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Abstract 

 

The objective of this thesis is to carry out thermal slip analysis of a Casson fluid in a 

channel. The fluid is flowing in a channel under the influence of magnetic field and thermal 

radiation. The channel walls are slippery enough to analyze the slip effects. The flow is 

confined to a porous zone. We obtained dimensionless flow equations by introducing non-

dimensional parameters. The converted equations are solved analytically. The impact of 

various parameters on flow field are represented graphically. Variation of thermal and velocity 

slip parameters are closely observed. With an increase in thermal slip, temperature increases at 

one wall, while decreases at the other. Velocity at both walls increases by increasing the 

velocity slip.   



 

NOMENCLATURE 
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u, v velocity components 

       K porous permeability 
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       𝑇0 temperature at lower wall 
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Greek Letters 

 dynamic viscosity 

 kinematic viscosity 

 density of fluid 
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 thermal Radiation 

𝜙1 velocity Slip parameter at lower wall 
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Chapter 1 

 

Introduction 

This chapter focuses on basic definitions and equations pertaining to fluid flowing 

through a channel. It also focuses, on explaining the solution method to the flow problem under 

discussion. 

1.1 Definitions and concepts 

1.1.1 Fluid 

  A fluid is any substance that continuously deform under the action of shear stress, 

however small the shear stress is. Fluids are distinguished as, ideal and real fluids. Its daily life 

examples are water, honey, and blood etc. 

1.1.2 Real fluid 

Real fluids possess certain viscosity, they are categorized as Newtonian and Non-

Newtonian fluids. 

1.1.3 Ideal Fluid 

Ideal fluids are those fluids that posses negligible viscosity. 

1.1.4 Fluid mechanics 

Fluid mechanics is the branch of engineering that illustrates the behavior of fluids at 

rest or in motion. It has immense applications in different areas including engineering and 

technology, astrophysics, blood flow analysis, and many other fields. 

1.1.5 Non- Newtonian Fluids 

Non-Newtonian fluids do not obey Newton’s law of viscosity. Honey, shampoo, and 

tooth paste are some of the examples. The Non-Newtonian fluids have numerous applications 

in chemical industries, food and beverages, biological sciences, and many other areas. 
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1.1.6 Casson fluid 

A Casson fluid has infinite viscosity at zero stress, a stress below which no flow can 

occur and zero viscosity at infinite stress. Its daily life examples are tomato ketchup, soup, jelly 

and human blood. 

1.1.7 Channel flow 

Channel flow is a flow of liquid in a conduit. Fluid flowing through a channel has vast 

applications in solar equipment, nuclear reactors and civil engineering. 

1.1.8 Heat transfer 

Transfer of heat is associated with the change in temperature within a channel. This 

phenomena has immense significance in different areas including medical equipment, heating 

and cooling systems, power generation and chemical processing. Heat can be transferred 

through conduction, convection and radiation. 

1.1.9 Magnetohydrodynamics 

It discusses impact of magnetic field on fluid flowing through a channel. It has many 

applications in medical sciences, petroleum industry, nuclear technology and engineering. 

1.1.10 Thermal slip 

Due to thermal slip, shear stress at the wall due to slip, should be included to measure 

the heat flux. 

1.2 Basic laws 

The basic equations representing the flow problem are given below. 

1.2.1 Continuity Equation 

For compressible fluid, the equation of continuity is 

 
 𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑉) = 0.      (1.1) 

1.2.2 Momentum Equation 

The momentum equation is given as 



3 
 

𝜌
𝑑𝑉

𝑑𝑡
= −∇𝑝 + 𝜇∇2𝑉 + 𝜌𝑔.      (1.2) 

1.2.3 Energy Equation 

The energy equation is given as 

                𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
= 𝑘∇2𝑇 + 𝜇(

𝜕𝑢

𝜕𝑦
)2.       (1.3) 

1.3 Solution method 

Ordinary and Partial Differential equations are commonly used to model the problem 

under consideration. The equations may be linear or non-linear. We calculate dimensionless 

flow equations by introducing non-dimensional parameters. Then we solve these equations by 

any appropriate method. The most common methods employed are as follows. 

1.3.1 Analytical Methods 

The analytical methods include the following methods: 

 Perturbation technique 

 Homotopy analysis 

 Method of separation of variables 

1.3.2 Method of separation of variables 

The method used to solve the flow problem in our case is illustrated by the following 

example. The differential equation used in our example is non-homogeneous differential 

equation of order 3. First, we calculate the characteristic equation as explained in example. 

