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Abstract

This mathematical analysis refined, the transfer of melting heat in the flow
of Carreau nanoliquid via a stretched cylinder is examined. Moreover, the
phenomenon of flow is conducted in the existence of Darcy-Farchheimer
porous medium. The nanofluid flow is also discussed in the existence of
gyrotactic microorganisms. The governing equations of boundary layer are
transformed into non-linear ODEs after applying appropriate similarity
transformation. The resulting system of linear equations is addressed by
bvp4c built-in function of MATLAB scheme. The outcomes of the
prominent parameters versus emerging profiles are portrayed and

conversed in the light of their physical significance.
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NOMENCLATURE

Coordinate axis

X, T
u,v Velocity components

U Dynamic viscosity

F Components of force

A Components of area

z; Stress

Y Density of fluid

m, Apparent viscosity

Vv Velocity component along ‘r’ directions

K, Consistency index /Inertial permeability

m Mass of substance

\Y Volume

P Pressure

a Thermal diffusivity

K Thermal conductivity

C, Specific heat capacity

C, Heat capacity of solid surface

Q Heat transferred of a ratio




AT Temperature difference
T Cauchy stress tensor
I Identity tensor
A First Rivlin-Ericksen tensor
A Zero shear rate viscosity
L, Infinite shear rate viscosity
n Power law index
r Material time constant
4 Share rate
IT Second invariant strain tensor
vV, Forchheimer velocity
Pr Prandtl number
v Momentum diffusivity
D, Brownian diffusion coefficient
Le Lewis number
T, Constant temperature
T, Temperature outside the plate / Free stream temperature
Nb Brownian motion parameter
Nt Thermophoresis parameter
D; Thermophoresis coefficient
We Weissenberg number




Fr Darcy parameter

C. Concentration in the free stream

i Non-Darcian coefficient

K” Permeability of porous medium

U, Reference velocity

I Characteristics length

Pe Peclet number
Wc Constant maximum cell swimming speed
Dn Diffusivity of the microorganism

A Porosity Parameter

T, Melting temperature

T, Solid temperature

Ty Shear stress

U, Axial route having velocity

C, Skin friction

N, Nusselt number

Sh, Sherwood number

A\ Density number of motile microorganisms
a., Surface heat flux

b Body force

Vi




q Heat flow
d7T Temperature gradient
dx
du Velocity gradient
dy
d Material time derivative
dt
o Stephen - Boltzmann’s constant
h Coefficient heat transfer
T, System temperature
e Emissivity of the system
7’ Curvature parameter
M Melting parameter

Vii




Contents

1 Introduction and literature review 4
1.1 Introduction . . . . . . . . . . . e e 4
1.2 Literature review . . . . . . . . . . e 7

2 Basic preliminaries and laws 10
2.1 Fluid . . . . o e 10
2.2 Fluid mechanics . . . . . . . . .. . 10

2.2.1 Fluidstatics. . . . . . . . . e 10
2.2.2 Fluid dynamics . . . . . . . . .. 10
2.3 SEress . ..o e 11
2.4 Typesofstress . . . . . . . e 11
2.4.1 Shear Stress . . . . . . . o e e 11
2.4.2 Normal stress . . . . . . . . . . e 11
2.5 Flow . . . . o 11
2.6 Typesofflow . . . . . . . . . . . e 11
2.6.1 Laminar flow . . . . . . . . .. 11
2.6.2 Turbulent flow . . . . . . . .. ... 12
2.7 Viscosity . . . . . . . . e 12
2.7.1 Dynamic viscosity . . . . . . . . .. 12
2.7.2 Kinematic viscosity . . . . . . . ..o 12
2.8 Newton viscosity law . . . . . . . . . . 12
2.9 Viscous Fluids . . . . . . . . . . e 13



2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

2.24

2.9.1 Newtonian fluids . . . . . . . . . .. 13

Non-Newtonian fluids . . . . . . . .. ... . 13
Density . . . . oL 14
Pressure . . . . .. 14
Thermal diffusivity . . . . . . . . . .. 14
Thermal conductivity . . . . . . . . ... 15
Porous surface . . . . . ..o 15
Porosity . . . . .. 15
Permeability . . . . ... 15
Convective boundary condition . . . . . .. . . . ... .. ... ... 15
Nanofluid . . . . . . . . . e 16
Carreau fluid model . . . . . . . .. 16
Darcy law . . . . . . o 17
Darcy Forchheimer Law . . . . . . . . . . . . . . . 17
Dimensionless numbers . . . . . . ... L L L L 17
2.23.1 Prandtl number. . . . . . . . ... 17
2.23.2 Lewisnumber . . . . . . . .. 18
2.23.3 Thermophoresis parameter . . . . . . . . . . .. ... ... .. ... ... 18
2.23.4 Brownian motion parameter . . . . . .. . ... Lo Lo 18
2.23.5 Weissenberg number . . . . . . . ..o 19
2.23.6 Peclet number . . .. .. ... 19
2.23.7 Darcy parameter . . . . . . . . ... oo e 19
2.23.8 Porosity parameter . . . . . . . ... 19
2.23.9 Skin friction cofficient . . . . . . . ... L o L 20
2.23.10Nusselt number . . . . . . ... 20
2.23.11Sherwood number . . . . . . . ... 20
2.23.12Reynolds number . . . . . ... Lo 20
Fundamental laws . . . . . . .. .. 21
2.24.1 Law of mass conservation . . . . . . . .. .. ... ... .. 21
2.24.2 Momentum conservation law . . . . . .. .. Lo Lo 22



2.24.3 Energy conservation law . . . . . .. ... Lo oo Lo 22

2.24.4 Law of conservation of concentration . . . . . . ... ... ... . ... .. 23
2.25 Magnetohydrodynamics . . . . . . . . . ... L 23
2.26 Heat flow mechanism . . . . . . . . . . . ... . 23
2.26.1 Conduction . . . . . . . . . . . e 23
2.26.2 Radiation . . . . . . . . ... 24
2.26.3 Convection . . . . . . . . e 24

Characteristics of melting heat transfer during flow of Carreau fluid induced

by a stretching cylinder 25
3.1 Mathematical modeling: . . . . . . . . ... L 25
3.2 Results and deliberation . . . . . .. . ... o 28

Melting heat transfer in the flow of Carreau nanofluid past a stretching

cylinder in a Darcy-Farchheimer porous medium 34
4.1 Mathematical modeling: . . . . . . . . ... 34
4.2 Results and deliberation . . . . . . . ... Lo oo 37
Concluding remarks and Future work 51
5.1 Chapter 3 . . . . . . . e 51
5.2 Chapter 4 . . . . . . . . . e e 52
5.3 Future work . . . . . ... 52



