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Abstract 

 

A mathematical model is investigated to scrutinize the Darcy Forchheimer Casson 

Nanofluid flow over a stretching cylinder with convective heat and mass conditions. 

The heat and mass transfer phenomena are visualized in the presence of activation 

energy and gyrotactic microorganisms. Fluid is electrically conducted in the attendance 

of applied magnetic field. Appropriate transformations procedure is implemented for 

the transition of partial differential equations to ordinary one and then computer 

software-based MATLAB function bvp4c is implemented to handle the envisioned 

mathematical model. The deliberation of numerous parameters versus the velocity, heat 

and mass transfer and density of gyrotactic microorganisms are portrayed through 

graphs. It is witnessed that velocity of the fluid is decreased for increasing values of 

porosity number and the increasing value of activation energy enhances the 

concentration.  Furthermore the microorganisms profile dwindles for increasing 

estimates of Peclet number. Local Nusselt number, Local Sherwood number and 

density number of motile microorganisms are evaluated via tables. An outstanding 

matching is obtained when the results obtained in the current analysis are compared 

with an established result in the literature.   
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Chapter 1

Introduction and Literature review

1.1 Introduction

Nano�uids are heat transmitting �uids formed by the dispersion of nano sized particles in

ordinary base �uids. The ordinary �uids usually have low thermal conductivity. Smaller

channels would face hindrance if ordinary �uids that carry millimeter (mm) or nanome-

ter (�m) sized particles are used. Nano�uids are one of the latest evaluations in the

�eld of nano technology. Expected increase was noticed in thermal conductivity of �uid

after immersing nano particles (smaller than 100 nm in diameter) in ordinary base �uid.

The upgrade in thermal conductivity of nano �uid plays a vital role in many industrial

applications like pharmaceuticals, micro electronics, nuclear reactors etc. The following

four properties are responsible for the magni�cent characteristics of nano�uids.

� Dominant temperature dependent thermal conductivity

� Intensi�ed thermal conductivity in response of low nanoparticles concentration

� Nonlinear expansion in thermal conductivity utilizing nanoparticle

� Escalation in boiling critical heat �ux.
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Darcy law explains the movement of homogenous �uids through spongy media. This

law was composed by Henri Darcy (a French civil engineer) after performing experiments

on the �ow properties of sand �lters used to �lter the water. As a result of these ex-

periments he came to know that viscous forces dominate over inertial forces in spongy

media, which later on known as Darcy Law. Darcy law presumes laminar �uid �ow lack-

ing the density (inertial term) which shows that absence of inertial term is not the case

in classical Navier-Stokes equations. Vast surface area in a porous media is subject to

�uid �ow which is the basic supposition of Darcy law. This law is of great importance in

the �eld of mechanics and used in petroleum technology, water structures and in grain

stokes. Darcy law is not suitable nearby the wall because at this area permeable medium

has high rate of �ow. Keeping this in mind, one has to be concerned about the Non-

Darcian in�uence by porous media in the �ow analysis and rate of heat transfer. In 1901,

Philippe Forcchheimer while performing the experiment on �owing gas through coal beds

disclosed that there is a nonlinear relationship among potential gradient and �ow rate at

higher velocity. Initially, he supposed that this non linear rise is due to the turbulence

in �ow but it is now revealed that inertial e¤ects in the porous media are responsible for

these non-linear e¤ects. Hence, mechanism of Forchheimer is introduced for high �ow

rate. The addition of quadratic term in equation of motion is introduced by Forchheimer

known as Forchheimer expression. Physically, for porous media a quadratic drag in the

equation of motion arises for rising �ltration velocities. This drag is formed due to solid

obstructs and at the surface this drag is similar to surface drag by resistance. There are

several examples where Darcy law is not valid due to signi�cant inertial e¤ects. Hence,

Darcy Forchheimer law is more suitable for the �ows where the velocities are high.

In 1889, Svante Arrhenius (Swedish scientist) was the one who introduced the term

activation energy. The least amount of energy needed to begin a chemical reaction is con-

sidered as activation energy and is represented by Ea. Activation energy is a¤ected by

temperature gradient and catalyst. Di¤erent reactions require di¤erent amount of acti-

vation energy so this is not same for all chemical reactions. The two type of reactions are
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endothermic reaction and exothermic reaction. More energy is required for endothermic

reaction while reverse situation occurred for exothermic reactions. The chemical reaction

rate depends upon temperature, concentration and activation energy. There is a close

relationship between rate of chemical reaction and its activation energy. Escalation in

activation energy reduces the chemical reaction because few molecules can get the control

over activation energy barrier to complete the reaction.

Convection is a process of heat transfer in the �uid by the movement of molecules.

Di¤usion and advection both are involved in this process. The process of convection is

mostly used in soft solids or in �uids where the particles can easily move. There are sev-

eral types of convections like natural convection, gravitational convection, Bio-convection

etc. In Bio-convection process gyrotactic microorganisms are used to cause convection.

Gyrotactic microorganisms are tiny living organisms which are denser than water. Bio-

convection occurs due to the up swimming of motile organisms. When upper surface

of the �uid becomes thick due to collection of microorganisms, it becomes unstable and

they move down to causes Bio-convection. Recent evaluations in medical and industrial

applications have introduced a vast variety of non-newtonian liquids which are di¤eren-

tiated by various deviations from the viscous �uids. Non-newtonian liquids are those

for which the rate of shear can be changed but shear stress doesn�t change in the same

proportion. These liquids are generally divided into three categories as time dependent,

viscoelastic and time independent liquids. Casson liquid is one of the Non-Newtonian

�uid and has wide applications in bioengineering operations, food processing, making of

pharmaceutical products and biological �uids.

1.2 Literature Review

Nano �uids are homogeneous combination of nano-particles and base �uids that have

potential to transfer heat. These �uids are of much importance among researchers due

to its magni�ed thermic conductive property and convective heat transmitting coe¢ cient.
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It is perceived that thermal conductivity of liquid is improved when we add very small

quantity of nano-particles in it. The stream which is complying with productive relation

of Casson �uid is initiated by stretched cylinder. The �uid stream over a stretching

cylinder is of much signi�cance because of its signi�cant applications for instance drawing

of plastic movies, glass �ber, and paper creation and so forth. In mixed convection �ows

buoyancy forces enhances due to di¤erences in temperature and concentration. Mixed

convection �ow is of much signi�cance because of its signi�cant applications including

atomic reactors chilled during crises shuto¤, electronic appliances chilled by fans and so

forth. The mixed convection �ows in addition with heat and mass transfer are signi�cant

in engineering that comprises energy from polymer and metal sheets [1-9].

The boundary layer stream of Casson �uid past a vertical exponential stretched

barrel is studied by Malik et al. [10] while the hydromagnetic Casson �uid �ow with

the e¤ects of magni�cation in radiation over the stretched cylinder is considered by

Ramesh et al. [11]. Non Newtonian materials does not possess linear association between

stress and deformation tensor. These materials are of much importance in technological

and industrial processes. Di¤erential, integral and rate are the three categories of non

Newtonian �uids. The plastic liquids which possess shear stress in constitutive equations

is called Casson �uid. Some Casson �uid examples are jam, tomato sauce, soup, meals

processing, arti�cial lubricants, paints, coal in water , sewage sludge and human blood

Hayat et al. [12].

In 1901, Forchheimer extend the Darcian velocity articulation by including the

square of velocity terms in energy condition to foresee the conduct of dormancy and

limit layer stream since when inertial and limit impacts happen at high stream rate,

the Darcy law can�t function admirably [13]. The �Forchheimer term�which is true for

high Reynolds number was later named by Muskat [14]. Rashid et al. [15] discussed

the Darcy Forchheimer e¤ect on the motion of maxwell �uid past an exponential surface

with activation and thermic radiant energy. Rashid et al.[16] also claimed that due

to stretching cylinder entropy is initiated in Darcy forchheimer �ow stream of nano�uid
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while nano�uid contains aluminum oxide, silver, copper oxide, titanium oxide and copper

as nanoparticles in it. The activation energy and mixed convection properties in Darcy

forchheimer nano-meter stream by compact chamber were inspected by Waqas et al. [17].

The Darcy-Forchheimer 3D nano�uid �ow model with activation energy past the rotating

frame under the in�uence of chemical reaction is deliberated by Hayat et al. [18]. Saeed

et al. [19] investigates the thermal properties of Darcy forchheimer �uid �ow through

stretched cylinder and the �uid is hydromagnetic hybrid nano�uid.