Example 

𝑑3𝑦

𝑑𝑥3
+

𝑑2𝑦

𝑑𝑥2
− 4

𝑑𝑦

𝑑𝑥
− 4𝑦 = 𝑒2𝑥𝐶𝑜𝑠3𝑥 

The characteristic equation is 

D3 + 𝐷2 − 4𝐷 − 4 = 0 

The roots of the equation are 𝐷 = 2, −2, −1 

Therefore, the complementary function is 
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                     𝑦

𝑐
= 𝑐1𝑒−𝑥 + 𝑐2𝑒−2𝑥 + 𝑐3𝑒2𝑥  

The Particular Integral is given by 

                                   𝑦𝑝 =
1

(𝐷−2)(𝐷+2)(𝐷+1)
𝑒2𝑥𝑐𝑜𝑠3𝑥  

= 𝑒2𝑥
1

𝐷(𝐷 + 4)(𝐷 + 3)
 𝑐𝑜𝑠3𝑥 

= 𝑒2𝑥
𝐶𝑜𝑠3𝑥

(𝐷3 + 7𝐷2 + 12𝐷)
 

=  𝑒2𝑥
𝐶𝑜𝑠3𝑥

−9𝐷 − 63 + 12𝐷
 

= 𝑒2𝑥
(𝐷 + 21) 𝐶𝑜𝑠3𝑥

3(𝐷2 − 441)
 

                           = 𝑒2𝑥
−1

(3)(450)
(−3𝑠𝑖𝑛3𝑥 + 21𝑐𝑜𝑠3𝑥) 

=
𝑒2𝑥

450
(𝑠𝑖𝑛3𝑥 − 7𝑐𝑜𝑠3𝑥). 
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Chapter 2 

 

Literature Review 

Several studies have been conducted related to flow of a CF in a channel. A CF is a NN 

fluid having infinite viscosity at zero stress, a stress below which no flow can occur and zero 

viscosity at infinite stress. It has numerous applications in different technologies and biological 

flows including respiratory system, circulatory system and blood flows. Casson [1] studied  

flow equations for the pigments oils suspensions. Kunnegowda et al. [2] discusses convective 

flow of CF in a micro-channel. Makinde et al. [3] discussed peristaltic flow of CF in a channel. 

Usman et al. [4] discussed Casson NN flow on inclined cylinder. Eegunjobi et al. [5] discussed 

flow of radiating CF having mixed convection. Hayat et al. [6] discussed flow of CF having 

nano particles. Tripathi et al. [7] studied flow of CF due to metachronal wave propulsion. 

Tasawar et al. [8] explained squeezing flow of a CF. Sarojamma et al. [9] analyzed CF flow in 

a vertical channel with stretched walls. 

           MHD flow has gained the attention of many researchers due to its immense applications 

in different fields including medical sciences, petroleum industry, nuclear technology and 

engineering. The flow of fluid under the influence of magnetic field is called MHD (magneto 

hydrodynamics) flow. Several researchers have worked in this area. Akbar et al. [10] discussed 

MHD slip flow in an asymmetric channel. He actually discusses peristaltic flow having carbon 

nanotubes and explained the behavior of flow under MHD. Saqib et al. [11] analyze blood flow 

treating it as CF under MHD. The fluid is flowing in horizontal cylindrical tube, the study 

reveals that the velocity of blood decreases under MHD. Saqib et al. [12] numerically 

investigated MHD blood flow in a stenosed arteries. The study reveals that increasing magnetic 

field up to 8 T doesn’t harm the arterial wall. Jawad et al. [13] discusses many solutions of 

MHD CF flow in a channel. Raza et al. [14] explained MHD NF flow in a rotating channel. 

The study reveals that fluid flow is controlled by changing the magnetic field. Das et al. [15] 

analyzed entropy generation in MHD flow. The study shows that entropy increases under 

MHD. 

          Many researchers have worked on fluid flowing through porous channel, since it has 

many applications in medical technology including dialysis of blood in artificial kidney and 

flow in oxygenators. It has also many engineering applications including design of filters and 
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gaseous diffusion problems. A. Sinha et al. [16] discussed MHD flow of a third order flow in 

a PC, it has important application in blood flow in a cardiovascular system when magnetic field 

is applied across.  Adesanya et al. [17] studied a flow of a reactive viscous fluid in a PC. The 

study reveals that porous medium with low permeability depletes the energy in a thermo fluid. 

Suripeddi Srinivas et al. [18] analyzed Pulsating flow of CF in a PC. The study reveals that by 

increasing Casson parameter the velocity increases. 

         The slip flow has many applications, so many researchers have worked in this area. 