Chapter 1

Introduction and literature review

1.1 Introduction

Modern enhancements in industrial applications necessitated a broad variety of non-Newtonian
liquids which are derived from the viscous liquids. All those liquids in which the rate of shear
is changed and the shear stress remain unchanged, are considered to be non-Newtonian liquids.
Hence, the change in the shear strength alter the viscosity of these liquids, which is also known
the “apparent viscosity” of the liquid. The study of non-Newtonian liquids have significant
part in various engineering and industrial processes, for example, paper production, petroleum
drilling, glass blowing, plastic sheet formation, the expulsion of polymeric liquids and melts,
biological solutions, asphalts, paints and so forth. These liquids are expressed as materials that
do not show the direct or linear correspondence between shear stress and velocity gradient. For
this class of liquids, an infinite possible rheological relationships exist. Rheological character-
istics of non-Newtonian liquids differ a lot in comparison to the Newtonian liquids. No doubt,
the rheological characteristics of all the non-Newtonian liquids can’t be expressed by a single
constitutive equation exhibiting rates of shear and rate of strain. As for non-Newtonian liquids,
there is always a non-linear relationship among the stress and the rate of strain. The governing
constitutive equations in non-Newtonian liquids are much complicated, nonlinear and of more
higher order in constrast to the Newtonian liquids. These liquids can conveniently be catego-
rized into three main classes i) Liquids for that the shear rate at any spot is calculated only

via the variation of the shear stress at that spot, these liquids are commonly known the "time



independent", "inelastic", "purely viscous" or "generlized Newtonian liquids". ii) Much com-
plicated liquids for that the relationship among the shear stress and the rate of shear depends
on the timmings of shearing and their kinematic history, known as "time dependent liquids".
iii) Materials exhibiting the properties of one as well as the other ideal liquids and elastic
solids and displaying partial elastic recovery and later the deformation they are categorizesd as
"Visco-elastic liquids".

The classifying scheme of these liquids is arbitrary among most real materials which exhibit
a mixture of two or even all three types of non-Newtonian properties. This assumption is too
extensive to be tackled in the starting phases of the development. So, a particular rheological
model will be selected for use to start with, and application of the outcoming development to
liquids departing from the assumed model will be considered eventually. A considerable work
has been completed in the system of non-Newtonian liquids and a lot of more is required in
an assortment of non-Newtonian liquid models. Various self-consistent and approximate non-
Newtonian rheological models are proposed over the past decades as no individual one can
encompass assorted properties of all the liquids. These models are restricted into differential,
rate and integral types. Because of related simplicity of the Power law model it has been
concentrated by various scientists all together to explore non-Newtonian impacts. In any case,
the law of Power model has it restrictions. In consideration of the impediments of the Power
law model, particularly for extremely up and down rates of shear, here we assume another
viscosity model which is known as Carreau liquid model. Carreau liquid is a kind of generalized
Newtonian liquid where viscosity relies on the rate of shear. The Carreau model is valuable in
illustrating the behavior of flow of liquids in the higher rate of shear.

The nanoliquid is a liquid that contains nanometer sized material particles, called nanopar-
ticles. The nano particles used in nanoliquids are usualy made up of metals, oxides, or carbon
nanotubes. The nanofluids are different from other ordinary base fluids because they are pre-
pared by inserting nanoparticles in the base fluids. Simple base liquids are like water, ethylene
glycol and oil. These particles are inserted into base liquids to increase the thermal conduc-
tivity and phenomenon of heat transfer. Nanoliquid is an ideal applicant to get position of
working liquid and having thermal conductivity greater than the base liquid and a size of 1 to

100 nm. These substances are used to get the significant improvement in the thermal prop-



erties at lower concentrations. Nanoliquids have the potential to enhance the rates of heat
transfer significantly in a various of zones like nuclear reactors, industrial cooling applications,
transportation industry, heat exchangers, micro-electromechanical systems, fiber and granular
insulation, chemical catalytic reactors, packed flow of blood in the cardiovascular system en-
gaging the Navier—Stokes equations. The advanced characteristics of naofluid has important
value in many fields as transportation, pharmaceutical processes, microelectronics, power gen-
eration, micro manufacturing, thermal therapy for air-conditioning, cancer surgery, chemical
sectors and metallurgical processes etc. In vehicles, the worth of nanofluids as coolants takes
into consideration for good size and consequently this consumes smaller energy for controlling
the road resistance. Many current researchers are working to grow efficient solar collectors with
up absorpation of solar radiations.

Compared to base liquids, nano liquids are heat transfer liquids of next generation because
they provide exciting new posiibilities to improve heat transfer efficiency. In 1856, Henri Darcy
(a French civil engineer) in his publication presented the quantitative theory of the flow of
homogenous fluids through spongy media.and studied the characteristics of sand filters for
water filtering in the city of France. After these studies and experiments, he came forward with
the result that "viscous forces dominate over inertial forces in porous media" which came to be

known as Darcy Law, globally. Darcy Law model are the following characteristics:

e Darcy law considers laminar or viscous flow (creep velocity); inertia term (the fluid den-
sity) do not involve in it. This depicts that the inertia forces in the liquid are being

ignored which was not the case in classical Navier-Stokes equation theory.

e Darcy law has this inherent supposition that in a poriferous media a vast surface area is
subject to liquid flow, as a result the viscosity will significantly surpass acceleration forces

in the liquid unless turbulence is experienced.

With vast utilization in grain stockpiling, petroleum technology, frameworks of ground water
and oil assests, this law of immense importance in the field of Fluid Mechanics. Places where the
porous media have greater rates of flow due to non-uniformity, such as close to the wall, Darcy
law is not applicable. Keeping this in mind, one has to become mindful of the non-Darcian

influence by porous media in the flow analysis and rate of heat transfer. A Dutch man named



Philippe Forcchheimer, in 1901, while flowing gas thorough coal beds revealed that the relation
between rate of flow and potential gradient is non-linear at comparatively greater velocity, and
that non-linearity witnesses surge with increase in flow rate. Forcchheimer at the time was of
view that this non-linear increase was as a outcome of turbulence in the fluid flow but it is
now renowned that this non-linearity is due to inertial effects in the spongy media. However
for increased flow rate, the methodology of Forchheimer expression is deliberated. Forchheimer
resulted in an advanced relation known Darcy Forchheimer expression, by letting a quadratic
term in equation of motion. This term that was always there for a large Reynolds number was
called as Forcheimer term by Muskat in 1946. Physically, quadratic drag for spongy media
in momentum equation occurs for more filtration velocities, cause to solid obstructs this drag
is formed and becomes identical with drag at the surface by resistance. There are numerous
examples of the possible situations of practical applications where the inertial effects can be
important and Darcy’s law is no longer exist. For these situations, one may refer liquid flows

in column reactors, in aquifers and in filters etc.

1.2 Literature review

With the efficient progress of recent science and technology, the nano-materials as a type of new
materials has got exclusive attention by various research workers. A liquid holding nanometer-
sized particles is known as nanofluid. The nanofluids consist of nano particles generally along
with carbon nanotubes, metals or oxides. Nanoliquids are dstinct from other ordinary base
liquids because they are analyzed by diffusing nanoparticles in the base liquids. Oil, water
ethylene and glycol are the simply used base liquids. The material particles are inserted into
the base fluids to boost their heat transfer performance and thermal conductivity. Such liquids
are mostly used in transport of electronics, fiber technology, transportation, textile and energy
production. Furthermore, the magneto-nanoliquid has significant importance in making of loud
speakers, blood analysis and cancer treatment. Nanoliquid is an ideal applicant to get the title
of the working liquid. Many researchers are working on nano-liquids with different heat transit
properties. Recently, Sheikholeslami et al. [1] examined the effect of rotating materials into the

hydraulic thermal performance of a flow of nanoliquid via a tube. Ramzan et al. [2] discussed the



magneto radiative Micropolar nanoliquid flow with binary chemical species, activation energy
and double stratification under the buoyancy effects. Yang et al. [3] worked on the analysis
of a newly combined application of nanoliquids in heat recovery and air purification. Various
studies have been conducted to expose the various aspects of the nanliquid in [4-15].