Activation energy and chemical reaction along with mass shift process is used in

various �elds for example in chemical engineering, processing of food, mechanics of oil

and water fusion, geothermal reservoirs etc. First of all, the �ow of binary mixture in

a spongy media along with natural convection and activation energy was discussed by

Bestman. Some more recent investigations in this direction were made in which Maleque

worked on activation energy along with exothermic/endothermic reactions on mixed con-

vection �ows,whereas Abbas et al. explored numerically the impact of activation energy

on a chemical reaction which is involved in the movement of casson �uid [20-23]. In

the existence of eolotropic slip, binary chemical reaction and activation energy, the nu-

merical treartment of radiative nano-�uid three-dimensional �ow containing gyrotactic

microorganisms was analysed. Some recognizable discoveries of this research are that,

on the compactness of motile microorganisms, the slip parameter has an increasing ef-

fect. For dimensionless activation energy, there is decline in local density number of

microorganisms against Schmidt number, dianchin et al. [24]. Huang and C.J. [25] con-

sidered the porous horizontal cylinder and discussed the e¤ects of activation energy on

free convection.

The solidity of adjournment of gyrotectic micro-organisms depends on the per-

meability of the porous media in a system of super imposed �uids and porus layers,

however this dependence is crucial only if the �uid layer is comparatively thin compared

to the porous layer [26]. The base liquid thickness is upgraded by motile microorgan-

ism a speci�c way so that they cause the Bio-convection stream [27]. Hussain et al.
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[28] studied the impact of heat generation/absorption and thermic radiations on the

squeezing nano-�uid �ow. The �uid is �owing between two aligned plates from which

one plate is considered �xed and other is stretching plate. Microorganisms can survive

only in water so water is taken as base �uid. The porous medium implanted in a cas-

son type non-newtonian �uid was observed with the help of protracted form of Darcy

Forchheimer model and to examine 2-D steady laminar MHD incompressible �ow past

an exponential shrinking sheet, the impact of slip condition and viscous dissipation is

applied. The result of this study shows that to obtain the solution, strong mass suction

was required when forchheimmer parameter increases [29]. Rashad et al. [30] worked

on motile microorganisms with convective boundary condition over a circular cylinder in

mixed Bio-convection nano �uid �ow. Bhatti et al. [31] worked on MHD nano�uid �ow

stream using motile microorganisms along with the e¤ect of chemical reaction and ther-

mal radiation. Chemical reaction and non linear thermal emission in a MHD nano�uid

�ow along motile microorganisms are discussed by Ramzan et al. [32]. Alsaedi et al.

[33] worked on bioconvection phenomenon generated by gyrotactic microorganisms in a

MHD nano�uid �ow. Microorganisms are helpful in biomicrosystems as they take part in

mass transmitting process and mixing. Furthermore, thermal conductivity is enhanced

by nano�uids. The rate of heat transfer is considerably high when nano�uid is merged

with motile gyrotactic microorganisms [34-38].

The prime objective of the present study is to scrutinized the casson nano�uid �ow

over a nonlinear stretched cylinder under Darcy- Forchheimer porous medium. Moreover,

the novelty of the presented problem is improved by the addition of activation energy and

motile gyrotactic microorganisms. None of the above quoted and even existing literature

simultaneously analyzed such e¤ects. Numerical solution of the problem is acquired by

utilizing bvp4c built-in function of MATLAB scheme.
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Chapter 2

Preliminaries

This section contains standard de�nitions, concepts and basic laws which are useful in

understanding the works in the subsequent chapters.

2.1 Fluid

A substance that is able to �ow and can change its shape under the e¤ect of shear stress

is de�ned as �uid. Some of its examples are water, air, honey and blood .

2.1.1 Fluid mechanics

The branch of science which concerns about the behavior of �uid at rest or in motion.

The subclasses of �uid mechanics are:

2.1.2 Fluid statics

It concerns with the properties of liquids at rest.

2.1.3 Fluid dynamics

It concerns with the properties of liquids in the state of motion.
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2.2 Flow

Flow is speci�ed as a material that deforms smoothly under the e¤ect of various kinds

of forces. Flow is further divided into two major subclasses.

2.2.1 Laminar �ow

Laminar �ow is an orderly �ow of �uid particles in regular paths or in adjacent surfaces

without jumbling with each other.

2.2.2 Turbulent �ow

In turbulent �ow the �uid experiences irregular variations and the �uid velocity at a

point is continuously changes in the �ow �eld.

2.3 Viscosity

Viscosity is the measure of �uid resistance to �ow when various forces are acting on it.

It is also interpreted as the internal friction of �uid.

viscosity =
shear stress

gradient of velocity
. (2.1)

2.3.1 Dynamic viscosity

It measures the �uid resistance to it�s motion. Its unit is kg=ms.

2.3.2 Kinematic viscosity

Kinematic viscosity is described as �uid absolute viscosity divided to density of �uid. It

is represented by

� =
�

�
=
absolute viscossity
�uid density

; (2.2)
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In SI system unit is m
2

s
.

2.4 Newtonian �uids

The �uids whose viscosity at all shear rates remains the same is considered as Newtonian

�uids. In these �uids the gradient of velocity (du)/(dy) and shear force � yx is linearly

proportional to each other. some examples of this �uid are water, kerosene Alcohol and

glycerine.

2.5 Non-Newtonian �uids

Fluids whose viscosity does not remain same at all shear rates or that does not satisfy

the Newton�s law of viscosity. Here, shear stress has non linear and direct relation with

and velocity gradient. Mathematicaly, it can be represented as:

� yx /
�
du

dy

�n
; n 6= 1; (2.3)

or

� yx = �
du

dy
; � = s

�
du

dy

�n�1
; (2.4)

where � is named as apparent viscosity, � yx is shear stress, s shows consistency index

and the �ow behaviour index is de�ned by n. For n = 1; Eq. (2:4) represents the Newton

law of viscosity. Yougurt, honey and ketchup shows the non-Newtonian �uid behavior.

2.6 Newton viscosity law

In Newton law of viscosity, shear rate and shear force has linear correspondence. Math-

ematically, it can be represented as follows:

� yx / (
du

dy
); (2.5)
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or

� yx = �

�
du

dy

�
; (2.6)

in which � yx indicates the shear force which act on the �uid element and � indicate the

proportionality constant.

2.7 Density

Density is obtained by dividing the mass of material by its volume. Mathematical rep-

resentation of density is:

� =
m

V
; (2.7)

where m is the mass of material and V is the volume. Unit of density in SI system is

kg=m3:

2.8 Pressure

The perpendicular force applied on a surface of an object divided by unit area is termed

as pressure.

Mathematically pressure is given by:

P =
F

A
; (2.8)

In SI system, Nm�2 is de�ned as the unit of pressure.

2.9 Porous surface

The surface which contains pores or empty spaces from which �uid or gas can penetrate.

Paper, sponge, ceramics and fabrics are some examples of porous surface.
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2.10 Porosity

Porosity is speci�ed as the measure of empty spaces in a porous medium.

2.11 Permeability

The property of permeable material which allows the �uid to penetrate through it is

known as permeability.

2.12 Mechanism of heat �ow

The transfer of thermal energy occurs when there is temperature di¤erence between the

surfaces. Heat �ows from colder surface to hotter surface. The heat transfer takes place

through following three ways:

2.12.1 Conduction

In the phenomenon of conduction, heat energy is transmitted from higher to lower tem-

perature area through the vibration of atoms and molecules. Mathematically

q

A
= k

�T

�X
= k

�
T1 � T2
X1 �X2

�
; (2.9)

where

q = �kAdT
dx
; (2.10)

in which q represents the heat �ow, A represents surface area, k the thermal conductivity,

T2 temperature is smaller than T1 , dTdx denotes the temperature gradient and negative

sign shows that heat is conducted from higher to lower temperature.
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2.12.2 Radiation

A phenomenon in which heat reaches to cold temperature region from hot temperature

region because of waves is called radiation. Mathematically

q = e���A (�T )4 ; (2.11)

where q denotes the heat transfer, e for emissivity of the system, ��� for Stephen-

Boltzmann constant, A for area and (�T )4 for the temperature di¤erence between two

systems of fourth power.

2.12.3 Convection

A phenomenon where transfer of heat takes place due to the motion of molecules from

high temperature gradient to low temperature gradient is known as convection. Mathe-

matically

q = hA (Ts � T1) ; (2.12)

where h is coe¢ cient of heat transfer (convective), Ts for system temperature, A for area

and T1 for the ambient temperature.

