is called a homogeneous reaction. Some physical

examples are air, vinegar, dishwashing liquid, sugar water and rain.

2.13.2 Heterogeneous reaction

A reaction in which proportions vary throughout the whole process or a reaction which

occurs in more than one phases is called a heterogeneous reaction. Some physical exam-

ples are earth�s atmosphere, mixture of sand and water, sand and sugar etc.

2.14 Porous surface

A surface which consists of holes authorizes the exterior stu¤ to pass through it. Some

examples of porous surfarce are sponge, fabric, card board etc. Rocks, tissues and cork

are some biological examples of porous surface.

2.15 Porosity

It is the attribute of spongy surface being full of small pores.
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2.16 Permeability

It is the intensity of spongy material which authorizes the �uid to migrate through it.

The materials having large holes are highly permeable.

2.17 Mechanism of heat �ow

A form of energy transport from hotter to colder systems. It takes place among those

subjects having distinct coditions i:e:; temperature. This transit of heat takes place

through three techniques, covection, radiation and conduction.

2.17.1 Conduction

In this mechanism of heat transit, heat �ows from hot to cool surface due to the collisions

of unconditional molecules and electrons in solids and liquids. In mathematical form,

Q = �kArT = �kA
�
dt

dx

�
, (2.14)

here, negative sign is denoting the �ow from higher to lower area.

2.17.2 Convection

In this heat transit mechanism, heat �ows from hot to cool surface due to the collisions

of unconditional molecules and electrons in gasses and liquids. In mathematical form,

Q = HA (Tsys � Tinf ) . (2.15)

2.17.3 Radiation

In this mechanism of heat transit, heat �ows through hot to cold surface by means of

electromagnetic tides. Mathematically,
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Q = E��A
�
�T 4

�
, (2.16)

or

Q = E��A
�
T 41 � T 42

�
; (2.17)

or

Q = �E��A
�
T 42 � T 41

�
; (2.18)

or

q =
Q

A
= �E��

�
T 42 � T 41

�
: (2.19)

Some physical examples are ultraviolet light from the sun, microwaves from a microwave

oven and visible light from a candle etc.

2.18 Darcy law

Darcy law states that heat is directly proportional to the permeability of porous medium

K�, cross-sectional areaA, pressure drop�P and is inversely proportional to the dynamic

viscosity �:

Q = �K
�A

�
(�P ) , (2.20)

or

�P = P2 � P1 = �
�
Q

A

�
�

K� ; (2.21)

or

�P = � �

K� q: (2.22)

In case of �uid �ow q = v (velocity of �uid):
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�P = � �

K�v: (2.23)

Negative sign is due to the direction of �uid/heat �ow from high pressure region to low

pressure region.

2.19 Darcy-Forchheimer law

The �uid �ow through a porous saurface with Reynolds number greater than 10 and

inertial e¤ects in Darcy-law is called Darcy-Forchheimer law. This additive term (inertial

e¤ects/velocity square term) is called Forchheimer term which depicts the non-linear

conduct of pressure di¤erence against data �ow. Mathematically,

@P

@X
= � �

K
v �

�fCbp
K
v2. (2.24)

In case of heat �ow through cross sectional area:

@P

@X
= � �

K
q� �

�fCbp
K
q�2 . (2.25)

2.20 Melting heat

It is a physical operation in which substance converted to liquids from solids and phase

modulation occurs with an increment in internal energy. The substance temperature

augments at a melting stage while viscosity decreases. Mathematically,

knf

�
@T

@Z

�
Z=0

= �nf (Cs (Tm � T0) + L)W (R; 0) . (2.26)
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2.21 Latent heat

It is the amount of heat per unit mass required to change a solid into a liquid (i:e:; ice

into water and water into steam etc.) with constant temperature. Mathematically,

L =
Q

M
. (2.27)

2.22 Non-dimensional parameters

2.22.1 Skin friction coe¢ cient (Cfr)

It is the amount of drag force faced by the �uid while passing through the surface. It

takes place amogst the liquid and intense surface which reduces the rate of �uids �ow.

Mathematically, it can be written as:

Cfr =
� s
1
2
�v2

. (2.28)

2.22.2 Nusselt number (Nu)

It is the dimensionless amount which describes the relation amongst conduction and

convection heat transit parameters along the boundary. In mathematical form

NL =
h��T

(k�T =l)
=

�
h�l

k

�
. (2.29)

2.22.3 Prandtl number (Pr)

It is the ratio of momentum di¤usivity to the thermal di¤usivity.

Pr = (�=�) = (�Cp=k) . (2.30)
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2.22.4 Hartmann number (Ha)

It describes the relationship amongst induced frictional force (through magnetism) and

viscosity. It is the ratio of magnetic to the viscous forces. Mathematically,

Ha =

s
B20L

2r�

�
. (2.31)

2.22.5 Reynolds number (Re)

It is the dimensionless number which is used to acknowledge the type of �uid whether it

is laminar or turbulent. It is the rate of inertial and viscous forces. Mathematically,

Re =
Inertial forces
viscous forces

= (vl=�) : (2.32)

This number is used to di¤erentiate �ow behavior i:e:; laminar or turbulent. At lower

Reynolds number, laminar �ow appears in which viscous impacts are promonent while

turbulent �ow appears at large value of Reynolds number in which inertial impacts are

prominent.