Viscoelastic fluids have accomplished exclusive enthusiasm by current researchers in per-
spective of more extensive mechanical and engineering applications. The investigations on
these liquids are extensively increased during the last some decades because of their practical
significance in technology and industrial processes. Most of the substances in our regular life
include apple sauce, sugar solution, muds, chyme, soaps, emulsion, shampoos, blood at low
shear rates. The analysis of non-Newtonian materials has engrossed continuous consideration
of recent investigators. The influence of non-Newtonian fuids in the industry is more imperious
in comparison to Newtonian liquids owing to their utility in varied applications [16]. Examples
of non-Newtonian liquids may embrace coal water, paints, asphalt, toothpaste, and jellies etc.
[17]. In literature, there is no individual relationship that characterizes all the properties of
non-Newtonian liquids. Thus various models of non-Newtonian liquids have been suggested.
The Carreau nanoliquid is the mixture of the Newtonian and Power-law models. This liquid
model is able of describing both shear thickening and shear thinning procedure. The remarkable
discussions with respect to Carreau liquid are those of Uhlherr and Chhabra [18] and Bush and
Phan-Thein [19] wherein Carreau fluid flow model around the spheres are discussed. After that,
Hsu and Yeh [20] analyzed the drag on two coaxial rigid spheres that are moving along the axis
of cylinder filled with Carreau liquid. In view of such importance of Carreau nanoliquid, Waqas
et al. [21] studied the flow of Carreau nanoliquid subject to heat generation the analysis and
modeling for magnetic dipole effect in non-linear thermally radiating. Numerical investigation
of momentum and heat transfer of magnetohydrodynamic Carreau nanoliquid via an exponen-
tially stretched plate with internal heat source/sink and radiation is explored by Yousif et al.
[22]. Nonlinear and radiation impact on MHD Carreau nanoliquid flow via a radially stretched
surface along with zero mass flux at the surface analyzad by Lu et al. [23]. In prespective of
its clarity, the remarkable work of current researchers, see few studies [24-35].

The object with stomata is titled as porous medium and is customarily called by some

liquid. An excellent number of features including oil production, water flow in reservoirs and



catalytic vessels etc. The concept of the liquid flow past a permeable media was first given
by a French, Henry Darcy, [36] in 1856. But this approach couldn’t be so suitable owing to
its limitations of lower porosity and smaller velocity. Afterwards, Philippes Forchheimer [37]
modify the momentum equation with the extension of the multiple velocity term into the Dar-
cian velocity to subject the obvious deficiency. This title was later named by Muskat [38] as
“Forchheimer term” which is true for high Reynolds number. Mondal and Pal [39] considered
the Darcy-Forchheimer model over porous media past the linearly extended surface and de-
ducted that concentration distribution is a diminishing function of electricfield parameter. The
hydromagnetic flow of nanofliquid past a Darcy-Forchheimer porous media with the influence
of second order boundary condition is determined numerically by Ganesh et al. [40]. Similarly,
Alshomrani et al. [41] assumed the 3D Darcy-Forchheimer model along with carbon nanotubes
and the homogeneous and the heterogeneous reactions. Theviscous flow of nanoliquids with
Darcy-Forchheimer impact via a twisted surface is discussed by Saif et al. [42]. Seth et al. [43]
analyzed numerically the flow of carbon nanotubes over a permeable Darcy-Forchheimer media

in a rotating body and many therein [44-48].



Chapter 2

Basic preliminaries and laws

This section contains some elementary definitions, basic laws and concepts that are useful in

understanding the works in the subsequent chapters.

2.1 Fluid

A substance which consist of particles that contineously distorts when shear stress is applied.

Oil, paints, blood, ketchup and water are some examples of fluid.

2.2 Fluid mechanics

The class of mechanics that come with the properties of fluids. It can be classified into two

subclasses.

2.2.1 Fluid statics

It investigates the attributes of liquids in a stationary state.

2.2.2 Fluid dynamics

It investigates the attributes of liquids in the state of motion.

10



2.3 Stress

Stress is the relationship of force F' and area A in the deformable body. The SI unit of stress
is Nm~2 or kg/m.s%. Mathematically,
F
=—. 2.1
r=2 (21)
2.4 Types of stress
It is further divided into two types:

2.4.1 Shear stress

The force that acts on a material parallel to the unit area of the surface is categorized as shear

stress.

2.4.2 Normal stress

The force that acts on a material perpendicular to the unit area of the surface is categorized as

normal stress.

2.5 Flow

Flow is characterized as a material that distort easily and continuously under the impacts of

various kind of forces.

2.6 Types of flow

There are two different ways to describe the flow:

2.6.1 Laminar flow

Flow in which every fluid substance has different layers of fluid and the layer of individual

particles do not cross one another.

11



2.6.2 Turbulent flow

Flow in which every fluid substance has different layers of fluid and the layer of individual

particles cross one another.

2.7 Viscosity

Viscosity is an intrinsic fluid property which describes the behavior and motion of the fluid

nearest the boundary. It is defined as

p= (2.2)
There are two ways to describe the viscosity.

2.7.1 Dynamic viscosity

It is the fluid characteristics that specifies the resistance of fluid versus any deformation with

the applied force. Mathematically,

shear stress

viscosit = .
y (1) gradient of velocity

2.7.2 Kinematic viscosity

It is the fluid property that specify the ratio of absolute viscosity (u) to the fluid density (p).
Mathematically, it is represented by

Kinematic viscosity (v) = £ (2.4)
p

2.8 Newton viscosity law

The liquids that show the direct and linear relation joining the shear stress and velocity gradient.
Mathematically,
(2.5)

12



or

e = (j—Z) , (2.6)

here 7,, denotes the shear force, p the proportionality constant and Z—Z the velocity gradient.

2.9 Viscous Fluids

A fluid characterizes as viscous fluid if its viscosity may change or remain uniform due to

different type of stresses.

2.9.1 Newtonian fluids

Newtonian liquids are those liquids that follow the Newton’s viscosity law or show the direct
and linear correspondence joining the shear stress and gradient of velocity. In these liquids
force of shear (7,) is linearly proportional to the velocity gradient (Z—Z) and p is constant

here. Water, air and glycerin are common examples of Newtonian fluids.

2.10 Non-Newtonian fluids

Fluids that do not satisfy the Newton’s viscosity law. Here, nonlinear and direct relation exists

joining shear stress and gradient of velocity.

Mathematically,
du\"

Tye X | — | , n#1, 2.7

! (dy> &%)
or )
du du\""

z = N1—, =k |— , 2.
Ty mdy m 1 <dy> (2.8)

where 7y, k1 and n represents apparent viscosity, consistency index and behavior index of flow
respectively. For n = 1 Eq. (2.8) shows the expression for Newton’s viscosity law.