2.13 Convective boundary condition

The condition in which transfer of heat through the vibration of molecules (conduction)

is equal to the transfer of heat due to the motion of molecules (convection) is said to

be convective boundary conditions. These kind of conditions are usually de�ne on wall

(surfaces). Mathematically

k

�
@T

@ri

�
xi

= h[Tf (xi; t)� T (xi; t)]; (2.13)
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where h indicates the coe¢ cient of heat transfer (convective) , xi is the coordinate at

the boundary, Tf the convective �uid temperature and T represents wall temperature.

2.14 Nano�uid

The �uid that can be formed by assembling the nanometer particles with base �uid is

called nano �uid. It ampli�es the thermal conductivity of the mixture. The nano sized

particles used in Nano�uid are mostly oxides, metal or nanotubes. Oil and water are

commonly used base �uids.

2.15 Casson Nano�uid

Casson �uid falls in the group of non-Newtonian liquids which is considered as shear

thinning liquid. This �uid is supposed to have in�nite shear rate at zero viscosity and

zero shear rate at an in�nite viscosity. An appropriate example of Casson �uid is human

blood.

2.16 Darcy Law

Flow of liquid through permeable media is explained by Darcy law. This law was derived

and depends upon the outcome of examination on the �ow of water across the sand beds.

2.17 Darcy Forchheimer Law

Forchheimer term is the additional inertial term in Darcy equation. This inertial term

arises from porous medium �ow where �ow has prominent inertial e¤ects with Reynolds

numbers greater than 10. The non-linear conduct of pressure di¤erence against �ow data

is described by this term.
@p

@x
=

�

k�
�f �

�

k1
�2f ; (2.14)
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where k1 represents inertial permeability and �f represents Forchheimer velocity.

2.18 Activation Energy

The base energy required for a chemical response to happen is known as activation energy.

This energy depends upon its rate, if the energy is low then the reaction rate is high or

vice versa.

2.19 Gyrotectic Microorganisms

These are the motile microorganisms that exist in oceans, lakes and rivers. Gyrotectic

microorganisms are used in experiments as they help in Bio-convection. When large

number of microorganisms assembles on the upper layer of suspension, the layer becomes

dense and the microorganisms become unstable and start moving towards down, this

results in Bio-convection.

2.20 Non-dimensional numbers

2.20.1 Reynolds number (Re)

The ratio of forces of inertia to viscous forces is described by Reynolds number. It is a

dimensionless number and used to identify the laminar or turbulent �ow behaviour of

�uid. Mathematically, this number is expressed as:

Re =
Forces of inertia
Viscous forces

; (2.15)

=
v � l

�
; (2.16)

Here, v de�nes the �uid velocity, l de�nes characteristic length and � describes kinematic

viscosity. Flow shows turbulence at high Reynolds number when Re is greater than 2100
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while the �ow is laminar at low Reynolds number when Re is less or equal to 2100.

2.20.2 Prandtl number (Pr)

Momentum di¤usivity to thermal di¤usivity ratio is named as Prandtl number . Mathe-

matically, Prandtl number can be interpret as

Pr =
�

�
; (2.17)

Pr =
�cp
k
; (2.18)

where � shows the dynamic viscossity, the speci�c heat is denoted by cp and k represents

thermal conductivity.

2.20.3 Peclet number (Pe)

Peclet number is interpreted as a ratio of transfer of thermal energy by �uid movement

to transfer of thermal energy by di¤usion.

Pe =
advective tranfer rate
di¤usive tranfer rate

: (2.19)

Peclet number is a dimensionless number.

2.20.4 Nusselt number (Nuz)

The ratio of heat shift through convection to heat shift through conduction at the bound-

ary is de�ned by dimensionless number known as Nusselt Number. Mathematical repre-

sentation is

Nuz =
h�T

k�T=l
=
hl

k
; (2.20)

where h interprets heat transmitting coe¢ cient (convective), characteristic length is de-

noted by l and k represents thermal conductivity.
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2.20.5 Biot number (
1)

It is a dimensionless number which de�nes the relation among heat transfer resistance

inside the body and heat transfer resistance on the surface. Mathematically, it is repre-

sented as follows:


1 =
hl

k
; (2.21)

where k represents the thermal conductivity and h shows heat shift coe¢ cient (convec-

tive) .

2.20.6 Thermophoresis parameter (Nt)

Thermophoresis helps to split di¤erent particles from mixture after combining due to

the existence of temperature gradient or it stops di¤erent particles to combine with each

other due to pressure gradient.

Hot surface has negative while the cold surface has positive thermophoresis.

Mathematically

Nt =
(�c)pDT (Tf � T1)

(�c)f �T1
; (2.22)

where Tf and T1 denotes the convective �uid temperature and ambient temperature

respectively, DT represents thermophoretic coe¢ cient and � shows kinematic viscosity.

2.20.7 Brownian motion parameter (Nb)

The random movement of suspended microscopic particles occurs due to their bumping

with high velocity molecules is known as Brownian motion. Mathematically

Nb = �
DB(Cf � C1)

�
; (2.23)
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in the above equation � is the ratio of e¤ective heat and heat capacity of the nanoparticles

and �uid respectively, v denotes the kinematic viscosity. Cf stands for �uid concentration,

C1 stands for ambient concentration and DB represents Brownian di¤usion coe¢ cient.

2.20.8 Schmidt number (Sc)

Kinematic viscosity divided by Brownian di¤usion co¢ cient is denoted by dimensionless

number known as Schmidt number. Mathematically

Sc =
�

DB

; (2.24)

where � shows kinematic viscosity and DB is Brownian di¤usion co¢ cient.

2.20.9 Forchheimer number (Fr)

Pressure gradient to the viscous resistance ratio is described by forchheimer number.

Mathematically

Fr =
k�����

�
; (2.25)

with ��non-Darcian coe¢ cient and k�the permeability of porous medium.

2.20.10 Sherwood number (Sh)

This number describes the ratio among convective mass transfer and the mass transfer

through di¤usion

Sh=
h

d = l
; (2.26)

where h shows convective mass transfer rate and d represents di¤usivity and l is charac-

terstic length.
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2.21 Conservation law

A measurable quantity that remains constant with the progression of time in an isolated

system is known as conserved quantity and the law which deals with this quantity is

de�ned as conservation law. The conservation laws that are used for the �ow speci�cation

in the subsequential analysis are given below.

2.21.1 Mass conservation law

Mass conservation law describes that the whole mass in any closed system will remain

conserved. Mathematically
D�

Dt
+ �(r:(V)) = 0; (2.27)

or
@�

@t
+ (V:r) �+ �r:V = 0; (2.28)

or
@�

@t
+r: (�V) = 0; (2.29)

The above equation is known as equation of continuity. For the steady �ow Eq. (2:32)

becomes

r: (�V) = 0; (2.30)

and for the incompressible �uid, Eq. (2:33) will be stated as:

r:V = 0: (2.31)
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2.21.2 Momentum conservation law

The total linear momentum of a closed system is constant is de�ned as momentum

conservation law. Generally, it is given by

�
DV

Dt
= div �+�b; (2.32)

where (� = �pI+ S) the Cauchy stress tensor, D
Dt
is appeared as the material time

derivative and b stands for body force.

2.21.3 Law of energy conservation

The total energy is conserved at the whole system is said to be law of conservation of

energy and this law is also known as energy equation. For nano�uids it is speci�ed by

�fcf
DT

Dt
= � �:L� + kr2T + �pcp

�
DBrC:rT +

DT

T1
rT:rT

�
; (2.33)

in which �f represents the density of base �uid, cf stands for speci�c heat of base �uid, �
�

the stress tensor, L� for the strain tensor, �p denotes the density of nanoparticles, DB in-

dicates the Brownian di¤usivity, DT represents the thermophoretic di¤usion coe¢ ecient,

k denotes the thermal conductivity and T for temperature.

2.21.4 Concentration conservation law

For nanoparticles, the volume fraction equation is

@C

@t
+V:rC = � 1

�p
r:jp ; (2.34)

jp = ��pDBrC � �pDT
rT
T1

; (2.35)
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@C

@t
+V:rC = DBr2C +DT

r2T

T1
: (2.36)

Here, DB; C; T and DT stand for Brownian di¤usivity, nanoparticle concentration, tem-

perature and thermophoretic coe¢ cients respectively.