2.22.6 Radiation parameter (Rd)

It is the relative assistance of conduction to the transmission of thermal radiation. Math-

ematically,

Rd =
16��T 3m
3kfk�

: (2.33)

2.22.7 Thermal relaxation parameter ()

It is the dimensionless parameter which is used to evaluate the time needed for conduction

of heat. It describes the time which is occupied for a hot material to rescue its 50 percent

heat beacause of di¤usion.
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2.22.8 Schmidt number (Sc)

It is the rate of viscosity (Kinematic) to mass di¤usivity. Mathematically,

Sc = (�=Dm) . (2.34)

2.22.9 Forchheimer number (F )

It is the rate of pressure gradient to viscous resistivity and can be represented mathe-

matically as:

F =
K�vB�

�
. (2.35)

2.22.10 Melting parameter (Me)

It is the dimensionless quantity which is compound of two stefan quantities
�
cf(Tinf�Tm)

�

�
and

�
cf (Tm�T0)

�

�
in case of solid and liquid facets. Mathematically,

Me =
Cf (Tinf � Tm)
L+ Cs (Tm � T0)

. (2.36)

2.23 Thermal conductivity (k)

Thermal conductivity is the measure of the material�s capacity to conductive heat. It is

the conductive heat Forier�s law which is the rate of the product of heat transit amount

(Q) and meterial�s thickness (d) to the area (A) and temperature di¤erence (�T ). Math-

ematically,

k =
Qd

A�T
, (2.37)
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or

k = q
d

�T
; (2.38)

with unit (W=mK) :

2.24 Conservation laws

A signi�cant measure which remains uniform in an solitary system with the time pro-

gression is known as conserved quantity. The law that deals with the conserved quantity

is called conservation law. Some fundamental conservative laws are as follows:

2.24.1 Mass conservation law

In this law the entire mass remains conserved in any closed system. Mathematically,

D�

Dt
+ � (r:V) = 0; (2.39)

or

@�

@t
+ (V:r) �+ � (r:V) = 0; (2.40)

or

@�

@t
+r: (�V) = 0; (2.41)

which is called continuity equation. In case of steady �ow i:e:; (� = constant), the above

equation becomes

r: (�V) = 0; (2.42)

while for an incompressible �ow
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(r:V) = 0: (2.43)

2.24.2 Momentum conservation law

In this law total linear momentum remains unchnaged in a closed system. Mathemati-

cally,

�
DV
Dt

= div � c + �Bf ; (2.44)

with,

� c = �PI + �A1. (2.45)

2.24.3 Energy conservation law

In this law whole energy in any closed system remains conserved. Mathematically,

(�Cp)f
DT

Dt
= � c:�L� div q + �DE; (2.46)

where q and �L are:

q = �krT; (2.47)

�L = rV; (2.48)

and for this law � c is:

� c = �pI + �A1; (2.49)

A1 = �L+ �LT : (2.50)
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2.24.4 Concentration conservation law

The volume division or fraction equation (by using principle of mass-conservation) for

nano-particles is:

@C

@t
+ (V.r)C = � 1

�p
(r:Jp) : (2.51)

Fick�s law of mass di¤usion is

Jp = ��pDmrC: (2.52)

Following above law, we get

@C

@t
+ (V.r)C = Dmr2C: (2.53)

2.25 Thermal di¤usivity (�)

It is the rate of thermal conductivity to density and speci�c heat capacity which is

used to characterize the time-dependent �uid cunductive heat �ow. This dimensionless

parameter tells us how promptly a substance react with temperature modi�cation. In

mathematical form

� =
k

�Cp
. (2.54)
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Chapter 3

Unsteady squeezing carbon

nanotubes based Nano-liquid �ow

with Cattaneo-Christov heat �ux

and homogeneous-heterogeneous

reactions

In this chapter, unsteady �ow of squeezing nano-�uid water-based single-walled (SW) &

multi-walled (MW) carbon nano-tubes (CNTs) amidst two parallel disks with e¤ects of

Cattaneo-Christov heat �ux and homogeneous-heterogeneous reactions is discussed. In

addition to above, the impact of magnetohydrodynamics (MHD) is also considered. The

requisite boundary layer equations are transformed into non-linear ordinary di¤erential

equations after using appropriate similarity-transformation. The obtained system of

equations is addressed by bvp4c built-in function of MATLAB scheme. The outcomes

of the prominent parameters versus involved pro�les are portrayed and conversed in the

light of their physical signi�cance. This is review work of [43].
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3.1 Mathematical formulation

We consider a time dependent, incompressible 2D-magnetohydrodynamic (water-based)

nano-particle �uid �ow amidst 2-in�nite parallel disks by the length Z, where Z is de�ned

as:

Z = h(t) = H(1� ct)0:5: (3.1)

We have considered two types of nano-particles, SWCNTs and MWCNTs, along the base

�uid (water) with suction case only (W0  0). Furthermore, direction of magnetic �eld

is normal to the disks. By considering small Reynolds number, the induced magnetic

�eld is not taken into consideration. Here, temperature Th indicates the upper disk

temperature and Temperature Tw indicates the lower disk Z = 0. Moreover, the upper

disk at Z = h(t) is moving to and fro with the velocity dZ
dt
from the immobile and porous

lower disk at Z = 0. We have considered the cylindrical coordinate system (R;�; Z) and

the velocity component V vanishes identically due to rotational �ow symmetry
�
@
@�
= 0
�
.

The direction of �ow is vertically upward towards the Z � axis.

Figure 3.1 Fluid geometry

24



Chaudhary andMerkin [44] designed a homo-geneous (isothermic-cubical-autocatalytic)

and hetero-geneous chemical reactions along 2-chemical species A� and B� such that,

A� + 2B� ! 3B�; rate = kcab2; (3.2)

A� ! B�; rate = ksa. (3.3)

Here, concentrations for these chemical species are expressed by a; b and kj, with (j = c; s)

where a; b and kj are rate quantities. These reactions are presumed to be an isothermic.