Examples of these liquids are honey, ketchup, paints, blood, tooth paste and polymer solu-
tions etc. These liquids are further divided into three major types i.e, (i) differential type (i7)
integral type and (iii) rate type.

13



2.11 Density

Density is termed as mass of a substance per unit volume or ratio between mass and volume.
This quantity is utilized to quantify that how much material of a substance present in unit
volume.

Mathematically,

= 2.9
P=1 (2.9)
where m denotes the mass of the substance and V* is the volume. The SI unit of density is

kg/m3.

2.12 Pressure

It is defined as a magnitude of force applied perpendicular to the surface per unit area. Math-

ematical expression for the pressure is given as
F
pP=—. 2.10
- (2.10)

The SI unit of pressure is N/m?.

2.13 Thermal diffusivity

Thermal diffusivity is a material specific property for explaining the unsteady conductive heat
flow. This value describes how speedily a material respond to change in temperature. It is
proportion of the thermal conductivity and the multiple of the capacity of specific of heat and

density. Mathematically,

=) 211)

where K shows thermal conductivity, ¢, the specific of heat capacity and p the density.

14



2.14 Thermal conductivity

Thermal conductivity is a substance specific property that identifies the heat conduction.
It illustrates that how much heat is transferred to the materials. From the Fourier’s heat
conduction law, it is expressed as a ratio of heat transfered (()1) with unit thickness of a
substance (I) per unit time and area of surface (A) over the temperature difference (AT).

Mathematically,
_ Gl
A(AT)

In SI unit it is expressed in kgm/s3K and its dimension is (MTg)

2.15 Porous surface

It is a material which made out of pores, over which fluid or gas can travel through. Few
examples are biological tissues, cork and rocks. Sponges, fabrics, ceramics and foams are also

gathered for the purpose of porous media.

2.16 Porosity

The measure of spongy space in a porous substance is known as porosity.

2.17 Permeability

It is defined as the strength of a porous substance to allow fluid to travel through it. Those
materials which have low porosity are minor permeable while materials having large pores are
easily permeated and have high porosity.

2.18 Convective boundary condition

Convective boundary condition are some time called Robin boundary conditions. These kind

of condition is usually defined at the wall. Mathematically, this is communicated as:
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K (%) — oA+ Cu(Ty — T)] v (2.12)

where p represents the density, A indicates the latent heat of the liquid, Cs shows the capacity
of heat of the solid surface , T, the melting temperature, Ty is the solid temperature and v is

the velocity parts along r directions.

2.19 Nanofluid

A liquid that has very small particles in it (called nanometer particles) is said to be Nanofluid.
These liquids are formed by the colloidal suspensions of nanoparticles in the conventional liquid.
The nanoparticles employed in nanofluids typically are nanotubes, oxides and metals. Most

ordinary base fluids are oil and water.

2.20 Carreau fluid model

In this model, the viscous effects are premitted to differ with the deformation rate. This model

shows the thickness of a some real liquids, as polymer arrangement and greases, over a very

huge scope of qualities of shear rate. The constitutive equation of the this liquid is expressed
by:

7= —pl + p(y)Ar, (2.13)

n_1

1= pioo + (o — oo) [1+ (07)?] 7, (2.14)

Here p is pressure, I the identity tensor, A; the first Revlin-Erickson tensor, pg and p., depicts

the zero rate of shear and infinite rate of shear viscosities, I' material time constant, n the

power law index, and the shear rate v is defined as

1
v = \/51_[, IT = trace(A?). (2.15)

here II shows the 2"? invariant strain tensor.
It can be noted, the Power-law index shows the liquid behavior and liquid is characterized

as shear thinning for 0 < n < 1, shear thickening for n > 1, Newtonian fluid for n = 1 and/or
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I' = 0 and for greater variations of I' the Power-law model can be obtained.

2.21 Darcy law

It interprets the flow of a liquid through a spongy media. This law was originated and dependent
on the consequences of analysis through the water’s flow across the beds of sand. It additionally

models the scientific basis of liquid permeability needed in the geo sciences.

2.22 Darcy Forchheimer Law

Movements in spongy medium with Reynolds number greater than 10, and in which inertial
effects are prominant. So, this inertial term is add on the Darcy’s equation and is called as
Forchheimer term. This term represents the non-linear influence of the pressure difference

versus flow data.

dp pu P o
- 2.1
or k! k1 s (2.16)

where k1 represents inertial permeability and vy represents forchheimer velocity.

2.23 Dimensionless numbers

2.23.1 Prandtl number

The relation of momentum diffusivity (v) to thermal diffusivity («) is termed as Prandtl number.

Mathematically, it has the following form:
pr=2-% (2.17)
@

in which p represents the dynamic viscosity, ¢, indicates the specific heat and K stands for ther-
mal conductivity. In transfer of heat, It is control the thicknesses of momentum and boundary

layers.
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2.23.2 Lewis number

It describes the ratio between kinematic viscosity and Brownian diffusion coefficient. Mathe-

matically,
v

Le=—
e Dy

(2.18)

where v = 11/ p shows the kinematic viscosity and Dp is the brownian diffusion coefficient.

2.23.3 Thermophoresis parameter

Thermophoresis is a mechanism which is used to prevent the mixing of different particles due to
a pressure gradient when they move together or separate the mixture of particles after mixing
up. In a cold surface thermophoresis is positive and it is negative for a hot surface.

Mathematically, it can be written as:

TD7(Ty — To)

Nt =
T ’

(2.19)

where T, and T, are the constant temperature and temperature outside the plate, T}, is the
constant temperature, Dp is thermophoresis coefficient, 7 is the relation of effective heat and

heat capacity of the nanoparticles and v the kinematic viscosity.

2.23.4 Brownian motion parameter

Brownian motion happens due to size of the nanoparticles in a nanofluid. It is a nano scale

mechanism that displays the thermal influences of nanofluid. Mathematically,

Nb= TDBT(CW), (2.20)
where
_ (pp
=l (2.21)

In the above equation 7 indicates the relation of effective heat and heat capacity of the nanopar-
ticles and fluid respectively, v the kinematic viscosity, Co, concentration in the free stream and

Dpg the brownian diffusion coefficient.
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2.23.5 Weissenberg number

It is used in the analysis of viscoelastic flow. It is the relationship of the elastic forces to the

viscus forces.

We — Slastic forces (2.22)
viscous forces

2.23.6 Peclet number

The Peclet number used in calculations involving convective transfer of heat. It’s the proportion
of the thermal energy covected to the liquid to the thermal energy conducted within the liquid.

Mathematically,
_dWe

P
e D,

(2.23)

where We constant maximum cell swimming speed and D,, diffusivity of the microorganism.

2.23.7 Darcy parameter

The Forchheimer number is proposed to identify different flow patterns. This number is deter-
mined with the ratio of pressure gradient to the viscous resistance.

Mathematically,

pr = B8 (2.24)
I

with 8* non-Darcian coeflicient k* the permeability of the porous media.

2.23.8 Porosity parameter

The ratio between the volume of pores and total volume is described as porosity and this
fraction is denoted by porosity parameter.