2.22 Thermal di¤usivity

It is a material speci�c property for describing the unsteady conductive heat �ow. This

value describes how speedily a material respond to change in temperature. It is the ratio

of thermal conductivity to speci�c heat capacity of �uid. Mathematically,

� =
k

(�c)f
; (2.37)

where the thermal conductance is denoted by k , (�c)f the capacity of speci�c heat.

2.23 Thermal conductivity

It is the measurement of the capacity of a material to conduct heat. The Fourier law

of heat conduction " The amount of heat transfer rate (q) through a material of unit

thickness (d) times unit cross section area (A) and unit temperature di¤erence (�T )".

Mathematically, written as:

k =
qd

A(�T )
: (2.38)

In SI system thermal conductivity has unit W
m:K

.

23



2.24 Homotopic solutions

Homotopy is one of the basic concept of topology. It is stated as continous mapping

in which one function can be constantly transformed into the another function. If one

function h1 and the other h2 are maps from the topological space D with the other

topological space E; then there exists a continous mapping H such that

H : D � [0 ; 1]! E; (2.39)

where d 2 D and

F (d; 0) = h1(x); (2.40)

F (d; 1) = h2(x): (2.41)

That mapping H is termed as homotopy.

2.25 Homotopy Analysis method

The Homotopy Analysis method (HAM) is involved to �nd the series solutions of highly

nonlinear problems. This method presents us with convergent series solutions for highly

nonlinear systems.
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Chapter 3

Mixed convection �ow of Casson

nano�uid past a stretched cylinder

with convective boundary conditions

In this chapter, we consider the mixed convection Casson �uid �ow induced by stretched

cylinder with convective heat and mass conditions in addition with nano sized particles.

The nonlinear partial di¤erential system is reduced to ordinary di¤erential system by

applying appropriate transformations. Homotopy analysis method (HAM) is applied to

obtain the convergent solution of the system.

3.1 Mathematical formulation

In this chapter, we consider an incompressible, Casson nano�uid �ow bounded by stretched

cylinder with convective boundary conditions. The existence of magnetic �eld does not

e¤ect the �uid electric conductivity. In radial direction, r-axis is deliberated while along-

side the axis of cylinder, z-axis is taken into consideration (Figure 3.0). The uniform

magnetic �eld whose intensity is denoted by B0 is assumed to be in the radial direc-

tion. Here, u and w are velocities, u along z� direction and w along r� direction. T is
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temperature of �uid and C is �uid concentration. Similarly, T1 represents the ambient

temperature and C1 represents the ambient concentration.

Fig 3.0: Problem

Geometery

The governing equations are:

@u

@z
+
w

r
+
@w

@r
= 0; (3.1)

u
@u

@z
+ w

@u

@r
= �

�
1 +

1

�

��
@2u

@r2
+
1

r

@u

@r

�

+g

�
�T (T � T1) (1� C1) +

(�� � �)

�
(C � C1)

�
� �eB

2
0u

�
; (3.2)

u
@T

@z
+ w

@T

@r
= �

�
@2T

@r2
+
1

r

@T

@r

�
+ �

"
DB

@T

@r

@C

@r
+
DT

T1

�
@T

@r

�2#
; (3.3)

u
@C

@z
+ w

@C

@r
= DB

�
@2C

@r2
+
1

r

@C

@r

�
+
DT

T1

�
@2T

@r2
+
1

r

@T

@r

�
; (3.4)
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with the boundary conditions

u = U =
U0z

l
; v = 0; �k@T

@r
= h (Tf � T ) ;

�Dm
@C

@r
= km (Cf � C) at r = a,

u! 0; T ! T1 , C ! C1 as r !1: (3.5)

Dimensionless form of above mathematical model is derived by using following transfor-

mations:

u = z
U0
l
f 0 (�) ; w = �1

r

r
U0�

l
a f (�) ;

 = (U�z)
1
2 a f (�) ; � =

r2 � a2

2a

r
U

�z
;

�(�) =
T � T1
Tf � T1

; � (�) =
C � C1
Cf � C1

; (3.6)

Here, satisfaction of Eq. (3:1) is inevitable. However, Eqs.(3:2)� (3:5) reduce to

�
1 +

1

�

�
[(1 + 2
�) f 000 + 2
f 00] + ff 00 � f 02 + � (� +Nr�)�Mf 0 = 0; (3.7)

1

Pr

h
(1 + 2
�) �00 + 2
�

�0
i
+ f �0 +Nb (1 + 2
�) �0�0 +Nt (1 + 2
�) �

02
= 0; (3.8)

(1 + 2
�)�00 + 2
�0 + Scf �0 +
Nt

Nb

h
(1 + 2
�) �00 + 2
�

�0
i
= 0; (3.9)

f(0) = 0; f 0(0) = 1; ��(0) = �
1 (1� � (0)) ; �0 (0) = �
2 (1� � (0)) ; (3.10)

f 0(1) = 0; � (1) = 0; �(1) = 0; (3.11)

with


 =

r
�l

U0a2
; � =

gl2�T
U20 z

(1� C1) (Tf � T1) ; Nt =
�DT (Tf � T1)

�T1
;

Nr =
(�� � �) (Cf � C1)

��T (Tf � T1) (1� �1)
; M =

�e B
2
0 l

�U0
; Nb =

�DB (Cf � C1)

�
;
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Pr =
�

�
; Sc =

�

DB

; 
1 =
h

k

r
�l

U0
; 
2 =

km
Dm

r
�l

U0
: (3.12)

The local Nusselt number and local sherwood number are

Nuz =
zqw

k (Tf � T1)
; Shz =

zhm
DB (Cf � C1)

(3.13)

where the wall heat �ux qw and the wall mass �ux hm are de�ned as

qw = �k
@T

@r
jr=a; hm = � DB

@C

@r
jr=a (3.14)

The local Nusselt number and local sherwood number in dimensionless quantities by

using equations (3.13) and (3.14) are appended as follows:

Nuz (Rez)
�1=2 = ��0 (0) ; (3.15)

Shz (Rez)
�1=2 = ��0 (0) : (3.16)

Reynolds number is given as, Rez = Uz
�

3.2 Solutions procedure

Homotopy analysis method is used to �nd the solution of system. It is an analytical

method applied to compute the convergent series solutions. This method discriminates

itself from other analytical techniques because of some important attributes.

Following this method, the initial guess [f0 (�) ; �0 (�) ; �0 (�)] and relevant linear op-

erators (Lf ;L�; L�) are expressed below:

f0 (�) = [1� exp (��)];

�0 (�) =

�

1

1 + 
1

�
exp (��) ; �0 (�) =

�

2

1 + 
2

�
exp (��) ; (3.17)
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Lf = f 000 � f 0; L� = �00 � �; L� = �00 � �; (3.18)

along with the properties

Lf [c1 + c2 exp(�) + c3 exp(��)] = 0;

L�[c4 exp(�) + c5 exp(��)] = 0;

L�[c6 exp(�) + c7 exp(��)] = 0; (3.19)

here cj and (j = 1� 7) are de�ned as optional constants.

3.3 Convergence analysis

Homotopy analysis method is applied to �nd the convergence solution of system of non

linear equations which depends upon supplementary variables }f ; }� and }�. These

variables are important to adjust and manage the convergence zone while plotting h�

curves. The admissible ranges of }f ; }� and }� are �1:1 � }f � �0:5; �1:4 � }� � �0:2

and �1:3 � }� � �0:4: Table 3:1 represents the series solution convergence and it

displays that 30th order of guesstimate is enough to establish the series solution. It can

be noticed that the values from table are adequately in order to the h- curves shown in

Fig. 3:1.
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Figure 3.1: h-curves for f; � and �

Table 3:1: Convergence of Homotopy series solutions for varied order of estimations.

Order of Approximation �f 00(0) ��0(0) ��0 (0)

1 0.87552 0.15903 0.31705

5 0.82354 0.15542 0.28887

10 0.82498 0.15572 0.28845

15 0.82495 0.15570 0.28858

20 0.82493 0.15570 0.28856

25 0.82493 0.15570 0.28856

30 0.82493 0.15570 0.28856
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3.4 Results and discussion

This section examines the impacts of distinct variables on all involved distributions

through graphical illustrations.