For incompressible �uid density is constant. The equations of conservation of mass,

momentum, energy and concentration are as follows:

r:V = 0; (3.4)

�nf
dV

dt
= �rP+�nfr2V+�nf� (J�B) ; (3.5)

(�Cp)nf
dT

dt
= �r:q; (3.6)

where q is Cattaneo-Christov heat �ux for incompressible �uid given as:

q+ � (V:rq� q:rV) = �knfrT: (3.7)

Taking r on both sides of Equation (3:7) and using Equation (3:6), we get

Tt +V:rT+ � [Ttt + 2V:rTt +Vt:rT+V:r (V:rT)] = knf
(�Cp)nf

r: (rT) ; (3.8)

da

dt
= DA

�
r2a

�
� kcab2; (3.9)

db

dt
= DB

�
r2b

�
+ kcab

2: (3.10)

The governing equations from Equations (3:4)� (3:5) and (3:8)� (3:10) are represented
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as
@U

@R
+
U

R
+
@W

@Z
= 0; (3.11)

@U

@t
+U

@U

@R
+W

@U

@Z
= � 1

�nf

@P

@R
+
�nf
�nf

�
@2U

@R2
+
1

R

@U

@R
� U

R2
+
@2U

@Z2

�
��B2(t)U; (3.12)

@W

@t
+ U

@W

@R
+W

@W

@Z
= � 1

�nf

@P

@Z
+
�nf
�nf

�
@2W

@R2
+
1

R

@W

@R
+
@2W

@Z2

�
; (3.13)

@T

@t
+ U

@T

@R
+W

@T

@Z
+ "

0BBBBBB@
@2T
@t2
+ @U

@t
@T
@R
+ 2U @2T

@t@R

+2W @2T
@t@Z

+ @W
@t

@T
@Z
+ U @U

@R
@T
@R

+W @W
@Z

@T
@Z
+ U @W

@R
@T
@Z
+W @U

@Z
@T
@R

+2UW @2T
@R@Z

+ U2 @
2T
@R2

+W 2 @2T
@Z2

1CCCCCCA
=

knf
(�Cp)nf

�
@2T

@R2
+
1

R

@T

@R
+
@2T

@Z2

�
; (3.14)

@a

@t
+ U

@a

@R
+W

@a

@Z
= DA

�
@2a

@R2
+
1

R

@a

@R
+
@2a

@Z2

�
� kcab2; (3.15)

@b

@t
+ U

@b

@R
+W

@b

@Z
= DB

�
@2b

@R2
+
1

R

@b

@R
+
@2b

@Z2

�
+ kcab

2: (3.16)

Here, DA and DB are the di¤usion coe¢ cients. The suitable boundary conditions are

described as:

U = 0; W = � W0

(1� ct)
1
2

; T = Tw; DA
@a

@Z
= ksa;

DB
@b

@Z
= �ksa; at Z = 0;
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U = 0; W =
dh

dt
; T = Th; a! a0; b! 0; at Z = h (t) : (3.17)

The thermophysical properties are

�nf =
�f

(1� �)2:5
; �nf =

�nf
�nf

; �nf = (1� �) �f + ��CNT ;

knf
kf

=
(1� �) + 2� kCNT

kCNT�kf ln
kCNT+kf

2kf

(1� �) + 2� kCNT
kCNT�kf ln

kCNT+kf
2kf

. (3.18)

Table 3.1 shows the thermophysical features � (density); Cp (speci�c heat), k (thermal

conductivity) of water (Base-�uid) and carbon-nanotubes.

Table 3.1 Physical properties of water (base-�uid), SWCNTs and MWCNTs [45].

Thermophysical traits Water (Base-�uid)
Nano-particle

(SWCNTs)

Nano-particle

(MWCNTs)

Cp (J=kgK) 4179:00 425 796

� (kg=m3) 997:100 2600 1600

k (W=kgK) 0:61300 6600 3000

3.1.1 Similarity transformations

Non-dimensional transformations is de�ned as:

U =
cR

2(1� ct)f
0(�); W = � cHp

(1� ct)
f (�) ; � =

Z

H
p
1� ct

;

B (t) =
B0p
1� ct

; h (�) =
a

a0
; g (�) =

b

a0
; � (�) =

T � Th
Tw � Th

: (3.19)
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Using above tranformations, incompressibilty condition is satis�ed and Equations (3:12)� (3:16)

are transformed as:
1

(1� �)2:5
f 0000 (�)� Sq

�
(1� �) + ��c

�f

�
0@ �f 000(�) + 3f 00 (�)

�2f (�) f 00 (�)

1A�Haf 00 (�) = 0; (3.20)

knf
kf
�00 (�) + Sq Pr

 
(1� �) + �(�Cp)c

(�Cp)f

!
0BBB@

2f (�) �0 (�)� ��0 (�)

�

0@ �2�00 (�)� 2�f (�) �00 (�)� �f 0 (�) �0 (�)

+f (�) f 0 (�) �0 (�) + f 2 (�) �00 (�)

1A
1CCCA = 0; (3.21)

1

Sc
h00 (�)� �

2
h0 (�) + f (�)h0 (�)� k1h (�) g2 (�) = 0; (3.22)

�

Sc
g00 (�)� �

2
g0 (�) + f (�) g0 (�) + k1h (�) g

2 (�) = 0; (3.23)

with boundary conditions

f (0) = s; f 0 (0) = 0; � (0) = 1; �g0 (0) = �k2h (0) ;

h0 (0) = k2h (0) ; at � = 0; (3.24)

f (1) =
1

2
; f 0 (1) = 0; � (1) = 0; g (1)! 0;

h (1)! 1; at � = 1: (3.25)

Here

� =
DB

DA

. (3.26)
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From Equations (3:2) and (3:3), chemical species A� and B� cannot be analogous, but

both can be identical in volume. However, presuming that di¤usion species DB and DA

are identical (� = 1), we have

h (�) + g (�) = 1. (3.27)

Using above property, Equations (3:22) and (3:23) take the form

1

Sc
h00 (�)� �

2
h0 (�) + f (�)h0 (�)� k1h (�) (1� h (�))2 = 0; (3.28)

with boundary conditions

h0 (0) = k2h (0) ; at � = 0; (3.29)

h (1)! 1; at � = 1: (3.30)