Mathematically,
vl
N k*uo’

(2.25)

with k* the permeability of the porous media, ug the reference velocity and [ denotes the

characteristics length.
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2.23.9 Skin friction cofficient

Liquid passing over the surface experiences certain amount of drag that is called as Skin friction.
It takes place between the flowing liquid and the solid surface that causes reduction in the rate

of flow of fluid. Mathematical form for Skin friction coefficient is given as follows:

Tralr=R
Cp, = ———, (2.26)

in which 7,, demonstrate shear stress, p represents the density and wu,, denotes the axial route
having velocity.
2.23.10 Nusselt number

The dimensionless number that represents the relation among the convection and conduction

heat transfer coefficients at the bondary is known as Nusselt number. Mathematically,

Tqw|r = R

Nug = k (Too — Trm)’

(2.27)

where q,, VI and k represents surface heat flux, temperature difference and thermal conduc-
tivity of fluid respectively.
2.23.11 Sherwood number

Sherwood number is a number which is mass transfer rate at the wall.

Ldm

She = 180

(2.28)

where q,,, VI and k represents surface heat flux, temperature difference and thermal conduc-

tivity of fluid respectively

2.23.12 Reynolds number

The sufficient dimensionless number which is used to recognize that either the flow is laminar

or is turbulent. It describes inertial to viscous forces ratio. Mathematically, this number is
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expressed as:

inertial fi
Reynolds number = e orees (2.29)

viscous forces’

L
Re = 222 (2.30)

14

Here, v depicts the velocity of fluid, L describe the characteristic length and v represent kine-
matic viscosity. Reynolds number are utilized to describe distinct flow behaviours (laminar or
turbulent flow) within a similar fluid. Laminar flow arises at small Reynolds number, in which
we can note that viscous effects are eminent. Turbulent flow arises at high Reynolds number,

where inertial effects are eminent.

2.24 Fundamental laws

The basic laws that are used for the flow description in the subsequential analysis are given
below.
2.24.1 Law of mass conservation

Conservation law of mass indicates that the whole mass in any system will remain same. Dif-

ferential form of law of mass conservation is:

% + (v.V)p+pV.v =0, (2.31)

or

op B
ot + V.(pv) =0, (2.32)

where p shows the density of fluid, % is the substance time derivative and v is the velocity of

fluid. It is also known as the equation of continuity. For the steady flow Eq. (2.32) becomes
V.(pv) =0, (2.33)
and if the fluid is incompressible then Eq. (2.33) implies that

V.v=0. (2.34)
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2.24.2 Momentum conservation law

This law describes that the whole linear momentum remains constant of a closed system. Dif-

ferential form of law of momentum conservation is:

Dv

In Eq. (2.35) left side represents an internal force, 15! term on right side for the surface force
and 2" term the body force, where b stands for force of body and 7 shows the Cauchy stress

tensor for incompressible viscuss fluids.
T=—P(I) 4+ pA, (2.36)
where
Ay = gradv + (gradv)’,
in which P is the pressure, A; is the first Rilvin-Erickson tensor, p the dynamic viscosity and
I the identity tensor.

2.24.3 Energy conservation law

This law depicts that the whole energy is conserved in the whole system. Conservation of energy

law is also known as energy equation. For nanofluids, it is given by:

DT D
prergy =L+ KV?T + p,cp (DBVO.VT + T—TVT.VT> ; (2.37)

oo

in which p; represents the base fluid density, cs stands for specific heat of base fluid, 7 the
stress tensor, L* for the strain tensor, p, denotes the density of nanoparticles, Dp denotes the
Brownian diffusivity, Dt represents the coefficient of thermophoretic diffusion, K denotes the

thermal conductivity and T for temperature.
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2.24.4 Law of conservation of concentration

For nanoparticles, the volume fraction equation is

aC 1
A v 2.
T ppV Jps (2.38)
or
oC V2T
— =DpV?C +D ) 2.
T gV + Drp T (2.39)

Here, Dg, C, T and D7 stands for Brownian diffusivity, nanoparticles concentrations, temper-

ature and thermophoretic coefficients respectively.

2.25 Magnetohydrodynamics

The word magnetohydrodynamics (MHD) is the combination of three basic words which are,
magneto mean magnetic, hydro mean liquid and dynamics refer to the motion of an objects
by the forces. MHD describes the magnetic effects of electrically conducting fluids. Maxwell

equations have an important role in MHD studies.

2.26 Heat flow mechanism

Heat is a type of energy that travels from hotter to colder region. Heat transfer process happen
between two bodies which are put at various temperatures. The dispersion of heat happens by

means of three main mechanisms.

2.26.1 Conduction

A phenomenon in which heat moves from warmer to cooler areas in liquids and solids because
of the collisions of free electrons and molecules is called conduction. The process is generally

carried out by the heat transfer in material molecule by molecule.

q . Tl—TQ _ AT
A_k<X1—X2> _kAX’ (2.40)

Mathematically,
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where

dT
q= kA (2.41)

in which g represents the heat fow, A the area of the surface, K the thermal conductivity, T}
temperature is greater than, 7T5. fl—g denotes the temperature gradient and minus sign indicates

that heat is conducted from higher to lower temperature.

2.26.2 Radiation

The process of heat transfer without any medium is called radiation. The transfer of heat
is merely due to the emission of electromagnetic waves. Combined effects of convection and
radiation play significant role when heat transfer is considered in the liquids and gases. This
phenomenon plays vital role in heat transfer in vaccum.
Mathematically,
q=ed* A(AT)*, (2.42)

where ¢ denotes the heat transfer, e for emissivity of the system, o* for Stephen-Boltzmann’s
constant, A for area and (AT)4 for the temperature difference between two systems of fourth

power.

2.26.3 Convection

Mechanism where by heat fows from hot to cold area of liquids or gases due to the movement
of molecules is said to be convection.
Mathematically,
q=hA(Ts - Tw), (2.43)

where h is the coefficient heat transfer (convective), Ty for system temperature, A for area and

Two for the ambient temperature.
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Chapter 3

Characteristics of melting heat
transfer during flow of Carreau fluid

induced by a stretching cylinder

In this chapter, the properties of transfer of melting heat in the existence of Carreau liquid flow
generated via a stretched cylinder is discussed. Additionally, the melting boundary condition is
also considered. The requisite boundary layer equations are transformed within non-linear ordi-
nary differential equations (ODEs) after applying appropriate similarity transformations. The
obtained system of linear equations is addressed through built-in function of MATLAB bvp4c
scheme. The outcomes of the prominent parameters against involved profiles are portrayed and

conversed in the light of their physical importance.

3.1 Mathematical modeling:

Consider an incompressible and axisymmetric transfer of Carreau liquid via a stretched cylinder.
The axis of cylinder is on the z-axis while the r-axis is in the radial direction. The surface of
stretching cylinder has the velocity u,, = Uy (z/1). Moreover, on the flow situation, we supposed
the impacts of the melting heat transfer. Here, we consider that T}, is the temperature of melting
surface, however, T, is the free stream temperature, such that T, < T. By letting the origin

fixed, two same and opposing forces are applied that the melting surface of cylinder generates
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a stretching velocity.