Shashikumar et al. [19] focused on slip flow of CF in a micro channel. The study reveals that 

entropy increases by increasing radiation parameter. Tauseef et al. [20] worked on flow of NF 

having thermal slip in converging and diverging Channels. Hayat et al. [21] explains slip flow 

of NF in a channel. The study shows that velocity slip parameter decelerates the dimensionless 

velocity, but this is more prominent in the upper part of channel. Hong et al. [22] studied 

thermal slip boundary conditions. This study explains the reason of inclusion of shear work 

term. lbanez et al. [23] discussed NF thermal slip flow in a PC. Akbar et al. [24] discussed 

peristaltic slip flow of Williamson fluid. Hayat et al. [25] discusses impact of slip on peristaltic 

flow. Shojaeian et al. [26] discussed heat transfer in Newtonian and NN fluid with slip. The 

results indicate that increase in slip parameters decreases the entropy generation rate. 

Abbaszadeh et al. [27] explained NF flow having slip in a micro channel. The study depicts 

that increase in H increases the entropy. Eegunjobi et al. [28] analyzed impact of slip on entropy 

in a PC. Ibrahim et al. [29] discussed Casson NF flow having slip on stretching surface. 

Shashikumar et al. [30] explains the impact of second order slip on Casson NF flow. Uddin et 

al. [31] studied flow of radiative convective NF slip flow on a shrinking sheet. Ranjit et al. [32] 

studied micro-channel slip flow with different zeta potential. Malvandi et al. [33] studied 

thermophoresis on slip flow of NF. Raisi et al. [34] numerically investigated NF flow in a micro 

channel with both slip and no slip. Torabi et al. [35] discussed entropy in micro PC with slip. 

Shaw et al. [36] describes the NF flow on a stretched surface. Cheema et al. [37] numerically 

investigated squeezing flow with slip. This study highlights that by increasing temperature slip, 

the temperature of fluid at lower disc increases but reverse behavior is seen at upper disc. None 

of these studies focuses on thermal slip analysis of a CF. 

The focus of our study is on thermal slip analysis of a Casson fluid in a channel. 
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Chapter 3 

Flow of viscous fluid through a porous zone in a 

channel with slippery walls 

In this chapter we studied, MHD Oscillatory slip flow in a channel filled with porous medium with 

time dependent boundary conditions. The flow equations are non-dimensionalised and resolved into 

harmonic and non-harmonic parts. We calculate exact solution for temperature and velocity field and 

understand impact of various parameters on flow variables. This chapter is a review of paper by 

Makinde et al. [38] 

3.1 Mathematical analysis 

We consider two dimensional viscous, incompressible, and electrically conducting fluid 

flowing in a channel with non-uniform wall temperature. The fluid is under the impact of 

magnetic field and thermal radiation. The channel walls are located at y=0 and y=a and are 

slippery enough to analyze the slip effects. We choose a cartesian coordinate system presented 

in figure below. 

 

Fig. 3.1: Flow model of problem 

The velocity and temperature field are given as 

𝑉 =  (𝑢′(𝑦, 𝑡), 0, 0) ,             (3.1) 

𝑇 = 𝑇(𝑦, 𝑡).      (3.2) 
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In vector form, the flow equations are given as 

∇ ⋅ V = 0,       (3.3) 

𝑑𝑉

𝑑𝑡
= −

1

𝜌
𝛻𝑝 + 𝜈 𝛻2𝑉 +

1

𝜌
 (𝐽 𝐵),     (3.4) 

                                   𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
= 𝑘∇2𝑇 + 𝜇(

𝜕𝑢

𝜕𝑦
)2.      (3.5) 

Using the velocity and temperature field (3.1), (3.2) to (3.3) to (3.5), the flow governing 

equations for the problem are given as 

𝜕𝑢′

𝜕𝑡′ =
−1

𝜌
 
𝑑𝑃′

𝑑𝑥′ + ν 
∂2𝑢′

∂𝑦′2 −
ν 

𝐾
𝑢′ −

𝜎𝑒𝐵0
2

𝜌
𝑢′ + 𝑔𝛽(𝑇′ − 𝑇0),   (3.6) 

𝜕𝑇′

𝜕𝑡′
=

𝑘𝑓

𝜌𝑐𝑝

∂2𝑇′

∂𝑦′2 +
4𝛼2

𝜌𝑐𝑝
(𝑇′ − 𝑇0).      (3.7) 

The boundary conditions are 

𝑢′ = 𝜙1
𝑑𝑢′

𝑑𝑦′  , 𝑇′ =  𝑇0  at 𝑦′  = 0,  (3.8) 

𝑢′ = −𝜙2
𝑑𝑢′

𝑑𝑦′  , 𝑇′ =  𝑇1  at 𝑦′  = 𝑎.  (3.9) 

 We introduced the dimensionless parameters given as 

(𝑥, 𝑦) =
(𝑥′,𝑦′)