Here

 =
�c

2 (1� ct) ; Sc =
cH2

DA

; k1 =
kca

2
0 (1� ct)
c

; k2 =
ks
DA

H (1� ct)
1
2 ;

Sq =
cH2

2�nf
; Ha =

�
�fB

2
0H

2

�f

� 1
2

; Pr =
�Cp
kf
; s =

W0

cH
: (3.31)

SFC and Nul are calssi�ed as:

Cfr =
�nf

�
@U
@Z
+ @W

@R

�
Z=h(t)

1
2
�nf

�
� cH

(1�ct)
1
2

�2 ; Nu = � knfH

kf (Tw � Th)
@T

@Z
jZ=h(t) : (3.32)

Consulting Equation (3:19), we obtain

H2

R2
ReCfr =

1

(1� �)2:5
�
(1� �) + � �s

�f

�f 00 (1) ; p
1� ctNu = �knf

kf
�0 (1) ; (3.33)

with local squeezed Reynolds number ReL
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ReL =
�f RcH

p
1� ct

�f
. (3.34)

3.2 Results and discussion

Results are illustrated for axial velocity f (�), radial velocity f 0 (�), temperature pro�le

� (�) and concentration �eld h (�) to discuss the heat transport and behavior of �uid

�ow for �ow parameters at de�nite values. Flow parameters are squeezing parameter Sq,

the suction parameter s, Hartmann number Ha, the volume fraction coe¢ cient �; the

Schmidt number Sc, the homogeneous reaction parameter k1, the heterogeneous parame-

ter k2, and the thermal relaxation parameter . We �xed certain values for above �ow

parameters such that s = 0:4; Sc = 1:0;  = 0:5; Ha = 0:5; k1 = 0:7; k2 = 0:7; P r = 6:2;

� = 0:1; Sq = 1:0 until they are speci�ed: For both SWCNTs and MWCNTs, graphs are

drawn. Figure 3:2 is sketched to portray the infuence of s suction parameter on axial

velocity f (�). Graph depicts that with the large values of parameter s, axial velocity

increases. This is due to velocity pro�le accelerates for high suction, which results in

opposite �ow. In contrast with the lower plate, the e¤ect of opposite �ow is more domi-

nant nearby the upper plate. To create an opposite �ow close to the lower plate, presure

gradient is the main reason. Due to this, large number of �uid particles move aside from

the lower disk. Figure 3:3 illustrates that how positive and negative values of squeezed

number Sq a¤ect the radial velocity f 0 (�). Graph depicts that for both SWCNTs and

MWCNTs, velocity f 0 (�) increases for contraction of disks i:e:; negative values, while for

positive values when upper and lower plates are driving afar from each other, an opposite

bahavior can be observed. In case of contraction (Sq = �1;�2;�3:) when both plates

move towards each other, a squeezed force is experienced by the �uid which causes mo-

tion of the �uid with more velocity. Hence, velocity augments. Whereas for Sq = 1; 2; 3::

when both plates move far from each other, a gap is produced between the plates. The

�uid moves in inverse direction to �ll this gap and thus velocity reduces. For both SWC-
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NTs and MWCNTs, impact of suction parameter is portrayed in Figures 3:4 and 3:5. It

is examined in �gure 3:4 that for escalating values of suction parameter s, radial velocity

drops for MWCNTs. It is observed that velocity declines whenever suction in�uence is

strengthened. Figure 3:5 exhibits the same results for SWCNTs. Figure 3:6 indicates

the impact of volume fraction of nanoparticles � for both SWCNTs and MWCNTs. It

is observed in Figure 3:6 that for growing values of �, velocity reduces close to the lower

disk while augments after a certain distance towards the upper disk. However, in case

of squeezing �ow it is examined in Figure 3:7 that the temperature pro�le � declines for

cumulative values of volume fraction �. Physically, thermal conductivity of nano�uid en-

hances using low concentration of nanoparticles. Hence, high nanoparticles concentration

leads to decrease in temperature. In Figure 3:8; e¤ect of Sq squeezed number is exhibited.

In case of contraction of disks (Sq = �1;�2;�3), temperature pro�le � (�) establishes

diminishing behavior while escalating behavior when the disks are driving afar from each

other i:e:; Sq = 1; 2; 3. The e¤ect of relaxation parameter  versus temperature � (�) is

deliberated in Figure 3:9. Higher values of  leads to the augmentation in temperature

pro�le � (�) for both SWCNTs and MWCNTs. Figures 3:10� 3:12 are plotted for both

SWCNTs and MWCNTs to discuss concentration �eld h (�) versus k1, k2 and Sc. Fig-

ure 3:10 indicates that h (�) decreases with the higher values of homogeneous reaction

parameter k1. The same outcome can be observed in �gures 3:11 for k2 heterogeneous

reaction parameter. This is because concentration declines eventually when reactants

are consumed throughout HH reactions. In Figure 3:12; the e¤ect of Schmidt number

is represented. Concentration pro�le is being reduced for increasing values of Schmidt

number. As Sc is the ratio of momentum to mass di¤usivity, greater Sc indicates the

smaller mass di¤usivity which results in the reduction in �uid concentration h (�). For

various values of squeezing parameter Sq, suction parameter s and thermal relaxation

parameter ; SFC and Nul are presented in Tables 3:2 and 3:3. SFC decreases for higher

values of Sq and s whereas Nul increases for higher values of Sq; s and : For both

SWCNTs and MWCNTs, Table 3:4 is presented for surface concentration h (0) which
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reduces with the increment in k1and k2:
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Fig. 3.6 Impact of � on radial velocity f 0 (�)
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Fig. 3.8 Impact of Sq on temperature distribution � (�)
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Fig. 3.10 Impact of k1 on concentration pro�le h (�)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h(
)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k2 = 0.3, 0.5, 0.7