Figure 3:2 is framed to show the impact of � the casson �uid parameter on velocity

�eld f 0 (�). Graph portrays that velocity is a dwindling function of �. The reason is that

resistance is produced in the �uid motion due to increasing values of � and this resistance

suppresses the velocity and eventually velocity reduces. Figure 3:3 illustrates that how

curvature parameter 
 a¤ects the velocity f 0 (�). In fact the �uid �ow is showing an

amplifying behavior on increasing values of curvature parameter 
. By increasing this

parameter, the radius of cylinder enhances and this cause an increase in velocity feild.

Impact of mixed convection parameter � on �uid velocity f 0 (�) is appeared in Figure

3:4. The parameter � is expressed as mixed convection parameter. By increasing this

parameter, the buoyancy forces escalate. The escalation in buoyancy forces results in

increase of velocity pro�le. Figure 3:5 depicts that rising values of Nr put escalating

e¤ect on the �uid velocity f 0 (�). The increasing values of Nr increases the force of

convection between molecules which causes the thickness of momentum boundary layer

and hence velocity increases. Graph 3:6 displays the impact of M the Hartman number

on �uid velocity. This parameter M is expressed as the ratio between electromagnetic

forces to viscous force. By increasing this parameter, the magnetic �eld enhances and

produces resistive force which is responsible for the reduction in velocity pro�le.

Impact of temperature variation � (�) against curvature parameter 
 can be viewed

in Fig 3:7. It can be visualaized that increasing values of curvature parameter 
 give rise

to temperature. This is due to the fact that by increasing the cylinder curvature, the

velocity of �uid rises resulting in enhancement of kinetic energy. As Kelvin temperature

is described as an average kinetic energy, so when kinetic energy increases temperature

also increases. Figure 3:8 is sketched to describe the e¤ect of Brownian motion parameter

Nb on the temperature pro�le � (�). The rise in Brownian motion parameter enhances

the random movement of nano size particles due to which kinetic energy is generated and
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rapid collision between particles take place. Due to bumping of particles kinetic energy is

transformed into heat energy and therefore temperature rises. Impact of thermophoresis

variable Nt on �uid temperature �(�) can be seen in Fig 3:9. The temperature is showing

an increase on growing estimates of Nt. When thermophoretic force enhances due to

enhancement in Nt, the nanoparticles start moving from hot region to cold region and

this cause a rise in �uid temperature. Figure 3:10 displays that there is rise in temperature

�(�), on rising values of thermal Biot number 
1. This is due to the fact that escalating

estimates of Biot number enhances the heat transmitting coe¢ cient which cause a rise

in �uid temperature �(�) as well as in thermal boundary layer thickness.

Figure 3:11 shows the e¤ect of curvature parameter 
 on concentration �(�). The

concentration � and associated boundary layer enhances due to enhancement in curvature

parameter. Figure 3.12 displays that how the concentration pro�le �(�) is e¤ected by

Brownian motion variable Nb. For rising value of Nb, the �uid concentration diminishes.

It is perceived that with rise in Nb random monement of macroscopic �uid particles

and collision among themselves increase which helps to heat up the boundary layer and

ultimately the concentration of the �uid decreases. The impact of thermophoresis variable

Nt upon concentration distribution � (�) can be seen in Figure 3:13. An increase in

concentration �eld is observed against gradual escalation in Nt. The reason behind is

that on increasing the values of Nt the variation between ambient temperature and surface

temperature enhances which cause a rise in �uid concentration. Fig 3.14 illustrates the

impact of Schmidt number Sc on �uid concentration � (�). As Schmidt number is a ratio

of viscosity to mass di¤usivity, the rise in Sc reduces the mass di¤usivity which in turns

cause a depletion in �uid concentration �: The impact of concentration Biot number 
2

on volume fraction � (�) is depictied in graph 3.15. It is noted that the rising values

of concentration biot number causes upsurge in the �uid concentration. This is due to

the fact that escalating estimates of Biot number enhances the mass transmission which

cause a rise in �uid concentration.

Table 3:2 is drawn to show the impact of curvature parameter 
; Brownian motion
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parameter Nb; thermophoresis motion parameter Nt; thermal Biot number (
1) and

concentration Biot number (
2) on Nusselt and on Sherwood numbers. It is noted that

for greater estimates of Nb;Nt; 
2 the value of Nusselt number [Nuz (Rez)
� 1
2 ] decreases

while it enhances for increasing values of 
 and 
1. The Sherwood number [Shz (Rez)
�1=2]

diminishes by escalating Nt and 
1 while it enhances for increasing values of Nb; 
; and


2.

Figure 3.2: E¤ect of � on f 0(�)

33



Figure 3.3: E¤ect of 
 on f 0(�)

Figure 3.4: E¤ect of � on f 0(�)
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Figure 3.5: E¤ect of Nr on f 0(�)

Figure 3.6: E¤ect of M on f 0(�)
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Figure 3.7: E¤ect of 
 on �(�)

Figure 3.8: E¤ect of Nb on �(�)
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Figure 3.9: E¤ect of Nt on �(�)

Figure 3.10: E¤ect of 
1 on �(�)
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Figure 3.11: E¤ect of 
 on �(�)

Figure 3.12: E¤ect of Nb on �(�)
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Figure 3.13: E¤ect of Nt on �(�)

Figure 3.14: E¤ect of Sc on �(�)
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Figure 3.15: E¤ect of 
2 on �(�)
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Table 3.2: Numeric values of Nusselt and Sherwood numbers.


 Nb Nt 
1 
2 Nuz (Rez)
� 1
2 Shz (Rez)

� 1
2

0.1 0.1 0.1 0.2 0.7 0.15571 0.28856

0.2 0.15712 0.29877

0.3 0.15839 0.30942

0.1 0.2 0.15459 0.31332

0.3 0.15352 0.32173

0.4 0.15243 0.32602

0.1 0.2 0.15553 0.24168

0.3 0.15532 0.19622

0.4 0.15513 0.15235

0.1 0.5 0.29332 0.25090

0.7 0.35292 0.23510

0.9 0.39792 0.22329

0.2 0.5 0.15578 0.24135

0.8 0.15569 0.30742

1.0 0.15563 0.33836

41



Chapter 4

Darcy�Forchheimer Casson

nano�uid �ow over a stretching

cylinder with Arrhenius activation

energy and gyrotactic

microorganisms

In this chapter, Casson �uid �ow is studied in Darcy-Forchheimer porous medium with

activation energy and gyrotactic microorganisms. The nonlinear partial di¤erential sys-

tem is reduced to ordinary di¤erential system by applying appropriate transformations.

Built in function bvp4c (MATLAB) is used to obtain the convergent solution of the

system.

4.1 Mathematical modelling

In this chapter we consider a Darcy�Forchheimer Casson nano-�uid �ow over a stretched

cylinder along with Arrhenius activation energy and gyrotactic microorganisms.The z�axis
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is deliberated alongside the axis of cylinder while r�axis is taken along radial direction

with respective velocities u and w (Figure 4.0):The �ow is supported by the convective

mass and heat transfer boundary conditions.

Fig 4.0: Problem

Geometery

The governing system representing the given scenario is given as:

@u

@z
+
w

r
+
@w

@r
= 0; (4.1)

u
@u

@z
+ w

@u

@r
= �

�
1 +

1

�

��
@2u

@r2
+
1

r

@u

@r

�
� �eB

2
0u

�
� �

k�
u� Fu2

+g

�
�T (T� T1) (1� C1) +

(�� � �)

�
(C � C1)� 
 (N �N1)

�
�m � �

�

��
; (4.2)

u
@T
@z
+ w

@T
@r

= �

�
@2T
@r2

+
1

r

@T
@r

�
+ �

"
DB

@T
@r

@C

@r
+
DT

T1

�
@T
@r

�2#
; (4.3)
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u
@C

@z
+ w

@C

@r
= DB

�
@2C

@r2
+
1

r

@C

@r

�
+
DT

T1

�
@2T

@r2
+
1

r

@T

@r

�

�k2r (C � C1)

�
T

T1

�n
exp

�
�Ea
�T

�
; (4.4)

u
@N

@z
+ v

@N

@r
= Dn

�
@2N

@r2
+
1

r

@N

@r

�
� d wc
Cf � C1

@

@r

�
N
@C

@r

�
: (4.5)

supported by the boundary conditions

u = U =
U0z

l
; v = 0;�k@T

@r
= h (Tf � T ) ;

�Dm
@C

@r
= km (Cf � C) ; N = Nf at r = a,

u! 0; T ! T1 , C ! C1; N ! N1 as r !1: (4.6)