ℎ
  ,    𝑢 =

ℎ𝑢′

ν
 ,  𝑃 =

ℎ2𝑃′

𝜌ν2  ,   𝐺𝑟 =
𝑔𝛽(𝑇1−𝑇0)ℎ3

ν2  ,  

 𝑃𝑟 =
𝜌𝑐𝑝ν

k
 , 𝛾 =

𝜙1

ℎ
 ,𝜃 =

𝑇′−𝑇0

𝑇1−𝑇0
 ,  𝛿 =

4∝2ℎ2

𝜌𝑐𝑝ν
 ,𝜎 =

𝜙2

ℎ
  ,  

 𝐻2 =
𝜎𝑒𝐵0

2ℎ2

𝜌ν
 , Da =

𝐾

ℎ2 ,𝑠2 =
1

𝐷𝑎
 , 𝜆 = −

𝑑𝑃

𝑑𝑥
      (3.10) 

The dimensionless flow equations are 

𝑅𝑒
𝜕𝑢

𝜕𝑡
= 𝜆 +

∂2u

∂𝑦2
− (𝐻2 + 𝑆2)𝑢 + 𝐺𝑟 𝜃,      (3.11) 

𝑃𝑒
𝜕𝜃

𝜕𝑡
=

∂2𝜃

∂𝑦2
+ 𝑁2𝜃.      (3.12) 

The boundary conditions are 

𝑢 = 𝛾
𝑑𝑢

𝑑𝑦
 ,  𝜃 = 0  at 𝑦 = 0,     (3.13) 

𝑢 = −𝜎
𝑑𝑢

𝑑𝑦
 ,  𝜃 = 1  at 𝑦 = 1.     (3.14) 
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3.2 Analytical Procedure 

 Let us consider solution for pulsatile flow is of the form  

𝜆 = 𝜆0 + 𝜆1𝑒𝑖𝜔𝑡, 𝑢(𝑡, 𝑦) = 𝑅(𝑦) + 𝐺(𝑦)𝑒𝑖𝜔𝑡, 𝜃(𝑡, 𝑦) = 𝑃(𝑦) + 𝑄(𝑦)𝑒    𝑖𝜔𝑡.  (3.15) 

Putting values from Eq. (3.15) to Eq. (3.11) – (3.14), we have the following differential 

equations 

𝑅′′ (y) − (𝐻2 + 𝑠2)𝑅(𝑦) = −𝐺𝑟𝑃(𝑦) − 𝜆0,,      (3.16) 

𝐺′′ (y) − (𝐻2 + 𝑠2 + 𝑅𝑒 𝑖𝜔)𝐺(𝑦) = −𝐺𝑟𝑄 (𝑦) − 𝜆1,    (3.17) 

𝑃′′ (y) + 𝑁2𝑃(𝑦) = 0,      (3.18) 

𝑄′′ (y) + (𝑁2 −   𝑖𝜔𝑃𝑒)𝑄(𝑦) = 0.      (3.19) 

With the boundary conditions 

𝑅(0) = 𝛾𝑅′(0),  𝑅(1) = −𝜎𝑅′(1),     (3.20) 

𝐺(0) = 𝛾𝐺′(0), 𝐺(1) = −𝜎𝐺′(1),    (3.21) 

𝑃(0) = 0, 𝑃(1) = 1 ,    (3.22) 

𝑄(0) = 0, 𝑄(1) = 0.    (3.23) 

On solving Eq. (3.16)-(3.19) with the boundary conditions (3.20)-(3.23), we have 

𝑃(𝑦) =
𝑆𝑖𝑛(𝑁𝑦)

Sin (𝑁)
 ,      (3.24) 

𝑄(𝑦) = 0 ,      (3.25) 

𝑅(𝑦) = 𝐶1𝑒𝑚2𝑦 + 𝐶2𝑒−𝑚2𝑦 + 𝐽2 + 𝐽1𝑆𝑖𝑛(𝑁𝑦),      (3.26) 

𝐺(𝑦) = 𝐶3𝑒𝑚3𝑦 + 𝐶4𝑒−𝑚3𝑦 + 𝐽9.         (3.27) 

Where the values of constants are given in appendix 1. 

The rate of heat transfer at channel wall is given as 

  𝑁𝑢 = −
𝜕𝜃

𝜕𝑦
= −

𝑁𝑐𝑜𝑠(𝑁𝑦)

sin(𝑁)
.       (3.28) 
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While shear stress is given as 

𝜏 = −𝜇
𝜕𝑢

𝜕𝑦
= −  𝐴′(𝑦) − 𝐵′(𝑦)𝑒𝑖𝜔𝑡.      (3.29)  

3.3 Results and Discussion 

We have calculated exact solution of equation (3.16) to (3.19) with boundary conditions (3.20) 

to (3.23). Figure 3.1 indicates that velocity increases by increasing cold wall parameter. Figure 

3.2 indicates that, by increasing H velocity decreases which is result of Lorentz force at heated 

wall. Figure 3.3 shows that increase in S decrease velocity. Figure 3.4 indicates that velocity 

increases by increasing 𝜎. Moreover, by increasing heated wall slip, decreases velocity to 

minimal at cold wall and more at heated wall which causes flow reversal. 

