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Abstract

The emphasis of this thesis is to present a thorough concept of analysis of

heat and mass transfer for Casson fluid along moving sheet in the presence of

thermal radiation and suction/injection effects. Firstly, mathematical formu-

lation is developed for momentum, energy and concentration profiles. Later

on, these PDEs are transformed into the dimensionless non-linear ODEs by

using similarity transformations and the boundary conditions are defined

with the thermal radiation term for the energy equation which is described

with two cases (PST and PHF). The acquired solution of the dimension-

less nonlinear ODEs will be evaluated by shooting method numerically using

MATLAB. Results thus obtained for different physical parameters, namely,

magnetic and Casson fluid parameter, stagnation point, Prandtl number, in-

ternal heat generation parameter, Schmidt number and thermal radiation on

each profile is being constructed and discussed in detail.
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Chapter 1

Introduction and literature review

Researches are confined around the boundaries of surface that is au-

thentic for very tiny viscosity or extreme Reynold’s number. Andersson [13]

established the closed form solution of complete N-S equations for magneto-

hydrodynamics flow in stretched surface by applying the similarity equations

without the approximations of the thin layer on the boundary. Due to the

dissipation of the term ∂2u
∂x2

from the N-S equation vertically, the results are

same as of the results obtained by Pavlov [4], calculated in the structure of

extreme Reynold’s number. Beyond the horizontal momentum equation is

opted to evaluate the pressure distribution that enhances with the normal

distance from the surface. Since Andersson [13] has never discussed implica-

tion of the layers on the boundaries, that’s why, the solution obtained by him

is of closed-form and also authentic for every Reynold’s number. Therefore,

Wang [7] has gathered this solution as an exact solution for N-S equations.

Non-Newtonian is the nonlinear relationship between shear stress and

deformation rate. For past decades, few substances in industries have signifi-

cantly been used, such as foams, emulsions and suspensions are considered to

be polymeric melts and solutions which are not assumed to be Newtonian pos-

tulates. These fluids are accordingly known as non-Newtonian. Some of the

utilization of these fluids are briefly stated in following table by Chhabra [18].

Table 1: Exhibition of non-Newtonian fluid behavior by some substances

Adhesives(wall paper, paste, carpet) Mine tailings and mineral suspensions
Biological fluid(blood, etc.) Paints, Polish and varnish
Animal waste slurries from cattle farm Greases and lubricating oils

The process is also applied in the Engineering and in accordance with the

Probstein [11], “homogeneous or heterogeneous reactions usually lead to an
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important heat release occurred with non-isothermal conditions that need a

suitable heat source term to be added in the heat transfer equation.” Anders-

son et al. [12] examined that stretched surface may contain some dispersal of

the chemically responsive species having isothermal condition and deduced

that the first order reaction has the valid solution as the closed-form. How-

ever, the application of heat and mass transfer is brought at all the surfaces

(Solid surface), it could better be studied when the nature of these effects

are fallen out for homogeneous type or it is only being occurred at the huge

fluid flow in the heat and mass transfer.

For non-isothermal stretched surface, the temperature distribution is be-

ing evaluated for two cases, ”prescribed surface temperature (PST) and pre-

scribed surface heat flux (PHF),” in which distance far from the origin has

linear proportionality to the surface thermal conditions Beyond this, the

problem of mass transfer is studied. Abramowitz and Stegun [2] have sug-

gested its analytic solutions in Kummer’s function with same conditions al-

ready being formulated in Andersson et al. [12]. In PST case, solution of

temperature can be established to that of the concentration by switching

some of the major parameters like α1, Sc, α2 and Pr.
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Chapter 2

Elementary concepts of fluid

This chapter deals with the basic definitions related to the concepts of

fluid are described in detail.

2.1 Fluid

A substance satisfying the deformation property under the application of

stress is called fluid.

2.2 Fluid mechanics

A type of mechanics where fluid’s flow is being studied. It can also be

described whether the fluid is in motion or at rest and can be further classified

into three types, they are; Fluid dynamics, kinematics and statics.

2.3 Fluid properties

There are some physical properties of fluid which are defined below:

2.3.1 Density

It is the change in the mass of fluid w.r.t its volume which is denoted by

ρ and is presented as

ρ =
m

V
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2.3.2 Viscosity

The change in the shear stress w.r.t rate of the deformation of fluid is

called viscosity. Greek letter µ̄ is symbol of viscosity. Mathematically

µ̄ =
shear stress

deformation rate

2.3.3 Kinematic viscosity

It is change in viscosity of fluid w.r.t. its density and it is denoted by ν.