Dimensionless form of above mathematical model is acquired by using following trans-

formations:

u = z
U0
l
f 0 (�) ; w = �1

r

r
U0�

l
a f (�) ;

 = (U�z)
1
2 a f (�) ; � =

r2 � a2

2a

r
U

�z
;

�(�) =
T � T1
Tf � T1

; � (�) =
C � C1
Cf � C1

; � (�) =
N �N1
Nf �N1

; (4.7)

Here, satisfaction of Eq. (4:1) is inevitable. However, Eqs. (4:2)� (4:6) becomes:

�
1 +

1

�

�
[(1 + 2
�) f 000 + 2
f 00] + ff 00 � f 02 + � [� +Nr��Nc�]

�Mf 0 � �1f
0 � Fr f

02 = 0; (4.8)

1

Pr

h
(1 + 2
�) �00 + 2
�

�0
i
+ f �0 +Nb (1 + 2
�) �0�0 +Nt (1 + 2
�) �

02
= 0; (4.9)

(1 + 2
�)�00 + 2
�0 + Scf �0 +
Nt

Nb

h
(1 + 2
�) �00 + 2
�

�0
i

�Sc� (1 + ��)n � exp
�
� E

1 + ��

�
= 0; (4.10)
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(1 + 2
�)�00 + 2
�0 + Lb Pr f �0

�Pe [(1 + 2
�)�0�0 + 
��0 + (1 + 2
�)�00 + �1
�
0 + �1 (1 + 2
�)�

00] = 0; (4.11)

f(0) = 0; f 0(0) = 1; �0 (0) = �
1 (1� � (0)) ; �0 (0) = �
2 (1� � (0)) ; � (0) = 1; (4.12)

f 0(1)! 0; � (1)! 0; �(1)! 0; �(1)! 0: (4.13)

with
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r
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U0a2
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gl2�T
U20 z

(1� C1) (Tf � T1) ; Nt =
�DT (Tf � T1)

�T1
;M =

�e B
2
0 l

�U0
;

Nr =
(�� � �) (Cf � C1)

��T (Tf � T1) (1� �1)
; Nc =


 (�m � �) (Nf �N1)

��T (Tf � T1) (1� C1)
; Nb =

�DB (Cf � C1)

�
;

Pr =
�

�
; Sc =

�

DB

; 
1 =
h

k

r
�l

U0
; 
2 =

km
Dm

r
�l

U0
; �1=

vl

U0k�
; � =

Tf � T0
T1

;

E =
Ea
�T1

; Fr =
Cb

k�1=2
; � =

k2r l

U0
; Lb =

�

Dn

; P e =
dwc
Dn

; �1 =
N1

Nf �N1
: (4.14)

where Local Nusselt number, local sherwood number and density number of motile mi-

croorganisms are

Nuz =
zqw

k (Tf � T1)
; Shz =

zhm
DB (Cf � C1)

; Nnz =
zqn

Dn�N
: (4.15)

where the wall heat �ux qw; the wall mass �ux hm and surface motile microorganisms

�ux qn are given as

qw = �k
@T

@r
jr=a; hm = � DB

@C

@r
jr=a; qn = � Dn

@N

@r
jr=a : (4.16)

Local Nusselt number, local sherwood number and density number of motile microor-
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ganisms in dimensionless form is de�ned as follows:

Nuz (Rez)
�1=2 = ��0 (0) ; (4.17)

Shz (Rez)
�1=2 = ��0 (0) ; (4.18)

Nnz (Rez)
�1=2 = ��0 (0) : (4.19)

Rez = Uz
�
expresses the local Reynolds number.

4.2 Results and discussion

This section is devoted to visualize the impact of di¤erent physical variables, on the

velocity f 0 (�) , temperature � (�) , concentration �elds � (�) and on density of motile mi-

croorganisms � (�) Figures 4.1 and 4.2 are plotted to notice the impact of �uid parameter

� and curvature parameter 
 on the �uid velocity f 0 (�). It is witnessed that the veloc-

ity is decreasing and escalating function of � and 
 respectively. Since due to increase

in � the resistance produces in the �uid motion, which ultimately reduces the velocity.

Whereas, by increasing 
, velocity increses, this is because of that radius of cylinder

enhances by increasing the values of curvature parameter 
. The e¤ect of Forchheimer

number on the �uid velocity is plotted in Figure 4.3. It is noticed that velocity f 0 (�) is

diminishing function of Fr: This is because, resistance is produced in a �uid �ow due to

escalating values of Fr. The in�uence of porosity number �1 on the velocity distribution

f 0 (�) is depicted in Fig 4.4. The growing estimates of porosity parameter reduce the �uid

velocity. This is because the porous medium hinders the motion of �uid and this result in

diminishing of velocity. Fig 4.5 depicts the e¤ects of bioconvection Rayeigh numberNc on

velocity pro�le f 0 (�). It is observed that velocity decays by increasing Rayeigh number.

Bioconvection Rayleigh number involves density di¤erence which creates a reduction in

the velocity �eld. Figure 4.6 and 4.7 are framed to show the impact of Brownian motion

variable Nb and thermophoresis number Nt on the temperature pro�le � (�) respectively.
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The increase in Nb enhances the random movement of nano size particles, therefore

rapid collision of particles started and due to which kinetic energy is transformed into

heat energy. Hence temperature rises due to rise in Nb. However, the temperature is also

showing an increasing behavior on escalating values of Nt. This is because an escalation

in Nt enhances thermophoretic force due to which nanoparticles start moving from hot

surface to cold surface. Hence, �uid temperature rises. Figure 4.8 discribes the trend of

thermal Biot number 
1 against temperature � (�). On increasing estimates of thermal

Biot number the heat transmitting coe¢ cient increases which cause a rise in the �uid

temperature � (�) and thermal boundary layer thickness. Graph 4.9 is plotted to show

the impact of activation energy E on �uid concentration � (�). It is experimented that

increasing estimates of activation energy puts the rising e¤ect on concentration. The

increase in activation energy decays the modi�ed Arrhenius function due to which con-

centration and productive chemical reaction enhances. Graph 4:10 displays the impact

of concentration pro�le � (�) against Brownian motion variable Nb. It is noticed that

the �uid concentration has dwindled due to escalation in Brownian motion variable. Ac-

tually increasing estimates of Nb speeds up the movement of �uid particles due to which

boundary layer temperature increases and �uid concentration reduces. Figure 4:11 is for-

mulated to show the trend of Schmidt number Sc against the concentration �eld � (�).

The Schmidt number has an inverse relation with mass di¤usivity. When Sc enhances

the mass di¤usivity diminishes which in turn reduces the concentration pro�le. Figure

4.12 is portrayed to depict the e¤ect of curvature parameter 
 on the density of gyrotactic

organisms � (�). It is noticed that an increase in curvature parameter (
) enhances the

density of gyrotactic organisms � (�) : The increase in curvature parameter decreases the

radius of cylinder and this cause a rise in density of motile microorganisms. Fig 4.13 is

sketched to show how the Hartman number M a¤ects the density of motile microorgan-

isms � (�). It is perceived that density of motile microorganisms � (�) has rising e¤ects on

increasing values of M . The increase in M produces a resistance due to which density of

motile microorganisms escalates. Graph 4.14 portrays the trend of Peclet number Pe on
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the motile microorganisms pro�le � (�) . Pe is de�ned as � L
�� , in which �� is mass di¤u-

sivity. The rise in Peclet number decreases the microorganisms di¤usivity which in turns

cause a down fall in motile microorganisms pro�le. Figures 4.15 and 4.16 are sketched to

interpret the relation between the Brownian motion parameter Nb, bioconvection Lewis

number Lb and the density of motile microorganisms. � (�). It is perceived that motile

microorganisms density diminishes for increasing values of Nb. Actually escalating values

of Nb enhances the rapid movement of microorganisms that cause a rise in temperature

and decline in motile microorganisms pro�le. However, Bioconvection Lewis number Lb

is described as a ratio of thermal di¤usivity to mass di¤usivity. The increase in Lb re-

duces the mass di¤usivity due to which density of motile microorganisms turns down.

Graph 4.17 is sketched to portray the in�uence of bioconvection constant �1 on density of

motile microorganisms � (�). The enhancement in bioconvection constant augments the

microorganisms concentration and reduces the motile density pro�le. The behavior of

Prandtl number Pr against the motile microorganisms pro�le is illustrated in Fig 4.18.