 

Fig. 3.2: 𝑢(𝑦, 𝑡) with  𝛾. 
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Fig. 3.3:  𝑢(𝑦, 𝑡) with  𝐻. 

 

 

Fig. 3.4: 𝑢(𝑦, 𝑡) with  𝑠. 
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 Fig. 3.5: 𝑢(𝑦, 𝑡)with  𝜎. 
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Chapter 4 

Thermal slip analysis of a Casson fluid in a 

channel 

In this section we examined the flow of a Casson fluid in a channel with velocity and thermal 

slips at the walls. The flow is under the impact of magnetic field. The same technique as in 

previous chapter is employed to calculate the solution of the problem. The impact of various 

parameter along with thermal slip on flow variables are discussed. Section 4.1 is devoted to 

problem formulation, Section 4.2 is devoted to analytical solution, while in section 4.3 we have 

results and discussions. 

4.1 Problem formulation 

We consider two dimensional viscous, incompressible, and electrically conducting Casson 

fluid flowing in a channel. The fluid is under the impact of magnetic field and thermal radiation. 

The channel walls are at y=0 and y=a and are slippery enough to analyze the slip effects i.e. 

the velocity and thermal slip. We choose a Cartesian coordinate system presented in figure 

below. 

 

Fig. 4.1: Flow model of problem 

The velocity and temperature field are given as 

𝑉 =  (𝑢′(𝑦, 𝑡), 0, 0) ,             (4.1) 

𝑇 = 𝑇(𝑦, 𝑡).       (4.2) 
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The constitutive equation for Casson fluid is given as 

𝜏𝑖𝑗 = {

2(𝜇𝐵+𝑃𝑦)

2𝜋
𝑒𝑖𝑗  ,       𝜋  >  𝜋𝑐

2(𝜇𝐵+𝑃𝑦)

√2𝜋𝑐
𝑒𝑖𝑗  ,       𝜋 <  𝜋𝑐

         (4.3) 

where 𝜏𝑖𝑗 is (𝑖, 𝑗)𝑡ℎ component of stress tensor, 𝑒𝑖𝑗  is (𝑖, 𝑗)  component of deformation, 𝜋 =

 𝑒𝑖𝑗  𝑒𝑖𝑗 , 𝜋𝑐 is critical value of product for non-Newtonian model, 𝜇𝐵 is plastic dynamic 

viscosity and 𝑃𝑦 is yield stress. 

The flow governing equations for the problem are given: 

𝜕𝑢′

𝜕𝑡′
=

−1

𝜌
 
𝑑𝑝′

𝑑𝑥′
+ (1 +

1

𝛽1
 )

∂2𝑢′

∂𝑦′2 −
ν 

𝐾
𝑢′ −

𝜎𝑒𝐵0
2

𝜌
𝑢′ + 𝑔𝛽(𝑇′ − 𝑇0),   (4.4) 

𝜕𝑇′

𝜕𝑡′ =
𝑘𝑓

𝜌𝑐𝑝

∂2𝑇′

∂𝑦′2 +
4𝛼2

𝜌𝑐𝑝
(𝑇′ − 𝑇0).      (4.5) 

where  𝛽1  is a the Casson parameter. 

The boundary conditions are 

𝑢′ = 𝜙1 (1 +
1

𝛽1
 )

𝑑𝑢′

𝑑𝑦′  at   𝑦′  = 0,  (4.6) 

𝑢′ = −𝜙2 (1 +
1

𝛽1
 )

𝑑𝑢′

𝑑𝑦′  at   𝑦′  = 𝑎,  (4.7) 

𝑇′ = 𝑇0 + 𝛿1
𝜕𝑇′

𝜕𝑦′ 
  at    𝑦′  = 0,   (4.8) 

𝑇′ = 𝑇1 − 𝛿2
𝜕𝑇′

𝜕𝑦′ 
 at    𝑦′  = 𝑎.  (4.9) 

where 𝛿1 and 𝛿2 are thermal slip parameters. 