Mathematically it can be expressed as

ν =
µ

ρ

2.4 Classification of fluid

Fluid is classified in the following two types.

2.4.1 Ideal fluid

Fluid with zero viscosity at each point is called ideal or inviscid fluid.

2.4.2 Real fluid

Fluid with non-zero viscosity at any point is known as real. Real fluid is

consisting of two types.

2.4.2.1 Newtonian fluid

Newtonian fluid that obeys Newton’s law of viscosity. Some of the examples

of such type are Air, water and mercury. Mathematically;
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τ̃yx = µ
dū

dy

Here τ̃yx, ū, dū
dy

and µ are the shear stress, velocity component, deforma-

tion rate and dynamic viscosity, respectively.

2.4.2.2 Non-Newtonian fluid

Non-Newtonian fluid fails to obey Newton’s law of viscosity. Blood, paints

and ketchup are some of its examples. Mathematically

τ̃yx = k̄(
dū

dy
)m

for m 6= 1, Here k̄ and m are consistency and behavior index, respectively.

2.4.3 Compressible fluid

Fluid in which the density does not remain constant and changes with T

and p̂ like gases.

2.4.4 Incompressible fluid

Fluid in which density remains unchanged with T and p̂ is called in-

compressible fluid. In general, all kind of liquids contain such properties of

incompressible.

2.5 Hydromagnetic flow

Hydromagnetics deal with behavior of electrically conducting fluids and

magnetic properties. Some of its examples are the plasmas, salt water and

electrolytes, etc.
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2.6 Prandtl number

Non-dimensional number which is change in kinematic viscosity w.r.t.

thermal diffusivity. Mathematically,

Pr =
ν

α

2.7 Reynolds number

It is dimensionless number which is a change in inertial forces to viscous

forces. Mathematically

Re =
ax2

ν

2.8 Schmidt number

A non-dimensional number defined as, ”The ratio of kinematic viscosity

and mass diffusivity is called Schmidt number.” Mathematically

Sc =
ν

D

2.9 Thermal radiation

It is an electromagnetic radiation emitted from a material due to heat and

its characteristics depends upon temperature, called thermal radiation.
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2.10 Heat and mass transfer

It is transfer of heat from one place to another through the movement of

particles of fluid which is basically a kinematic process. Similar motion of

particles through mass is called mass transfer.
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Chapter 3

Analysis of heat and mass transfer of

hydromagnetic flow over a stretching surface

This chapter is the analysis of heat transfer of hydromagnetic flow pass-

ing via stretched surface with transverse magnetic field. Governing PDEs of

momentum, energy and concentration are transformed into nonlinear ODEs

by applying compatible similarity variables. Furthermore, the solution of

nonlinear ODEs are computed by power series and attain results with dis-

cussion. This chapter is basically the review of [16].

3.1 Mathematical formulation and solution

Considering an electrically conducting incompressible fluid passing through

a non-conducting stretched sheet y = 0 having a velocity bx for positive b and

x as a horizontal coordinate. The fluid flows at y > 0 under the consideration

of uniform Bo. On the fixed origin, the coupled forces are applied to stretch

the sheet horizontally elsewhere the quiescent fluid’s motion is just driven by

stretching surface. Steady two dimensional equations of momentum, energy

and concentration for hydromagnetic fluid [15, 19] will be established as

ūx + v̄y = 0 (3.1)

ρ(ūūx + v̄ūy) = −p̂x + µ(ūxx + ūyy)− σB2
o ū (3.2)

ρ(ūv̄x + v̄v̄y) = −p̂y + µ(v̄xx + v̄yy) (3.3)
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Fig. 1: Geometry of problem

ūC̄x + v̄C̄y = D(C̄xx + C̄yy) + k1(C̄ − C̄∞) (3.4)

ρcp(ūT̄x + v̄T̄y) = k(T̄xx + T̄yy) +k2(T̄ − T̄∞) (3.5)

By neglecting electric field, induced magnetic field gives smaller value as

compare to applied magnetic field which results −σB2
o ū from the assumption.

In Eqs. (3.4) and (3.5), the positive values of k1 and k2 represent construc-

tive chemical reaction of species and internal heat generation, respectively

whereas the negative values of k1 and k2 are the destructive chemical reaction

and internal heat absorption, respectively. It is clearly seen that temperature

depends upon k1 while k1 is assumed to be constant by [16]. Temperature

and concentration fields do not have a cross effect from the assumptions in

Eqs. (3.4) and (3.5) by neglecting Dufour-Soret effects.
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Boundary conditions are defined as

ū = uw = bx, v̄ = 0, p̂ = p̂w, C̄ = C̄w = C̄∞+Bx,

PST: T̄ = T̄w = T̄∞+Ex,

PHF: qw = −kT̄y|y=0 = Ax (3.6)

ū → 0, C̄ → C̄∞, T̄ → T̄∞ at y → ∞ (3.7)

The above two equations depict B.Cs for the concentration and energy

equations.