Prandtl number is explained as momentum to thermal di¤usivity. By increasing Pr,

the momentum di¤usivity dominates and hence density of motile microorganisms � (�)

diminishes.

Table 4.1 shows the values of Nusselt number NuxRe
�1
2
x for di¤erent parame-

ters. Nusselt number exhibits an decreasing behaviour on rising estimates of Nb;Nt; 
2

while increasing behaviour is seen for 
 and 
1. Table 4.2 displays the impact of

Nt; Nb; 
2; 
 and E on sherwood number ShxRe
�1
2
x . Sherwood number shows an in-

creasing behaviour on increasing amount of Nb; 
2; 
 while decreasing behaviour is seen

for Nt and E: Table 4.3 is formed to forsee the in�uences of 
; M; Nb; Lb; Pe;Pr and

�1 on density number of motile microorganisms NnxRe
�1
2
x . Density number enhances on

increasing values of 
; Pr; P e;Nb; Lb; �1 while diminishes for M:
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Figure 4.1: E¤ect of � on f 0(�)

Figure 4.2: E¤ect of 
 on f 0(�)
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Figure 4.3: E¤ect of Fr on f 0(�)

Figure 4.4: E¤ect of �1 on f
0(�)
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Figure 4.5: E¤ect of Nc on f 0(�)

Figure 4.6: E¤ect of Nb on �(�)
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Figure 4.7: E¤ect of Nt on �(�)

Figure 4.8: E¤ect of 
1 on �(�)
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Figure 4.9: E¤ect of E on �(�)

Figure 4.10: E¤ect of Nb on �(�)
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Figure 4.11: E¤ect of Sc on �(�)

Figure 4.12: E¤ect of 
 on �(�)
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Figure 4.13: E¤ect of M on �(�)

Figure 4.14: E¤ect of Pe on �(�)
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Figure 4.15: E¤ect of Nb on �(�)

Figure 4.16: E¤ect of Lb on �(�)
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Figure 4.17: E¤ect of �1 on �(�)

Figure 4.18: E¤ect of Pr on �(�)
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Table 4.1:Numeric values of Nusselt number for di¤erent variables.


 Nb Nt 
1 
2 Nuz (Rez)
�1=2

0.1 0.5 0.5 0.2 0.7 0.167810

0.2 0.168491

0.3 0.169115

0.2 0.1 0.177014

0.2 0.175197

0.3 0.173187

0.5 0.1 0.172091

0.2 0.171259

0.3 0.170384

0.5 0.5 0.319109

0.7 0.375375

0.9 0.412207

0.2 0.5 0.170700

0.8 0.167494

1.0 0.165685
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Table 4.2: Numeric values of Sherwood number for di¤erent variables.


 Nb Nt 
2 E Shz (Rez)
�1=2

0.1 0.5 0.5 0.7 3 0.368240

0.2 0.389032

0.3 0.407098

0.2 0.1 0.217775

0.2 0.323627

0.3 0.359406

0.5 0.1 0.409086

0.2 0.403232

0.3 0.397913

0.5 0.5 0.311650

0.8 0.421857

1.0 0.478531

0.7 4 0.383759

5 0.381652

6 0.380864
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Table 4.3: Numeric values of Density number of motile microorganisms for di¤erent

variables.


 �1 M Lb Pe Pr Nb Nnz (Rez)
�1=2

0.1 0.3 1 0.2 0.5 6 0.5 0.99568

0.2 1.09632

0.3 1.19198

0.2 0.3 1.85492

0.4 1.91332

0.5 1.97172

0.3 0 1.83388

1 1.82178

2 1.81149

1 0.2 1.79655

0.3 1.93032

0.4 2.04992

0.2 0.6 1.13367

0.7 1.16993

0.8 1.20638

0.5 6 1.09761

7 1.15944

8 1.21782

6 0.4 1.78211

0.5 1.79652

0.6 1.81415
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Chapter 5

Conclusions and future work

In this thesis two problems have been analysed where �rst problem is about review paper

and second problem is an extension work. Final remarks of both the problems are as

follows:

5.1 Chapter 3

In this section, we have studied the mixed convection Casson nano�uid �ow over a

strectching barrel along with convective boundary conditions. Problem is examined ana-

lytically by making use of renowned Homotopy Analysis method. The signi�cant features

of the problem are:

� Fluid �ow exhibits an incresing behaviour on escalating values of mixed convection

parameter.

� Rise in Casson �uid parameter and the Hartman number redues the �uid �ow

velocity

� Higher thermophoresis parameter exhibits an enhancement in temperature and

concentration distributions.

� Temperature pro�le rises for larger values of Brownian motion parameter.
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� Higher estimates of Biot number boosts in the temperature as well as the concen-

tration.

� The concentration reduces for the escalating values of Brownian motion parameter.

� Heat and mass transfer rate are the decreasing function of high thermophoresis

parameter.

5.2 Chapter 4

The present consideration is to analyze the Casson nano�uid �ow over a stretchable cylin-

der with Darcy-Forchheimer spongy structure. Additional e¤ects of Arrhenius Activation

energy is also considered. The novelty of the presented model is enhanced by including

the in�uence of motile gyrotactic microorganisms with convective boundary condition.

Solution (numerical) of the problem is attained via MATLAB software function bvp4c.

The signi�cant observations of the problem are appended as follows:

� The velocity pro�le is lessening function of Darcy-Forchheimer number.

� The temperature of the �uid expands for escalating estimates of Brownian motion

parameter as well as for thermophoresis parameter.

� Incrasing values of activation energy enhances the concentration while reduction is

seen in the Sherwood number.

� For increasing estimates of Brownian motion variable, the concentration is on the

decline.

� Microorganisms pro�le dwindles for higher values of Peclet number and Bio-convection

Lewis number.

� Microorganisms pro�le is in direct relation with Hartman number.
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� The density of motile microorganisms is dwindled for large values of Bio-convection

constant.

� The density number of microorganisms enhances on increasing values of curvature

parameter, Prandtl number and Brownian motion parameter while diminishes for

Hartman number.

5.3 Future work

In this work, the e¤ects of activation energy and Bio-convection on Casson nano�uid have

been analyzed. However, there remains a need to further build on the current work so as

to bring improvement about the concerned discourse. Few interesting possible extensions

that could be researched in future are as follows:

� Any other non-Newtonian �uid along with appropriate boundary conditions.

� The Tiwari and Das model may be adopted with appropriate combination of nano

particles and the base �uid.

63



Bibliography

[1] Imtiaz, M., Hayat, T., & Alsaedi, A. (2016). Mixed convection �ow of Casson

nano�uid over a stretching cylinder with convective boundary conditions. Advanced

Powder Technology, 27(5), 2245-2256.

[2] Mukhopadhyay, S. (2011). E¤ects of slip on unsteady mixed convective �ow and heat

transfer past a porous stretching surface. Nuclear engineering and design, 241(8),

2660-2665.

[3] Hayat, T., Shehzad, S. A., Alsaedi, A., & Alhothuali, M. S. (2012). Mixed convection

stagnation point �ow of Casson �uid with convective boundary conditions. Chinese

Physics Letters, 29(11), 114704.

[4] Turkyilmazoglu, M. (2013). The analytical solution of mixed convection heat trans-

fer and �uid �ow of a MHD viscoelastic �uid over a permeable stretching surface.

International Journal of Mechanical Sciences, 77, 263-268.

[5] Shehzad, S. A., Alsaedi, A., Hayat, T., & Alhuthali, M. S. (2014). Thermophore-

sis particle deposition in mixed convection three-dimensional radiative �ow of an

Oldroyd-B �uid. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 787-

794.

[6] Xu, H., & Pop, I. (2014). Mixed convection �ow of a nano�uid over a stretching

surface with uniform free stream in the presence of both nanoparticles and gyrotactic

microorganisms. International Journal of Heat and Mass Transfer, 75, 610-623.

64



[7] Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of �uids

with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne Na-

tional Lab., IL (United States).

[8] Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anom-

alously increased e¤ective thermal conductivities of ethylene glycol-based nano�uids

containing copper nanoparticles. Applied physics letters, 78(6), 718-720.

[9] Crane, L. J. (1970). Flow past a stretching plate. Zeitschrift für angewandte Math-

ematik und Physik ZAMP, 21(4), 645-647.

[10] Malik, M. Y., Naseer, M., Nadeem, S., & Rehman, A. (2014). The boundary layer

�ow of Casson nano�uid over a vertical exponentially stretching cylinder. Applied

Nanoscience, 4(7), 869-873.