We introduced the dimensionless parameters given below: 

(𝑥, 𝑦) =
(𝑥′,𝑦′)

ℎ
  ,    𝑢 =

ℎ𝑢′

ν
 ,  𝑃 =

ℎ2𝑃′

𝜌ν2  ,   𝐺𝑟 =
𝑔𝛽(𝑇1−𝑇0)ℎ3

ν2  ,  𝑃𝑟 =
𝜌𝑐𝑝ν

k
 , 

  𝛾 =
𝜙1

ℎ
 ,𝜃 =

𝑇′−𝑇0

𝑇1−𝑇0
 ,  𝛿 =

4∝2ℎ2

𝜌𝑐𝑝ν
 ,𝜎 =

𝜙2

ℎ
  , 𝐻2 =

𝜎𝑒𝐵0
2ℎ2

𝜌ν
 , 𝐷𝑎 =

𝐾

ℎ2
 ,  

  𝑠2 =
1

𝐷𝑎
 , 𝜆 = −

𝑑𝑃

𝑑𝑥
, 𝛾1 =

𝛿1

ℎ
  ,  𝛾2 =

𝛿2

ℎ
.      (4.10) 
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The dimensionless parameters given in equation 4.10 are used to obtain dimensionless form of 

flow equations as 

𝑅𝑒
𝜕𝑢

𝜕𝑡
= 𝜆 + (1 +

1

𝛽1
 )

∂2u

∂𝑦2 − (𝐻2 + 𝑆2)𝑢 + 𝐺𝑟 𝜃,     (4.11)  

𝑃𝑒
𝜕𝜃

𝜕𝑡
=

∂2𝜃

∂𝑦2 + 𝑁2𝜃.      (4.12) 

The boundary conditions are 

𝑢 = 𝛾 (1 +
1

𝛽1
 )

𝑑𝑢

𝑑𝑦
 at   𝑦 = 0,   (4.13) 

𝑢 = −𝜎 (1 +
1

𝛽1
 )

𝑑𝑢

𝑑𝑦
 at   𝑦 = 1,   (4.14) 

𝜃 = 𝛾1
𝜕𝜃

𝜕𝑦
 at   𝑦 = 0,   (4.15) 

𝜃 = 1 − 𝛾2
𝜕𝜃  

𝜕𝑦
 at   𝑦 = 1.   (4.16) 

4.2 Analytical Procedure 

Let us consider solution for the problem is of the form 

𝜆 = 𝜆0 + 𝜆1𝑒𝑖𝜔𝑡,      

u(𝑡, 𝑦) = 𝑅(𝑦) + 𝐺(𝑦)𝑒𝑖𝜔𝑡, 

𝜃(𝑡, 𝑦) = 𝑃(𝑦) + 𝑄(𝑦)𝑒    𝑖𝜔𝑡.      (4.17) 

Using Eq. (4.17) in Eq. (4.11) – (4.16), we obtained the following equations: 

𝑅′′ (y) (1 +
1

𝛽1
 ) − (𝐻2 + 𝑠2)𝑅(𝑦) = −𝐺𝑟𝑃(𝑦) − 𝜆0,    (4.18)  

𝐺′′(y) (1 +
1

𝛽1
 ) − (𝐻2 + 𝑠2 + 𝑅𝑒 𝑖𝜔)𝐺(𝑦) = −𝐺𝑟𝑄 (𝑦) − 𝜆1,   (4.19) 

𝑃′′(y) + 𝑁2𝑃(𝑦) = 0,      (4.20) 

𝑄′′(y) + (𝑁2 −   𝑖𝜔𝑃𝑒)𝑄(𝑦) = 0.      (4.21) 

with the boundary conditions 

𝑅(0) = 𝛾 (1 +
1

𝛽1
 ) 𝑅′(0) ,  𝑅(1) = −𝜎 (1 +

1

𝛽1
 ) 𝑅′(1),   (4.22) 
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𝐺(0) = 𝛾 (1 +
1

𝛽1
 ) 𝐺′(0) ,   𝐺(1) = −𝜎 (1 +

1

𝛽1
 ) 𝐺′(1),   (4.23) 

𝑃(0) = 𝛾1𝑃′(0), 𝑃(1) = 1 − 𝛾2𝑃′(1),    (4.24) 

𝑄(0) = 𝛾1𝑄′(0), 𝑄(1) = −𝛾2𝑄′(1).    (4.25) 

On solving Eq. (4.18)-(4.21) with boundary conditions (4.22)-(4.25), we get 

𝑅(𝑦) =
𝛾1𝑁𝐶𝑜𝑠(𝑁𝑦)+𝑆𝑖𝑛(𝑁𝑦)

(𝛾1+𝛾2)𝑁Cos(𝑁)+(1−𝛾1𝛾2𝑁2)Sin (𝑁)
,      (4.26) 

𝐺(𝑦) = 0,      (4.27) 

𝑃(𝑦) = 𝐶1𝑒𝑚1𝑦 + 𝐶2𝑒−𝑚1𝑦 + 𝑛1 + 𝑛2𝐶𝑜𝑠(𝑁𝑦) + 𝑛3𝑆𝑖𝑛(𝑁𝑦),   (4.28) 

𝑄(𝑦) = 𝐶3𝑒𝑚3𝑦 + 𝐶4𝑒−𝑚3𝑦 + 𝑛4.       (4.29) 

where the values of constants are given in appendix 2. 