_______  MWCNTs  water
        SWCNTs  water

Sq = 1 . 0, Pr = 6 . 2, s = 0 . 4, Ha = 0 . 5 ,
 = 0 . 1, k 1 = 0 . 7, Sc = 1 . 0,   = 0 . 5

Fig. 3.11 Impact of k2 on concentration pro�le h (�)

36



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h(
)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sc = 1, 3, 5, 7

Sq = 1 . 0, Pr = 6 . 2, s = 0 . 4, Ha = 0 . 5,
 = 0 . 1, k 1 =  k 2 = 0 . 7,  = 0 . 5

_______  MWCNTs  water
        SWCNTs  water
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Table 3.2 Impact of Squeezing Sq and suction parameters s on SFC
�
H2

R2

�
Rer Cfr when

Sc = 1:0;  = 0:5; Ha = 0:5; k1 = 0:7; k2 = 0:7; P r = 6:2; � = 0:1:

s Sq SFC for SWCNTs SFC for MWCNTs

0.0 1.0 0.13983393 0.14835160

0.1 0.10895464 0.11565795

0.2 0.07947330 0.08441676

0.1 -1.0 0.01746634 0.01819335

0.0 0.01051051 0.01150452

1.0 0.01032101 0.01131235

Table 3.3 Impact of Squeezing Sq, suction parameters s and thermal relaxation para-

meter  on Nul (1� ct)
1
2 Nu when Sc = 1:0; Ha = 0:5; k1 = 0:7; k2 = 0:7; P r = 6:2;
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� = 0:1:

Sq s  Nul for SWCNTs Nul for MWCNTs

-1 0.4 0.5 1.343625 6.09528877

0 1.345840 6.11745513

1 1.348025 6.13941320

1 0 1.346456 6.12363146

0.1 1.346843 6.12752401

0.2 1.347234 6.13145122

0 1.348025 6.13941320

0.3 1.348027 6.13943734

0.5 1.348031 6.13947355

Table 3.4 Impact of homogeneous k1 and heterogeneous k2 reaction coe¢ cients on sur-

face concentration h (0) when Sc = 1:0; Ha = 0:5; Sq = 0:5; s = 0:4; P r = 6:2; � = 0:1

k1 k2 h (0) for SWCNTs h (0) for MWCNTs

0.3 0.7 0.25258956 0.25244606

0.5 0.12087726 0.12087205

0.7 0.04014484 0.04015474

0.7 0.3 0.05365630 0.05367049

0.5 0.04909591 0.04592125

0.7 0.04014484 0.04015474
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Chapter 4

Radiative Darcy-Forchheimer

squeezing carbon Nano-tubes

suspended Nano-�uid �ow between

parallel disks

In this chapter, time-dependent magnetohydrodynamics (MHD) �ow of squeezing nano-

�uid water-based single-walled (SW) and multi-walled (MW) carbon nano-tubes (CNTs)

amidst two parallel disks with the e¤ects of homogeneous-heterogeneous reactions in a

Darcy-Forchheimer penetrable media is discussed. The impacts of non-linear thermal

radiation and melting heat tranfer are also deliberated. The requisite boundary layer

equations are transformed into non-linear ordinary di¤erential equations after consulting

suitable similarity transformation. The acquired system of equations is addressed by

bvp4c built in fuction of MATLAB scheme. The outcomes of the prominent parameters

are portrayed for temperature, concentration �elds, axial and radial velocities. It is

perceived that temperature decreases as radiation parameter increases for both SWCNTs

and MWCNTs.
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4.1 Mathematical formulation

Consider an incompressible, unsteady 2D MHD �ow of nano-�uid containing carbon

nano-tubes with Darcy-Forchheimer permeable medium amidst two-in�nite parallel disks

by the length Z = h(t) = H(1� ct)0:5 with magnetic �eld strength B0p
1�ct normal to the

disks. Two types of carbon nano-tubes, single-walled CNTs and multi-walled CNTs

along with the base �uid (water) are considered. Let Th be the temperature at upper

disk Z = h (t) and temperature Tm be the temperature of surface (lower plate) Z = 0.

Moreover, the upper disk Z = h(t) is moving to and fro with the velocity dZ
dt
from the

�xed and porous lower disk Z = 0 (Figure-4.1). We have considered the cylindrical

coordinate system (R;�; Z) and the velocity component V vanishes identically due to

rotational �ow symmetry
�
@
@�
= 0
�
. The direction of �ow is vertically upward towards

the Z � axis.

Fig. 4.1 Fluid geometry

40



By considering small Reynolds number, the induced magnetic �eld is not taken into

consideration. We asssume a model, designed by Chaudhary and Merkin [44] for homo-

geneous and hetero-geneous chemical reactions de�ned as:

A� + 2B� ! 3B�; rate = kcab
2; (4.1)

A� ! B�; rate = ksa . (4.2)

Here, A� and B� are chemical species. Concentrations for these chemical species are

expressed by a; b and kj, with (j = c; s) where a; b and kj are rate quantities. These

reactions are presumed to be an isothermic. The equations of conservation of mass,

momentum, energy and concentration are as follows:

r:V = 0; (4.3)

�nf
dV

dt
= �rP+�nfr2V+�nf

�
� (J�B)� �nfV

K
� F �V2

�
; (4.4)

Tt +V:rT+ � [Ttt + 2V:rTt +Vt:rT+V:r (V:rT)]

=
knf

(�Cp)nf
r: (rT)�r:qr; (4.5)

da

dt
= DA

�
r2a

�
� kcab2; (4.6)

db

dt
= DB

�
r2b

�
+ kcab

2: (4.7)

The governing equations from Equations (4:3)� (4:7) are represented as:

@U

@R
+
U

R
+
@W

@Z
= 0; (4.8)