3.2 Methods of Solution

3.2.1 Momentum transfer problem

Transformation, to calculate the exact solution of given hydromagnetic bound-

ary value problem, can be introduced as

ψ =
√
bνxF (η), p̂ = p̂w−

1

2
bµG(η), η =

√
b

ν
y (3.8)

Stream function ψ(x, y) in the form of velocity components is expressed as

ū =
∂ψ

∂y
= bxF ′(η), v̄ = −∂ψ

∂x
= −
√
bνF (η) (3.9)

Here, ν = µ
ρ
, the kinematic viscosity.

Utilizing Eq. (3.9) in the Continuity and momentum equations Eqs.

(3.1) − (3.3), Continuity equation is valid and the dimensionless ordinary
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differential equation of momentum equations can be obtained as

F ′′′−F ′2 +FF ′′−MF ′ = 0 (3.10)

G′ = 2(F ′′+FF ′) (3.11)

The transformed boundary conditions are

F (0) = 0, F ′(0) = 1, G(0) = 0, F ′(η → ∞) → 0 (3.12)

Here, M = σB2
o

ρb
is magnetic parameter. Let us assume the solution of Eq.

(3.10) satisfying boundary conditions in Eq. (3.12).

F (η) =
1

β
(1− e−βη) (3.13)

with β = (1 +M)
1
2 . The non-dimensional pressure can directly be obtained

by integrating Eq. (3.11)

G(η) = F 2 + 2F ′−2 (3.14)

Now, utilizing Eqs. (3.13) and (3.14) in the velocity components and pres-

sure, we obtain

ū = bxe−βη (3.15)

v̄ = −(bν)
1
2 (1−e−βη)/β (3.16)

p̂ = p̂w−
bµ

2β2
(e−2βη+2(β2−1)e−βη+(1−2β2)) (3.17)
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Here, Streamlines takes the form ψ = ψo as

y = −(
ν

b
)1/2ln[1−βψo(bν)−1/2x−1]/β (3.18)

and the skin friction coefficient is obtained as

Cf =
µdūdy |y=0

ρū2
w/2

=
2F ′′(0)

Re
1/2
x

= −2βRe−1/2
x (3.19)

where, Reynolds number is Re = ūwx/ν. According to [4, 5] and [19], the

velocity components remain identical throughout the boundary layer whereas

the pressure distribution Eq. (3.17) could be vanished in this region. The

boundary condition at y → ∞ on the velocity components and pressure

distribution will be

ū→ 0, v̄ → −(bν)1/2

β
, p = pw− cµ

(1
2 − β

2)

β2
(3.20)

The above conditions indicate that ū - component of the velocity tends

to zero and v̄ - component of the velocity is treated as constant and the

negative sign shows the downward direction. Nield [17] stated about the

model of Brinkman equation in which he compared the saturated porous

medium with uni-dimensional hydromagnetic fluid flow. Eqs. (3.15) and

(3.16) are same to the problems of such medium in Liu [16] whereas the

pressure between present literature and Liu [16] are not same due to which

the validity of 2-D comparison fails.
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3.2.2 Mass transfer problem

To obtain the non-dimensional concentration equation (3.4), we introduce a

transformation as

φ(η) = (C̄−C̄∞)/(C̄w−C̄∞) (3.21)

Applying the above transformations Eqs. (3.9), (3.13) and (3.21) in Eqs.

(3.4), (3.6) and (3.7), we get

d2φ

dη2
+Sc

(1− e−βη)
β

dφ

dη
+Sc(α1−e−βη)φ = 0 (3.22)

with transformed B.Cs

φ(η = 0) = 1, φ → 0 as η →∞ (3.23)

here, Sc = ν/D and α1 = k1/b are Schmidt number and reaction parameter,

respectively. Assuming a new variable with s = Sc/β2

ζ = −se−βη

Using the above assumption in Eqs. (3.22) − (3.23), we obtain the non-

dimensional ODE

ζ
d2φ

dζ2
+(1−s−ζ)

dφ

dζ
+(1+sα1/ζ)φ = 0 (3.24)
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with

φ(ζ = −s) = 1, φ→ 0 as ζ → 0− (3.25)