TATD
u — oo T — oo
R u
>
x
aT
T =Tn ko= =p[A+ C;(T —To )l
U = Uy, (Xx)
Fig. 3.1 : Geometry of the flow
The governing system representing the given scenario is given as :
1
TUy + ;(m)r =0,
n—1 n—1

Uy + VUy = zur [1 +17? (ur)ﬂ oz + vy, [1 +1? (ur)2]
r
+v(n—1) r? (ur)2 Upy {1 +1? (UT)Q} ,

k 1
vl +uly = — (Trr + _Tr> )
pCp r

with appropriate boundary conditions

—K%—f—p[A—i—C’s(Tm—To )jv at r=R,

u—0,T—Ty, as r — 00.

(3.1)

(3.4)

Non dimensionl form of mathematical model is acquired by using following transformations:

U r? — R? 9()—T_Tm
T\ o 2R ’ n_Too—Tm’
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w= ) v =T S ). (35)

l r

Here, satisfaction of Eq. (3.1) is inevitable. However, Egs. (3.2) to (3.4) take the form:

(1 2m) {1+ nwef 2} {1 w2} T e pp - ()

n—3

+ [Q’Yf” Fy(n 4+ 1) We? (f”)?’] {1 + We? (f")2} - (3.6)
(142vn) 0" +2v0' +Prfo =0, (3.7)

0=0, f'=1, Prf+ M6 =0 atn=0,
ff—=0,0—1, asn — oo. (3.8)

The values of above mentioned parameters are:

b3x2rl? v ep(Too — Ti) e
= —_— = —_— = p S m P = —p .
We=\"pgz, 7 = g, M At Cs(TmTo) K (3.9)

The dimensional form of Nussselt number and Skin friction are given by:

x q | C, — Trx |T:R

Nu, = , (3.10)

Substituting the usual similarity transformation, we get the dimensionless form of Nu, and
Cy, as:
n—1

1 , 1 ” ” 2 2
Re™% Nu, = —6'(0), Re”3Cy, = f"(0) [1 + We? {f (0)} } , (3.11)

where Re, = U,z /v shows the Reynolds number.
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3.2 Results and deliberation

The current segment elucidates the impact of numerous parameters i.e; melting heat parameter
M, parameter of curvature v, Prandtl number Pr and Weissenberg number We on velocity and
temperature profiles. We fixed various flow parameters values as M = 1.2, We = 3.0, Pr = 7.5,
v = 0.2, n = 1.0. Fig. 3.2 depicts the variations of a dimensionless velocity field versus 7
for distinct variations of the melting heat parameter M. It indicates, the velocity field rises
with the increment of M and the far field boundary conditions are satisfied accordingly. An
increment in M will enhance the intensity of melting and as a outcome more heat transfers
from the heated liquid to the melting surface. Due to this, more convection flow happens, that
automatically enhances the liquid’s velocity. The analysis of curvature parameter v on the
velocity profile is drawn in Fig. 3.3. It depicts that for an enhancing variations of curvature
parameter v leads to a greater velocity profile f’(n). As the large variations of v tends to
lower the cylinder radius. Hence, low resistance is allowed by the surface and consequently the
fluid’s velocity rises. The behavior of Pr on the velocity field f/(n) is drawn in Fig. 3.4. It
is observed that for more variations of Pr velocity profile shows decreasing behavior. As Pr is
the relationship of momentum to thermal diffusivity. Increment in Pr tends to downs thermal
diffusivity and stronger momentum diffusivity. Fig. 3.5 defines for the greater variations of the
curvature parameter y causes to decrease the liquid’s temperature. To the figure we can see that
boundary layer be converted to more thick for growing variations of the curvature parameter.
Furthermore, the characteristics of melting heat parameter heat M on the profile temperature is
illustrated in Fig. 3.6. As the temperature field is decreased by the enhancing values of melting
heat parameter M. These results make relation practically, as the melting procedure is used to
applying in the act a blowing boundary condition at the stretched surface. Due to this logic,
higher melting heat with enhancing M, leads to thick the boundary layer. The change among
liquid initial temperature and temperature of the melting surface get increased by enhancing
the variations of melting parameter, that causes a decrement in the fluid temperature. The
behavior of Pr on the dimensionless temperature field is defined in Fig. 3.7. It is seen that in
the existence of melting procedure the liquid’s temperature decrease with increasing variations
of Pr. The change of the Weissenberg number We on 6(n) is analyzed in Fig. 3.8. It is

obvious that the greater variations of the We significantly lowers the temperature profile. But
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an opposite pattern is measured for the thickness of boundary layer. Moreover, the curves are
very near to one another for the flow via a stretched cylinder. Moreover, Table 3.1 illucidates
the values of various physical parameters ¢.e, Skin friction coefficient and Nusselt number for
the distinct numerical variations of the rising limitations. The Cy, is decreased by the greater
values of We, while a different behaviour can observed for the variations of Power law index
n. It can be judged that the Nusselt number is an enhancing parameter of Power law index n

while an opposite behavior is seen for We.

09F 1

08 §

06 §

05F 1

F(z)

04r M=0.0,04,08,1.0

021 §

01F 1

0 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

U
Fig. 3.2 : Change of M on f (1)
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v=00,0.1,02,0.3

Pr=1.0,20,3.0,40

Fig. 3.4 : Change of Pr on f'(n)
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Fig. 3.6 : Change of M on 0(n)
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Fig. 3.7 : Change of Pr on 6(n)
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Fig. 3.8 : Change of We on 6(n)
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Table 3.1 : Variations of Cy, and N, for involved parameters.

vy | M| n |WelPr|-— Re 2 Cy, | — Re 2 Ny,
03151806 |15 1.29245 0.46866
0.4 1.31846 0.49269
0.5 1.34246 0.51365
0.3 1.49324 0.64794
0.6 1.42635 0.58979
0.9 1.37294 0.54220
0.5 1.51354 0.46741
1.0 1.51612 0.46895
1.5 1.51234 0.47024
0.2 1.30238 0.42558
0.4 1.11362 0.42510
0.6 1.02485 0.41698
1.0 1.40959 0.39990
1.5 1.44691 0.46866
2.0 1.46782 0.52892
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Chapter 4

Melting heat transfer in the flow of
Carreau nanofluid past a stretching
cylinder in a Darcy-Farchheimer

porous medium

In this chapter, the transfer of melting heat in the flow of Carreau nanoliquid via a stretched
cylinder is examined. Moreover, the phenomenon of flow is conducted in the existence of Darcy-
Farchheimer porous medium. The nanofluid flow is also discussed in the existence of gyrotactic
microorganisms. The governing equations of boundary layer are transformed into non-linear
ODEs after applying appropriate similarity transformation. The resulting system of linear
equations is addressed by bvp4c built-in function of MATLAB scheme. The outcomes of the
prominent parameters versus emerging profiles are portrayed and conversed in the light of their

physical significance.