@U

@t
+ U

@U

@R
+W

@U

@Z
= � 1

�nf

@P

@R
+
�nf
�nf

�
@2U

@R2
+
1

R

@U

@R
� U

R2
+
@2U

@Z2

�

��B2(t)U � �nfU
K

� F �U2; (4.9)
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@W

@t
+ U

@W

@R
+W

@W

@Z
= � 1

�nf

@P

@Z
+
�nf
�nf

�
@2W

@R2
+
1

R

@W

@R
+
@2W

@Z2

�

��nfW
K

� F �W 2; (4.10)

@T

@t
+ U

@T

@R
+W

@T

@Z
+ "

0BBB@
@2T
@t2
+ @U

@t
@T
@R
+ 2U @2T

@t@R
+ 2W @2T

@t@Z

+@W
@t

@T
@Z
+ U @U

@R
@T
@R
+W @W

@Z
@T
@Z
+ U @W

@R
@T
@Z

+W @U
@Z

@T
@R
+ 2UW @2T

@R@Z
+ U2 @

2T
@R2

+W 2 @2T
@Z2

1CCCA
=

knf
(�Cp)nf

(
@2T

@R2
+
1

R

@T

@R
+
@2T

@Z2
)� 1

(�Cp)nf

@

@Z
(qrd) ; (4.11)

@a

@t
+ U

@a

@R
+W

@a

@Z
= DA

�
@2a

@R2
+
1

R

@a

@R
+
@2a

@Z2

�
� kcab2; (4.12)

@b

@t
+ U

@b

@R
+W

@b

@Z
= DB

�
@2b

@R2
+
1

R

@b

@R
+
@2b

@Z2

�
+ kcab

2: (4.13)

Here, DA and DB are the di¤usion coe¢ cients. The suitable boundary conditions are

described by

U = 0; knf

�
@T

@Z

�
Z=0

= �nf [Cs (Tm � T0) + L]W (R; 0) ; (4.14)

T = Tm; DA
@a

@Z
= ksa; DB

@b

@Z
= �ksa; at Z = 0;

U = 0; W =
dh

dt
; T = Th; a! a0; b! 0; at Z = h(t): (4.15)

Mathematically, thermophysical properties are:

�nf =
�f

(1� �)2:5
; �nf =

�nf
�nf

; �nf = (1� �) �f + ��CNT ;

(�Cp)nf = (1� �) (�Cp)f + � (�Cp)CNT ;

knf
kf

=
(1� �) + 2� kCNT

kCNT�kf ln
kCNT+kf

2kf

(1� �) + 2� kCNT
kCNT�kf ln

kCNT+kf
2kf

: (4.16)

From Equation (4.11), by utilizing Roseland thermal radiation approximation [46] we get
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the value of qrd as:

qrd = �
4��

3k�
@T 4

@Z
: (4.17)

4.1.1 Similarity transformations

Similarity transformations are de�ned as:

U =
cR

2(1� ct)f
0(�); W = � cHp

(1� ct)
f (�) ; � =

Z

H
p
1� ct

;

B (t) =
B0p
1� ct

; h (�) =
a

a0
; g (�) =

b

a0
; � (�) =

T � Tm
Th � Tm

: (4.18)

Using above transformations, incompressibility condition is satis�ed and Equations (4:9)�

(4:13) are transformed into the followings:

1

(1� �)2:5
[f 0000 (�)� �Ref 00 (�)]� Sq

�
(1� �) + ��c

�f

�
24 3f 00 (�) + �f 000 (�)

�2f (�) f 000 (�) +ReFf 0 (�) f 00 (�)

35�Ha2f 00 (�) = 0; (4.19)

knf
kf

��
1 +Rd (1 + (�w � 1) � (�))3

�
�0 (�)

�0
+ SqPr

"
(1� �) + �

(�Cp)s
(�Cp)f

#
26664

2f (�) �0 (�)� ��0 (�)�



0@ �2�00 (�)� 4�f (�) �00 (�)� 2�f 0 (�) �0 (�) + 4f (�) f 0 (�) �0 (�)

+4f 2 (�) �00 (�) + 3��0 (�)� 6f (�) �0 (�)

1A
37775 = 0; (4.20)

1

Sc
h00 (�)� �

2
h0 (�) + f (�)h0 (�)� k1h (�) g2 (�) = 0; (4.21)

�

Sc
g00 (�)� �

2
g0 (�) + f (�) g0 (�) + k1h (�) g

2 (�) = 0; (4.22)
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with boundary conditions

f 0 (0) = 0; � (0) = 0;
knf
kf
Me �0 (0) + �0PrRef (0) = 0;

h0 (0) = k2h (0) ; �g0 (0) = �k2h (0) ; at � = 0; (4.23)

f (1) =
1

2
; f 0 (1) = 0; � (1) = 1; g (1)! 0;

h (1)! 1; at � = 1: (4.24)

with

� =
DB

DA

: (4.25)

From Equations (4:1) and (4:2), chemical species A� and B� cannot be analogous, but

both can be identical in volume. However, presuming that di¤usion species DB and DA

are identical (� = 1), we have

h (�) + g (�) = 1: (4.26)

Now by applying the above property, Equations (4:21) and (4:22) take the form

1

Sc
h00 (�)� �

2
h0 (�) + f (�)h0 (�)� k1h (�) (1� h (�))2 = 0; (4.27)

with boundary conditions

h0 (0) = k2h (0) ; at � = 0;

h (1)! 1; at � = 1; (4.28)

where dimensionless parameters are:

Sq =
cH2

2�f
; Ha =

�
�fB

2
0H

2

�f

� 1
2

; P r =
�fCp

kf
; Sc =

cH2

DA

;
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Re =
cH2

�f
; F = F �R =

Cbp
K
R; � =

�f
Kc
; Rd =

16��T 3m
3knfk�

;

Me =
Cf (Th � Tm)

L+ Cs (Tm � T0)
;  =

�c

2 (1� ct) ; k1 =
kca

2
0 (1� ct)
c

;

k2 =
ks
DA

H (1� ct)
1
2 ; �0 =

�
(1� �) + ��s

�f

�
; �w =

Th
Tm
: (4.29)