The solution of Eq. (3.24) is obtained in the standard Kummer’s equation [2]

as

φ(ζ) = (
ζ

−s
)a+bM(a+b−1, 2b+1, ζ)/M(a+b−1, 2b+1,−s) (3.26)

where

a = s/2, b = (s2 − 4α1s)
1/2/2, M(p, q, t) = 1 +

∞∑
m=1

(p)m
(q)m

tm

m!

is Kummer’s function

(p)m = p(p+1)(p+2)...(p+m−1), (q)m = q(q+1)(q+2)...(q+m−1)

(3.27)

It is written in the form of η as

φ(η) = e−β(a+b)ηM(a+b−1, 2b+1,−se−βη/M(a+b−1, 2b+1,−s)

(3.28)
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The local Nusselt number for concentration field at the sheet can be obtained

as

Jw = −ρD∂C̄
∂y

(0) = −ρDBx(b/ν)1/2φ′(0) (3.29)

where

φ′(η = 0) = −β(a+ b) +
a+ b− 1

2b+ 1
sβ

M(a+ b, 2b+ 2,−s)
M(a+ b− 1, 2b+ 1,−s)

(3.30)

3.3 Heat transfer problems

3.3.1 PST case

To get non-dimensional temperature equation can be obtained by using the

transformation

θ(η) =
T̄ − T̄∞
T̄w − T̄∞

Utilizing above transformation, Eqs. (3.9) and (3.13) in Eqs. (3.5)− (3.7),

we get

d2θ

dη2
+Pr

(1− e−βη)
β

dθ

dη
+Pr(α2− e−βη)θ = 0 (3.31)
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and reduced boundary conditions

θ(η = 0) = 1, θ → 0 as η → ∞ (3.32)

where, Pr = µcp/k and α2 = k2/ρcpb are Prandtl number and internal heat

parameter, respectively. It is seen that solution of Eq. (3.31) is similar to

the solution of Eq. (3.22). Therefore its solution may directly be given as

θ(η) = e−β(p+q)ηM(p+q−1, 2q+1,−re−βη)/M(p+q−1, 2q+1,−r)

(3.33)

for

r = Pr/β2 , p = r/2 , q = (r2−4α2r)
1/2/2 (3.34)

Nusselt number at given surface is developed from the rate of heat transfer,

as

Nux =
−kT̄y

k(T̄w − T̄∞)
x = −(

bx2

ν
)1/2θ′(0) = Re1/2

x θ′(0) (3.35)

and the non-dimensional temperature gradient is;

θ′(η = 0) = −β(p+ q) +
p+ q − 1

2q + 1
rβ

M(p+ q, 2q + 2,−r)
M(p+ q − 1, 2q + 1,−r)

(3.36)



18

3.3.2 PHF case

Here, non-dimensional temperature is considered to be

T̄ − T̄∞ =
Ax

k(b/ν)1/2
Φ(η) (3.37)

and temperature profile with B.Cs. are written as

d2Φ

dη2
+Pr

(1− e−βη)
β

dΦ

dη
+Pr(α2−e−βη)Φ = 0 (3.38)

and

Φ′(η = 0) = −1 , Φ → 0 at η → ∞ (3.39)

The above equation will yield a solution as

Φ(η) =
1

β

e−β(p+q)ηM(p+q−1,2q+1,−re−βη)

(p+ q)M(p+ q − 1, 2q + 1,−r)− r p+q−1
2q+1 M(p+ q, 2q + 2,−r))

(3.40)

here, surface temperature is

T = T̄∞ +
Ax

k
(ν/b)1/2Φ(0) (3.41)

where

Φ(η = 0) =
M(p+ q − 1, 2q + 1,−r)

β(p+ q)M(p+ q − 1, 2q + 1,−r)− rβ p+q−1
2q+1

M(p+ q, 2q + 2,−r)

(3.42)
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3.4 Results and discussion

Velocity [ū, v̄, 0] and p̂ are obtained using Anderson [13] for heat and mass

transfer of hydromagnetic flow on stretching surface with uniform magnetic

field to get the exact solution for heat transfer with its generation/absorption

and for mass transfer using some chemical reaction of first order.

Due to application of the similarity variables in Eqs. (3.8) − (3.9), the

momentum diffusion terms vanish and these terms are generally being ne-

glected in boundary layer theory. A similarity variable for pressure in Eq.

(3.8) is used to get the values of pressure gradient along y - axis (i.e.) ∂p
∂y

,

the mass diffusion terms of the concentration and temperature profile are

vanished by applying Eqs. (3.8) − (3.9). The validity of the concentration

and temperature solutions lies with the following limitations.