4.1 Mathematical modeling:

Here, we consider an incompressible and axisymmetric transfer of Carreau nanoliquid flow over

a stretched cylinder. We consider that T;, is the temperature of melting surface, however, Ty,
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is the free stream temperature, such that 7}, < T. The surface of stretching cylinder has the
velocity u,, = Up (z/1). Moreover, on the flow situation we supposed the impacts of the melting
heat transfer. By letting the origin fixed, two same and opposing forces are applied that the

melting surface of cylinder generates a stretching velocity. (See Fig. 4.1)

' v
U — oo T — oo
R u
>
X
aT
T=T, k;=p[}l+ Cs(T, — T v
U = U, (x)

Fig. 4.1 : Geometry of the flow

The resulting boundary layer equations defining the depicted scenario are given as:

1
rug + —(rv), =0, (4.1)
r

n—1 n—1

Uy + VU, = ;ur [1 +1? (ur)Q} 7 + Vg [1 + 1?2 (uT)Q] :

n—3

4o (n— 1) T2 (up) [1 42 (urﬂ . kiu ~ Fu?, (4.2)
k 1 D
vl +ul, = — (TM + —Tr> +7 (DBC’TTT + =L (TT)Q) , (4.3)
PCp T Too
1 D 1
uCy +vCy = Dp(Crr + ~C) + T—T(T,,,, +-T,), (4.4)
1 aw,
T r:Dn rr Ny | — F— ~ rCr rr) - 4.
ung +vn (n —i—Tn) Cw_coo(nC’ +nChy) (4.5)
with suitable boundary conditions
u:uw:¥, T=1T, C=Cy, n=n,4 atT=R,
T
—K(Z—T — P+ Cy(T —Tp )] v at =R,
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u—0, T Ty, C—Csx, N =Ny as 1 — oo. (4.6)

Non dimensionl form of above mathematical flow model is obtained by using following trans-

Uy (12 — R? T-T, C-Csx
n= E< °R )a Q(U)—mﬂﬁ(ﬁ)—m,

formations:

n — Neo _@ R |Upv

X() = ——>=, u=— frm), v=—= /(). (4.7)

Ny — Neoo T

Here, satisfaction of Eq. (4.1) is inevitable. However, Egs. (4.2) — (4.5) take the form:

(1 2m) {1+ nwe(f 2} {1 w2} T f e pp - (5

n—3

+ [mf” Fy(n+ 1) We? (f”ﬂ {1 + We? (f”)z}T —Bf —F (f) =0, (4.8)

(142y0) 0" + 270" +Prfd + (1 +2yn) Pr (Nb0'¢/ + Nt0”?) =0, (4.9)
" ’ ’ Nt " ’
(L+29m)¢ +296 +Lefd + ((1 +29n) 0" + 240 ) —0, (4.10)

(1 +2yn) X" + 2yx’ + LbPrfy/

1+2 //+ /+ 1+2 /!
_pe [ AF2MXE Fxd A 2m) X" ) (4.11)

+ov¢ + o (1+2yn) ¢"

0=¢=x=1, f'=1, Prf+M6 =0 atn=0,
ff—=0, x—0, 60, ¢—0 asn— oo. (4.12)

The variations of above mentioned parameters are:
b3x2r2l? v ep(Too — Tin) e
=\ —m =—— M=-2 Pr==2
Ve=\"r " "Ry M rra@in) T &
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= — = N —
v p’ 7 N — Noo v t VT s ’
Le= 2 b= 2 pe— (4w (4.13)
- Dy T Dy T \ D, ) ‘

The dimensional form of Nussselt and Sherwood numbers, Skin friction and the Motile microor-

ganism density number are given by:

Tquw|r = R Trz|r = R
Nyy=—"——"—- Cy = ———,
! k(Too —Tm) L puz,
Tdm Zn
Shy = ———, Nn, = . 4.14
DgAC T Dy An (4.14)

Substituting the usual similarity transformation, we get the dimensionless form of Nu,, Cy, ,

Sh, and Nn,

n—1

1 / 1 " " 2 2
Re™% Nu, = —0'(0), Re™3Cy, = £7(0) [1+ Wez{f (0)} ] ,
Re™2 Shy = —¢' (0), Re™2 Nng = —x' (0). (4.15)

here Re, = Uz /v shows the Reynold number.

4.2 Results and deliberation

The purpose of this portion is to draw the impact of emerging parameters on velocity, tem-
perature, concentration and gyrotactic microorganism distributions. Various parameters like
melting heat parameter M, Prandtl number Pr, Weissenberg number We, Darcy parameter
F'r, porosity parameter A, parameter of Brownian motion Nb, parameter of curvature -y, ther-
mophoresis parameter Nt, Lewis number Le, Bioconvection lewis number Lb, Peclet number
Pe and Bio- convection parameter o. We fixed different flow parameters values as M = 1.2,
v=02,Pr=75 We=20, Fr =02, A\ = 0.2, Nb =04, Nt = 0.6, Le = 1.0, Pe = 1.2,
Lb=0.2,0 =1.0, and n = 1.0 are discussed on axial velocity, temperature , nanoparticles
concentration and gyrotactic microorganism distributions. Fig. 4.2 displays the velocity field
for distinct variations of the melting heat parameter M. The velocity field enhances with the

increase of M. It indicates that the velocity field rises with the increment of M and the far field
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boundary conditions are fulfilled accordingly. An increment in M will enhance the intensity of
melting and as a outcome more heat transfer to the heated liquid to the melting surface. Due to
this, more convection flow happens, that automatically increases the liquid velocity. The study
of the curvature parameter v on the velocity field is sketched in Fig. 4.3. It shows that the an
enhancing variations of curvature parameter v tends to a greater velocity field. It is detected
from the figure that an increment in the parameter of curvature effects an upgrad in the axial
velocity profile. The increasing variations of M tends to lower the cylinder’s radius. So, lower
resistance is given by the surface and consequently the liquids velocity upgrades. Illustration
of Darcy parameter Fr on f’(n) is displayed in Fig. 4.4. Tt is examined that for expanding
variations of F'r, the decreasing behavior of the velocity distribution is seen. This is because,
for the higher values of F'r leads to a resistance in a fluid flow. Fig. 4.5 is drawn to show the
behavior of porosity number A to the velocity distribution f’ (n). It is explored that the velocity
of the liquid is reduced for higher variations of porosity parameter. Usually, the movement of
the fluid is hold up due to the presence of porous media and as a outcome it causes in the falloff
of fluid velocity. Fig. 4.6 defines for the greater variations of v lead to decrease the liquid’s tem-
perature. It is judged that the thermal boundary layer converted into more thick for increasing
variations of the curvature parameter. Furthermore, the characteristics of melting heat para-
meter M on temperature field is drawn in Fig. 4.7. It is observed that the 6 (n) is lowered for
the melting heat parameter. The outcome of Pr on () is drawn in Fig. 4.8. It is judged that
in the existence of melting procedure the liquid temperature decrease with increasing variations
of Pr. So, it can be judged that for greater variations of Pr temperature field enhances. The
presence of the Weissenberg number We on the 6 (1) is analyzed in Fig. 4.9. It is seen that the
greater variations of the We, significantly lower the temperature profile. But a different pattern
is judged for the thermal boundary layer thickness. Fig. 4.10 is sketched to show the change of
curvature parameter vy on nanoparticles concentration profile ¢ (1) . It depicts, for an increasing
variations of curvature parameter v leads to a greater nanoparticles concentration distribution
¢ (n) . The decending behavior in concentration distribution ¢ (1) of Brownian motion parame-
ter Nb is drawn in Figure 4.11. In the flow of nanofluid, by the appearence of nanoparticles,
the Brownian motion happens, and with an enhancement in the Brownian motion parameter