SFC and local Nul is classi�ed by:

Cfr =
�nf

�
@U
@Z
+ @W

@R

�
Z=h(t)

1
2
�nf

�
� cH

2(1�ct)
1
2

�2 ; Nu =
knfH

kf (Th � Tm)

"
(qr)w �

�
@T

@Z

�
Z=h(t)

#
: (4.30)

Using Equation (4:18), we obtain

H2

R2
RerCfr =

1

(1� �)2:5
�
(1� �) + � �s

�f

�f 00 (1) ;
p
1� ctNu = �

�
knf
kf

+Rd (1 + (�w � 1) � (1))3
�
�0 (1) ; (4.31)

with squeezed Reynolds number ReL

ReL =
�f RcH

p
1� ct

�f
: (4.32)

4.2 Results and discussion

In this section, the outcomes are depicted for temperature � (�) and concentration pro�les

h (�), axial f (�) and radial velocity f 0 (�) to discuss the heat transport and behavior of

�uid �ow for �ow parameters at distinct values. Impacts of appropriate parameters i:e:;

Hartmann number Ha, squeezing parameter Sq, the volume fraction coe¢ cient �, the

Schmidt number Sc, the homogeneous-heterogeneous parameters k1 and k2, the thermal

relaxation parameter , Prandtl number Pr, local inertia coe¢ cient F , porosity para-

meter �, radiation parameter Rd, Reynolds number Re, temperature ratio coe¢ cient �w,
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melting heat transit coe¢ cient Me are examined diagrammatically. For both SWCNTs

and MWCNTs, consequences are drawn. In Figures 4.2, 4.3(a) and 4.3(b) the velocity

and dimensionless temperature are examined for Hartmann number Ha. The retarding

impact of Hartmann number Ha on radial velocity f 0 (�) can be observed in Figure 4.2

when disks are driving afar from each other. At the middle of disks, velocity is greater

in case of Ha = 0. But, with increase in magnetic �eld, velocity decreases. This is since

the magnetic �eld generates a Lorentz force which resists the movement of �uid �ow.

Hence, velocity decreases at the middle of the disks. In Figures 4.3(a) and 4.3(b) the

dimensionless temperature is examined for Hartmann number Ha. The dimensionless

temperature augments for higher values of Hartmann number Ha. Physically, strength

of magnetic �eld increases due to increment in Ha which provides more heat in the �uid,

hence, temperature increases. Figure 4.4 illustrates that how positive and negative values

of squeezed number Sq a¤ect the velocity f 0 (�). Graph depicts that for both single and

multi-walled CNTs, velocity pro�le increases for contraction of disks i:e:; negative values

of Sq, whereas for positive values when upper and lower plates are driving afar from each

other, an opposite behavior can be observed. In case of contraction (Sq = �1;�2;�3; :::)

a squeezed force is experienced by the �uid which causes motion of the �uid with more

velocity. Hence, velocity augments. Whereas for Sq = 1; 2; 3; ::: when both disks move

far from each other, a gap is produced between the disks. The �uid moves in inverse

direction to �ll this gap; thus, velocity reduces in radial direction. In Figure 4.5 e¤ect

of squeezed number Sq is exhibited versus temperature pro�le. In case of contraction of

disks (Sq = �1;�2; ::: ), temperature pro�le establishes diminishing behavior whereas

opposite trend is seen when the disks are driving afar from each other (i:e:; Sq = 1; 2; ::).

An inverse impact of melting heat transfer parameterMe can be observed in Figures 4.6

and 4.7 for velocity f 0 (�) and temperature � (�) pro�les. Due to melting heat transmit

parameterMe molecular motion enhances from hot �uid toward cold �uid surface which

causes augmentation in velocity. In contrast with temperature �eld, as the convective

�ow causes heat transfer to the melting surface more promptly which causes the decrease
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in temperature � (�). Figures 4.8 and 4.9 depicts the e¤ect of local inertia coe¢ cient

F on velocity f 0 (�) and temperature � (�) of �uid �ow. It can be observed that local

inertia coe¢ cient F has an inverse in�uence on both �elds. Here, velocity f 0 (�) falls

whereas temperature � (�) augments. As porous media causes resistance in a �uid �ow

which results in the reduction in dimensionless velocity. In case of temperature �eld

� (�), a resistive force provides more energy to the �uid. Due to this, temperature � (�)

enhances. To perceive the impacts of Reynolds number Re on both �elds, Figures 4.10

(a) ; 4.10(b) and 4.11 are illustrated. For higher values of Re; temperature � (�) and

radial velocity f 0 (�) falls whereas axial velocity f (�) increases. The increment in Re in-

creases the axial velocity and reduces the radial velocity because when upper disk moves

(towards Z � axis) away from the lower plate, a gap is produced. To cover this free space,

�uid motion increases towards Z � axis (in axial direction) which leads to the increase

in axial velocity whereas decrease in radial velocity. The e¤ects of porosity parameter �

on radial velocity f 0 (�) are drawn in Figure 4.12. Velocity f 0 (�) falls for higher values

of �. Since, the porosity of porous media causes high resistivity to the �uid �ow; hence,

velocity f 0 (�) declines. Figure 4.13 is drawn to observe the behavior of temperature ratio

number �w on �uid temperature � (�). A retarding e¤ect of on dimensionless temperature

can be seen. Physically, augmentation in �w
�
�w =

Th
Tm

�
causes decrease in temperature

on melting surface. Du to this energy loss can be seen and hence temperature decreases.