The rate of heat transfer at channel wall is given as 

  𝑁𝑢 = −
𝜕𝜃

𝜕𝑦
=

−𝛾1𝑁2𝑠𝑖𝑛(𝑁𝑦)+𝑁𝑐𝑜𝑠(𝑁𝑦)

(𝛾1+𝛾2)𝑁Cos(𝑁)+(1−𝛾1𝛾2𝑁2)Sin (𝑁)
.      (4.30) 

While shear stress is given as 

𝜏 = −𝜇
𝜕𝑢

𝜕𝑦
= −  𝐴′(𝑦) − 𝐵′(𝑦)𝑒𝑖𝜔𝑡.      (4.31) 

4.3 Results and Discussion 

We have calculated exact solution of equation (4.17) to (4.20) with boundary conditions (4.21) 

to (4.24). Figure 4.1 indicates that velocity increases with an increase in Casson parameter. 

However an increase in 𝛽1 indefinitely reduces to review problem. Figure 4.2 indicates that 

velocity increases by increasing Grashof number. An increase in Gr means increase in 

temperature gradient which leads to velocity increase. Figure 4.3 and 4.7 indicates that velocity 

increases by increasing slip parameters 𝛾 and 𝜎. It is because of the reason that friction force 

near the wall decreases, due to slip and hence resistance to the fluid motion decreases and 

finally velocity increases. Figure 4.4 shows that increase in H decreases velocity which is a 

result of resistive Lorentz force due to effect of magnetic field on electrically conducting 

Casson fluid flowing in a channel. Figure 4.5 shows that increase in s decreases velocity, 
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because an increase in Darcy number increases porous permeability and hence velocity 

decreases. Figure 4.7 shows that increase in 𝛾1 increases the temperature. Figure 4.8 shows 

that increase in 𝛾2 decreases the temperature. 

 

 

Fig. 4.2:  𝑢(𝑦, 𝑡)  with  𝛽1 
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Fig. 4.3:  𝑢(𝑦, 𝑡)  with  𝐺𝑟. 

 

 

Fig. 4.4: 𝑢(𝑦, 𝑡)  with  𝜎. 
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.Fig. 4.5:  𝑢(𝑦, 𝑡)  with  𝐻. 

 

 

Fig. 4.6:  𝑢(𝑦, 𝑡) with  𝑠. 
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Fig. 4.7: 𝑢(𝑦, 𝑡) with  𝛾. 

 

 

Fig. 4.8: 𝜃(𝑦, 𝑡) with  𝛾1. 
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Fig. 4.9: 𝜃(𝑦, 𝑡)  with  𝛾2 . 
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Chapter 5 

Conclusions 

 

5.1 Chapter 3 

In this chapter we discussed MHD Oscillatory slip flow and heat transfer in a channel filled 

with porous media. We have the following conclusions. 

 The velocity increases by increasing cold wall parameter. 

 By increasing Hartmann’s number velocity decreases which is result of Lorentz force 

resistance. However, velocity increases at heated wall due to flow reversal because of 

the wall slip 

 With an increase in Darcy number, which increases porous permeability, fluid velocity 

decreases. 

 With an increase in 𝜎 (i.e. heated wall parameter) velocity decrease at cold wall while 

more decrease is seen at heated wall which causes flow reversal. 

5.2 Chapter 4 

In this chapter we worked on thermal slip analysis of a Casson fluid in a channel. We have 

drawn the following conclusions. 

 The velocity increases by increasing Casson parameter. 

 The velocity increases with an increase in Grashof number. 

 The velocity increases by increasing heated wall parameter. 

 An increase in Hartmann’s number decreases velocity. 

 With an increase in Darcy number, which increases porous permeability fluid velocity 

decreases. 

 The velocity increases by increasing cold wall parameter. 

 An increase in 𝛾1 increases the temperature while it decreases with 𝛾2. 

  



23 
 

5.3 Comparison of results in chapter 3 and 4 

Parameter (increasing value)  Chapter 3 Chapter 4 

𝜸   (Cold wall parameter) Velocity increases Velocity increases 

𝝈  (Heated wall parameter)  Velocity decreases Velocity increases 

H  (Hartmann’s number) Velocity decreases Velocity decreases 

S  (Darcy Number) Velocity decreases Velocity decreases 

𝜷1  ( Casson parameter)  Velocity increases, increasing    𝛽1 

indefinitely reduces to review 

problem i.e. chapter 3 

Gr  (Grashof Number) Not applicable Velocity increases 

𝜸1 (Thermal slip at lower wall) Not applicable Temperature increases 

𝜸𝟐 (Thermal slip at lower wall) Not applicable Temperature decreases 
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Appendix 1 