Nb the Brownian motion is changed and similarly the boundary layer thickness decreases. Fig.
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4.12 indicates the increasing behavior of thermophoresis parameter Nt in concentration field
©(n). Both the ¢ (n) and the thickness of thermal layer are increased for rising variations of
thermophoresis parameter Nt. Large variations of Nt causes an increment in the thermophore-
sis force for that leads to go nanoparticles to cold from hotter surfaces and similarly it rises the
thickness of thermal layer. Outcomes of Lewis number Le on ¢ (n) is illustrated in Fig. 4.13.
The nanoparticles concentration decreased quickly when we enhance the variations of Le. This
decrement in ¢ (n) is by the change in Brownian diffusion coefficient. Higher Lewis number
tends to lower Brownian diffusion coefficient. Figure 4.14 shows the behavior against Peclet
number Pe on gyrotactic microorganism profile x (n). Here, x (1) is an enhancing function of
Pe, that affects to a decrease in the diffusivity of microorganisims. Figure 4.15 sketched to
indicate the curves of x (n) for various terms of bioconvection Lewis number Lb while other
variables are fixed. It can be judged that Lb depicts the decreasing behavior for large values
of Lb. Figure 4.16 indicates the variations in gyrotactic microorganism profile y (n) for various
variations of bioconvection parameter o. Large variations of bioconvection parameter causes
the reduction in gyrotactic microorganism profile. Figure 4.17 is drawn to analyze the differ-
ences in concentration for numerous variations of Pr. Here, it is noticed that the thickness of
boundary layer and gyrotactic microorganism profile x (1) are decending function of Pr. There
is a reverse relationship with Prandtl number and thermal diffusivity. An increment in Pr,
leads to lower thermal diffusivity that causes to lower the gyrotactic microorganism profile and
thermal layer thickness.

Moreover, Table 4.1 illucidates the limitations of various physical parameters i.e; Skin
friction and Nusselt number for the different numerical variations of the rising parameters. The
Cy, is decreased by the greater values of We, while a quite different behaviour can seen for
the variations of Power law index n. It can be judged that the Nusselt number is an enhancing
parameter of power law index n while an opposite behavior is noted for We.

Table 4.2 indicates the numerical limitations of Cy,, Ny, , Sh, and NN, for distinct variations
of M, Pr, Nb, Nt and 0. We noted that the variations of Skin friction and Nusselt number en-
hances with an enhancing variations of melting parameter M, while the reverse change is noted
in the case of Sherwood number and density number. Furthermore, the variations of Cy, and

Nu, decresed with the enhancing variations of Prandtl number Pr, and quite different behavior
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is judged for Sherwood number and density number of motile microorganism. Similarly, for an
increasing variations of Brownian motion parameter Nb, the variations of Skin friction lowers
while the variations of N, , Sh, and N, enhances. It can be noticed that for an enhancing
variations of thermophoresis parameter Nt the variations of Cy, , IV, and N,,, decreases while
Sherwood number Sh, increases. Lastly, it is noted that for an enhancing variations of bio-
convection parameter o, the paarametrs Cy,, N,, and Sh, shows the same behavior while the

number of density motile microorganism /V,,, shows the increasing behavior.
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Table 4.1 : Variations of Cy, and NN, for involved parameters.

v | M| n|We|Pr|-Re2Cs | —Re 2N,
0315|1806 15| 1.20245 0.46866
0.4 1.31846 0.49269
0.5 1.34246 0.51365
0.3 1.49324 0.64794
0.6 1.42635 0.58979
0.9 1.37204 0.54220
0.5 1.51354 0.46741

1.0 1.51612 0.46895

1.5 1.51234 0.47024

0.2 1.30238 0.42558

0.4 1.11362 0.42510

0.6 1.02485 0.41698

1.0 | 1.40959 0.39990

15| 144691 0.46866

20| 1.46782 0.52892
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Table 4.2 : Variations of Cy,, Ny,, Sh; and N, for various parameters.

M |Pr|Nb|Nt| o |-Re2Cs | —Re 2N, | Re"25h, | Re "2 N,
03] 15]|1.8]06]02]| 1.49324 0.64794 | 0.70839 | 0.39341
0.6 1.42635 0.58979 | 0.64438 | 0.39058
0.9 1.37294 0.54220 | 0.59188 | 0.38855
1.0 1.40959 0.39990 | 0.30722 | 0.38397

1.5 1.44691 0.46866 | 0.51061 | 0.38592
2.0 1.46782 0.52802 | 0.55547 | 0.38871
0.5 1.24853 0.46866 | 0.51061 | 0.38592

0.6 1.26012 0.44508 | 0.51352 | 0.38624

0.7 1.27173 042170 | 0.51834 | 0.38656

0.2 1.21428 0.41180 | 0.51061 | 0.38592

0.5 1.24853 0.46866 | 0.51352 | 0.38542

0.7 1.32625 0.50920 | 0.51834 | 0.38446

0.2 1.31991 0.42618 | 0.51061 | 0.38592

0.4 1.31991 0.42618 | 0.51061 | 0.38634

0.6 | 0.31991 0.42618 | 0.51061 | 0.38675
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Chapter 5

Concluding remarks and Future

work

In this thesis, two problems have been analyzed where first problem is about review paper and

second problem is the extension work. Conclusion of both the problems are as follows:

5.1 Chapter 3

The characteristics of melting heat transfer with convective boundary condition in three-
dimensional (3D) Carreau nanofluid flow induced through a stretched cylinder. The extensive

findings of this investigation are given below:

e For large variations of melting heat parameter M, the velocity field is greater.

Larger variations in parameter of curvature v causes an increment in velocity distribution

while temperature profile decreases.

Enhancing values of Pr shows the decreasing behavior on velocity profile, while quite

different result is observed in the case of temperature distribution.

Temperature profile decreases for greater variations of Weissenberg number We.

An enhancement in parameter of curvature M tends to decrease the temperature profile.

o1



5.2 Chapter 4

In the current exploration, The transfer of the melting heat in the flow of Carreau nanofluid over
a stretched cylinder in the darcy-Farchheimer porous media is studied. Solution of the assump-
tion is addressed by MATLAB scheme of bvp4c built-in function. The significant outcomes of

the present investigation are given as:

e Behavior of melting heat parameter M on the velocity and temperature fields are reverse.

e Enhancing variations of Curvature parameter v will tend to increase the velocity and

concentration distributions while lower the temperature distribution.
e Velocity field decreases for enhancing variations of Darcy parameter F'r.
e Porosity number decrease the velocity field.

e Thermophoresis parameter and Brownian motion parameter display the different results

on nanoparticles concentration field.
e Peclet number Pe decrease the gyrotactic microorganism distributiion.

e Gyrotactic microorganism profile reduces for large values of bioconvection parameter o.

5.3 Future work

The current analysis can be extended to the following models as well:

e The fluid flow may be extended to the any other non-Newtonian fluids.

The Buongiorno nanofluid model may be swapped with Tiwari and Das model.

Some varied types of base fluids and nano-materials may be used.

Some different non-Newtonian fluid model may also be considered.

Boundary conditions may be replaced with convective and zero-mass flux conditions.

Effect of Hall current and dusty fluid may also be considered.
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