Figures 4.14 and 4.15 show the impacts of nano-particle volume fraction � on radial ve-

locity f 0 (�) and temperature � (�). Since, an augmentation of nano-particles within base

�uid (water) leads to the higher thermal conductivity. Due to this, particles get close

to each other which results in the velocity reduction (Figure 4.14). On the other side,

in Figure 4.15 for ordinary �uid (i:e:; � = 0 , in the absence of volume proportion) the

temperature �eld is highest when the disks are driving afar from each other (i:e:; Sq = 1

) while an augmentation of volume proportion causes reduction in temperature of the

�uid. Figure 4.16 demonstrates the e¤ects of Rd on temperature � (�). The temperature

decreases for larger values of Rd. Here, the radiation parameter Rd
�
Rd =

16��T 3m
3knfk�

�
has
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direct relation with the melting temperature Tm. Melting temperature is increased with

the increment in Rd: As all energy from radiation is used in the melting process; thus,

temperature decreases. Physically, high radiation parameter values provide more radia-

tive heat energy into the system, causing augmentation in temperature. In Figure 4.17

the impacts of thermal relaxation coe¢ cient  are drawn. Higher values of  leads to the

augmentation in dimensionless temperature � (�). Figures 4.18 and 4.19 are sketched to

portray the e¤ects of Pr on velocity f 0 (�) and temperature � (�) �elds. Physically, an

augmentation in Pr leads to the weaker thermal di¤usivity which causes a retardation

e¤ect in temperature. Hence, velocity decreases. But the melting heat causes increase in

temperature for higher values of Pr. Figures 4.20-4.23 are plotted for both SWCNTs and

MWCNTs to deliberate the concentration �eld h (�). Figure 4.20 indicates that h (�)

decreases with the higher values of k1. The same outcome can be detected in Figure

4.21 for k2. It is deduced that concentration pro�le reduces eventually throughout HH

reactions as reactants are expended throughout both reactions. The e¤ects of Sc are

portrayed in Figure 4.22. Concentration pro�le h (�) is being reduced for increasing val-

ues of Sc. Since, Sc is the ratio of momentum to mass di¤usivity, greater indicates the

smaller mass di¤usivity which causes reduction in �uid concentration h (�). Figure 4.23

depicts the in�uence of melting heat transit coe¢ cient Me on concentration �eld h (�).

It can be seen that Me has a retarding impact on concentration pro�le h (�). In�uences

of melting parameter Me and squeezing number Sq on Nul are depicted in Figure 4.24.

It can be perceived that augmentation inMe and Sq causes an increment in Nul. Figure

4.25 is sketched to portray the impact of radiation coe¢ cient Rd and temperature ratio

coe¢ cient �w on Nul. Nul falls for greater values of Rd and �w. From Figure 4.26, a

retarding e¤ect of porosity parameter � against local inertia coe¢ cient F can be seen for
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Fig. 4:2 E¤ect of Ha on radial velocity f 0 (�)
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Fig. 4:3 (b) E¤ect of Ha on temperature distribution � (�) for
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Fig. 4:5 E¤ect of Sq on temperature distribution � (�)
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Fig. 4:7 E¤ect of Me on temperature distribution � (�)
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Fig. 4:11 E¤ect of Re on temperature distribution � (�)

54



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f'(
)

0

0.5

1

1.5

2

2.5

_______  MWCNTs  water
        SWCNTs  water

 = 1, 5, 9, 13

Sq = 1 . 0, Pr = 6 . 2,  = 0 . 01, Ha = 0 . 5, Me = 0 . 01,  = 0 . 5,
k1 = k 2 = 0 . 7, Sc = 1 . 0, F = 0 . 1, R d = 0 . 9, Re = 0 . 4, w = 1 . 1

Fig. 4:12 E¤ect of � on radial velocity f 0 (�)
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Fig. 4:14 E¤ect of � on radial velocity f 0 (�)
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Fig. 4:15 E¤ect of � on temperature distribution � (�)
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Fig. 4:18 E¤ect of Pr on radial velocity f 0(�)
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Fig. 4:20 E¤ect of k1 on concentration pro�le h (�)
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Fig. 4:21 E¤ect of k2 on concentration pro�le h (�)
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Fig. 4:22 E¤ect of Sc on concentration pro�le h (�)
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Fig. 4:23 E¤ect of Me on concentration pro�le h (�)
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Fig. 4:24 E¤ect of Me and Sq on Nul
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Chapter 5

Conclusions and future work

We studied two problems in this thesis. First one is review work while other is extended

work. Conclusions for both problems are as follows:

5.1 Chapter 3

� For squeezing parameter Sq, Nusselt number increases while Skin friction shows an

inverse e¤ect for both cases (i:e:; single and multi-walled CNTs).

� The velocity distribution augments for increment in suction parameter s:

� For both single and multi-walled CNTs, homo-heterogeneous reactions coe¢ cients

k1 and k2 has a retarding impact on concentration �eld h (�) :

� The dimensionless temperature � (�) increases for thermal relaxation parameter 

while exhibits an inverse e¤ect for volume fraction parameter �:

5.2 Chapter 4

� An augmentation in radiation parameter Rd exhibits reduction in dimensionless

temperature � (�).
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� Local inertia coe¢ cient F has an opposite impact on radial velocity f 0 (�) and

temperature �eld � (�) (reduction in velocity while augmentation in temperature).

� Melting parameter has a retarding e¤ect on temperature pro�le � (�) while radial

velocity f 0 (�) increases due to melting.

� The concentration �eld h (�) falls for an enhancing values of melting heat transfer

parameter Me.

� The porosity coe¢ cient � has a retarding in�uence on radial velocity f 0 (�).

� The �uid temperature � (�) decays for growing values of temperature ratio coe¤cient

�w.

� Skin friction coe¢ cient is reduced for large values of Porosity parameter � against

local inertia coe¢ cient F and Local Nusselt number increases with the higher melt-

ing e¤ects.

5.3 Future work

The present work may be extended to the followings:

� Any other non-Newtonian �uid along with appropriate boundary conditions.

� Bio-convective nano-�uid with microorganisms.

� Boundary conditions also be changed to second order slip.

� Flow over a curve surface with activation energy.
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