[11] Ramesh, G. K., Kumar, K. G., Shehzad, S. A., & Gireesha, B. J. (2018). Enhance-

ment of radiation on hydromagnetic Casson �uid �ow towards a stretched cylinder

with suspension of liquid-particles. Canadian Journal of Physics, 96(1), 18-24.

[12] Hayat, T., Shah, F., Khan, M. I., & Alsaedi, A. (2017). Framing the performance

of heat absorption/generation and thermal radiation in chemically reactive Darcy-

Forchheimer �ow. Results in Physics, 7, 3390-3395.

[13] Sajid, T., Sagheer, M., Hussain, S., & Bilal, M. (2018). Darcy-Forchheimer �ow of

Maxwell nano�uid �ow with nonlinear thermal radiation and activation energy. AIP

Advances, 8(3), 035102.

[14] Muskat, M. (1946). The �ow of homogeneous �uids through porous media (No. 532.5

M88).

[15] Rashid, S., Khan, M. I., Hayat, T., Ayub, M., & Alsaedi, A. (2019). Darcy�

Forchheimer �ow of Maxwell �uid with activation energy and thermal radiation

over an exponential surface. Applied Nanoscience, 1-11.

65



[16] Rashid, M., Hayat, T., & Alsaedi, A. (2019). Entropy generation in Darcy�

Forchheimer �ow of nano�uid with �ve nanoarticles due to stretching cylinder. Ap-

plied Nanoscience, 9(8), 1649-1659..

[17] Waqas, M., Naz, S., Hayat, T., & Alsaedi, A. (2019). Numerical simulation for acti-

vation energy impact in Darcy�Forchheimer nano�uid �ow by impermeable cylinder

with thermal radiation. Applied Nanoscience, 1-10.

[18] Hayat, T., Aziz, A., Muhammad, T., & Alsaedi, A. (2019). E¤ects of binary

chemical reaction and Arrhenius activation energy in Darcy�Forchheimer three-

dimensional �ow of nano�uid subject to rotating frame. Journal of Thermal Analysis

and Calorimetry, 136(4), 1769-1779.

[19] Saeed, A., Tassaddiq, A., Khan, A., Jawad, M., Deebani, W., Shah, Z., & Islam, S.

(2020). Darcy-Forchheimer MHDHybrid Nano�uid Flow and Heat Transfer Analysis

over a Porous Stretching Cylinder. Coatings, 10(4), 391.

[20] Mustafa, M., Khan, J. A., Hayat, T., & Alsaedi, A. (2017). Buoyancy e¤ects on the

MHD nano�uid �ow past a vertical surface with chemical reaction and activation

energy. International Journal of Heat and Mass Transfer, 108, 1340-1346.

[21] Bestman, A. R. (1990). Natural convection boundary layer with suction and mass

transfer in a porous medium. International Journal of Energy Research, 14(4), 389-

396.

[22] Maleque, K. (2013). E¤ects of exothermic/endothermic chemical reactions with Ar-

rhenius activation energy on MHD free convection and mass transfer �ow in presence

of thermal radiation. Journal of Thermodynamics, 2013.

[23] Abbas, Z., Sheikh, M., & Motsa, S. S. (2016). Numerical solution of binary chemical

reaction on stagnation point �ow of Casson �uid over a stretching/shrinking sheet

with thermal radiation. Energy, 95, 12-20.

66



[24] Lu, D., Ramzan, M., Ullah, N., Chung, J. D., & Farooq, U. (2017). A numerical

treatment of radiative nano�uid 3D �ow containing gyrotactic microorganism with

anisotropic slip, binary chemical reaction and activation energy. Scienti�c reports,

7(1), 17008.

[25] Huang, C. J. (2019). Arrhenius Activation Energy E¤ect on Free Convection About a

Permeable Horizontal Cylinder in Porous Media. Transport in Porous Media, 128(2),

723-740.

[26] Avramenko, A. A., & Kuznetsov, A. V. (2004). Stability of a suspension of gyrotactic

microorganisms in superimposed �uid and porous layers. International communica-

tions in heat and mass transfer, 31(8), 1057-1066.

[27] Mehryan, S. A. M., Kashkooli, F. M., Soltani, M., & Raahemifar, K. (2016). Fluid

�ow and heat transfer analysis of a nano�uid containing motile gyrotactic micro-

organisms passing a nonlinear stretching vertical sheet in the presence of a non-

uniform magnetic �eld; numerical approach. PloS one, 11(6), e0157598.

[28] Hussain, S. A., Muhammad, S., Ali, G., Shah, S. I. A., Ishaq, M., Shah, Z., ... &

Naeem, M. (2018). A bioconvection model for squeezing �ow between parallel plates

containing gyrotactic microorganisms with impact of thermal radiation and heat

generation/absorption. Journal of Advances in Mathematics and Computer Science,

1-22.

[29] Ali Lund, L., Omar, Z., Khan, I., Raza, J., Bakouri, M., & Tlili, I. (2019). Stability

Analysis of Darcy-Forchheimer Flow of Casson Type Nano�uid Over an Exponential

Sheet: Investigation of Critical Points. Symmetry, 11(3), 412.

[30] Rashad, A. M., & Nabwey, H. A. (2019). Gyrotactic mixed bioconvection �ow of

a nano�uid past a circular cylinder with convective boundary condition. Journal of

the Taiwan Institute of Chemical Engineers, 99, 9-17.

67



[31] Bhatti, M. M., Mishra, S. R., Abbas, T., & Rashidi, M. M. (2018). A mathemat-

ical model of MHD nano�uid �ow having gyrotactic microorganisms with thermal

radiation and chemical reaction e¤ects. Neural Computing and Applications, 30(4),

1237-1249.

[32] Ramzan, M., Chung, J. D., & Ullah, N. (2017). Radiative magnetohydrodynamic

nano�uid �ow due to gyrotactic microorganisms with chemical reaction and non-

linear thermal radiation. International Journal of Mechanical Sciences, 130, 31-40.

[33] Alsaedi, A., Khan, M. I., Farooq, M., Gull, N., & Hayat, T. (2017). Magneto-

hydrodynamic (MHD) strati�ed bioconvective �ow of nano�uid due to gyrotactic

microorganisms. Advanced Powder Technology, 28(1), 288-298.

[34] Khan, W. A., Rashad, A. M., Abdou, M. M. M., & Tlili, I. (2019). Natural biocon-

vection �ow of a nano�uid containing gyrotactic microorganisms about a truncated

cone. European Journal of Mechanics-B/Fluids, 75, 133-142.

[35] Kuznetsov, A. V. (2005). Thermo-bioconvection in a suspension of oxytactic bacte-

ria. International communications in heat and mass transfer, 32(8), 991-999.

[36] Kuznetsov, A. V. (2005). Investigation of the onset of thermo-bioconvection in a

suspension of oxytactic microorganisms in a shallow �uid layer heated from below.

Theoretical and Computational Fluid Dynamics, 19(4), 287-299.

[37] Khan, M. N., Khan, W. A., & Tlili, I. (2019). Forced convection of nano�uid �ow

across horizontal elliptical cylinder with constant heat �ux boundary condition. Jour-

nal of Nano�uids, 8(2), 386-393.

[38] Makinde, O. D., Iskander, T., Mabood, F., Khan, W. A., & Tshehla, M. S. (2016).

MHD Couette-Poiseuille �ow of variable viscosity nano�uids in a rotating permeable

channel with Hall e¤ects. Journal of Molecular liquids, 221, 778-787.

68



Saliha MS thesis 
ORIGINALITY REPORT 

9 % % 
SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS 

STUDENT PAPERS 

PRIMARY SOURCES 

Submitted to Higher Education Commission 
Pakistan 2% 
Student Paper 

Hina Sadaf, Sara I. Abdelsalam. "Adverse 
effects of a hybrid nanofluid in a wavy non- 

uniform annulus with convective boundaryy 
conditions", RSC Advances, 2020 

<1 

Publication 

Submitted to National Tsing Hua University 3 <1% Student Paper 

2Maria Imtiaz, Tasawar Hayat, Ahmed Alsaedi. <1 % "Mixed convection flow of Casson nanofluid over 
a stretching cylinder with convective boundary 
conditions", Advanced Powder Technology,
2016 
Publication 

www.nature.com 5 <1 % Internet Source 

www.mdpi.com <1 % Internet Source 

Dsol2020 