𝑚1
2 = 𝑁2 −  𝑃𝑒 𝑖𝜔 ,   𝑚2

2 = 𝐻2 + 𝑠2 ,   𝑚3
2 = 𝐻2 + 𝑠2 + 𝑅𝑒 𝑖𝜔 , 

𝐶1 =
𝐽5𝐽7−𝐽4𝐽8

𝐽4𝐽6−𝐽3𝐽7
 , 𝐶2 =

𝐽3𝐽8−𝐽5𝐽6

𝐽4𝐽6−𝐽3𝐽7
 , 𝐶3 =

𝐽13𝐽9−𝐽11𝐽9

𝐽11𝐽12−𝐽10𝐽13
 ,  𝐶4 =

𝐽9𝐽10−𝐽9𝐽12

𝐽11𝐽12−𝐽10𝐽13
 ,  

𝐽1 =
𝐺𝑟

 (𝑚1
2+𝑁2)𝑆𝑖𝑛(𝑁)

 , 𝐽2 =
𝜆0

𝑚2
2
, 𝐽3 = 1 − 𝛾𝑚2,   𝐽4 = 1 + 𝛾𝑚2,  

𝐽5 = 𝐽2 − 𝛾𝐽1𝑁, 𝐽6 = 1 + 𝜎𝑚2𝑒𝑚2, 𝐽7 = 1 − 𝜎𝑚2𝑒−𝑚2, 

𝐽8 = 𝐽1 𝑁 𝜎 𝐶𝑜𝑠 (𝑁) + 𝐽1  𝑆𝑖𝑛 (𝑁) + 𝐽2  ,𝐽9 =
𝜆1

𝑚3
2
 , 𝐽10 = 1 − 𝛾𝑚3 , 

𝐽11 = 1 − 𝛾𝑚3 , 𝐽12 = 1 + 𝜎𝑚3𝑒𝑚3, 𝐽13 = 1 − 𝜎𝑚3𝑒−𝑚3,  
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Appendix 2 

𝑚1
2 =

𝛽1

1+𝛽1
(𝐻2 + 𝑠2),  𝑚3

2 =
𝛽1

1+𝛽1
(𝐻2 + 𝑠2 + 𝑅𝑒 𝑖𝜔), 

𝑚5
2 = 𝑁2 −  𝑃𝑒 𝑖𝜔 , 𝑛1 = (

𝛽1

1+𝛽1
)

𝜆0

𝑚1
2
, 

𝑛2 = (
𝛽1

1+𝛽1
)

𝐺𝑟 𝑁 𝛾1

[(𝛾1+𝛾2)NCos(N)+(1−𝛾1𝛾2𝑁2) Sin(𝑁)](𝑁2+𝑚1
2)

  , 

𝑛3 = (
𝛽1

1+𝛽1
)

𝐺𝑟  

[(𝛾1+𝛾2)NCos(N)+(1−𝛾1𝛾2𝑁2) Sin(𝑁)](𝑁2+𝑚1
2)

 , 

𝑛4 = (
𝛽1

1+𝛽1
)

𝜆1

𝑚3
2
 ,  

𝐶1 = −
𝑄3 𝑄5−𝑄2 𝑄6

−𝑄2 𝑄4+𝑄1 𝑄5
,  𝐶2 = −

𝑄3 𝑄4−𝑄1 𝑄6

𝑄2𝑄4−𝑄1 𝑄5
, 

𝐶3 = −
−𝑄12 𝑄8+𝑄11 𝑄9

𝑄11 𝑄7−𝑄10 𝑄8
,  𝐶4 = −

𝑄12 𝑄7−𝑄10 𝑄9

𝑄11 𝑄7−𝑄10 𝑄8
, 

𝑄1=1 − 𝑚1𝛾 (
β1+1

β1
),    𝑄2=1 + 𝑚1𝛾 (

β1+1

β1
), 

𝑄3=−𝑛1 − 𝑛2 + 𝛾 (
β1+1

β1
) 𝑛3𝑁,   𝑄4=𝑒𝑚1(1 + 𝜎(

β1+1

β1
)𝑚1), 

𝑄5=𝑒−𝑚1(1 − 𝜎(
β1+1

β1
)𝑚1),  

𝑄6=−𝑛1 − 𝑛2Cos[𝑁] − 𝑛3Sin[𝑁] − 𝜎 (
β1+1

β1
) 𝑛3𝑁Cos[𝑁] + 𝑛2𝑁Sin[𝑁]𝜎 (

β1+1

β1
),  

𝑄7=1 − 𝛾(
β1+1

β1
)𝑚3,  

𝑄8=1 + 𝛾 (
β1+1

β1
) 𝑚3,  

𝑄9= -𝑛4, 

𝑄10=𝑒𝑚3 (1 + 𝜎 (
β1+1

β1
) 𝑚3), 𝑄11=𝑒−𝑚3 (1 − 𝜎 (

β1+1

β1
) 𝑚3), 

𝑄12= -𝑛4 
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