α1 ≤ Sc
4(1+M) and α2 ≤ Pr

4(1+M)

If the values of M is increased, the range of above two parameters will be

decreasing whereas the increase in the values of dimensionless numbers Pr

and Sc will increase α1 and α2, respectively. One very interesting behavior

is observed in these reactions that the validity of concentration solution is

for the destructive reaction (α1 < 0) whereas the validity of temperature

solutions is for internal heat absorption (α2 < 0) rather than generation.

To analyze the variation of velocity profile with magnetic parameter, Fig.

(2) illustrates that increasing magnetic field decreases velocity in the field. In

order to study the temperature at wall of the sheet or far from the sheet, it is

observed the higher temperature at wall rather than far from it. Figs. (3) and

(4) clearly depict non-dimensional temperature profiles θ(η) tend to zero for

some of the physical parameters in both PST and PHF cases. Comparative

study of curves with parameters assigned in both figures, curves increase with
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increasing values of M and α2 and the internal heat parameter decreases

with non-dimensional Prandtl number. However M has no direct interaction

with temperature profile rather acts from the velocity profile due to which it

increases the temperature profile indirectly. The two cases (PST and PHF)

for the temperature field are being discussed to check the dependence of

θ on α2 because increasing value of α2 results in implication of higher heat

generation in the fluid so as the temperature on both cases may be increased.

In Figs. (5) and (6), temperature profile is variated for values of Prandtl

number and is seen an increase in Prandtl number decreases temperature but

one very interesting behavior is observed that the reduction of temperature

in PST case is thickened on greater values of Pr and meets at unity whereas

in PHF case it does not meet about unity rather disperses for greater values

of Prandtl number.

Variations of concentration profile are also shown in the figures and change

in profile is observed. Fig. (7) shows the increase in concentration by increas-

ing magnetic parameter and Fig. (8) depicts the decrease in concentration

profile by increasing values of Schmidt number. In Fig. (9), interesting

behavior is observed that increasing reaction rate parameter α1 increases

concentration profile and huge difference is seen for α1 > 0.9.
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Fig. 2: Effects of magnetic paramter on velocity profile

Fig. 3: Variation of temperature for selected parameters
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Fig. 4: Variation of temperature for selected parameters

Fig. 5: Variation of Prandtl number on temperature profile



23

Fig. 6: Variation of Prandtl number on temperature profile

Fig. 7: Variation of magnetic parameter on concentration profile
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Fig. 8: Variation of Schmidt number on concentration profile

Fig. 9: Variation of reaction parameter on concentration profile
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Chapter 4

Analysis of heat and mass transfer for Casson

fluid along moving sheet in presence of

thermal radiation and suction/injection

effects

This chapter is based on description of the literature on heat and mass

transfer. Mathematical modeling is developed that is based upon momen-

tum, energy and concentration equation. Constraints are defined for bound-

ary layer flow. Finally, a numerical method is applied to attain the stable

solution of entire mathematical model and hence, determined the velocity,

temperature and concentration profile.

4.1 Mathematical formulation

Considering an electrically conducting incompressible fluid passing through

a non-conducting and flat impermeable stretched sheet y = 0 having a veloc-

ity bx for positive b and x are set horizontal in coordinate plane. The fluid

flows on y > 0 under the consideration of uniform Bo. On the fixed origin,

the coupled forces are applied to stretch the sheet horizontally elsewhere the

quiescent fluid’s motion is just driven by stretching surface. The rheological

equation for an isotropic flow [6] is defined as

τ̄ij = 2(µB + p̄y/
√

2π̄)ēij , π̄ > π̄c

= 2(µB + p̄y/
√

2π̄c)ēij , π̄ < π̄c

where π̄ = ēij ēij is the (i, j)th component of the deformation rate, π̄ is its

product with itself, π̄c is the critical value of this product based on the non-
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Newtonian model, µB is plastic dynamic viscosity, and p̄y is yielded stress of

the fluid.

The governing equations of 2-D Casson fluid are expressed as

ūx + v̄y = 0, (4.1)

ρ(ūūx+v̄ūy) = −∂p̂
∂x

+µ(1+
1

γ
)(ūxx+ūyy)+ūe

dūe
dx
−σB2

o(ū−ūe), (4.2)

ρ(ūv̄x+ v̄v̄y) = −∂p̂
∂y

+µ(1+
1

γ
)(v̄xx+ v̄yy), (4.3)

ūC̄x + v̄C̄y = D(C̄xx + C̄yy) + k1(C̄ − C̄∞), (4.4)

ρcp(ūT̄x+ v̄T̄y) = k(T̄xx+T̄yy)+k2(T̄−T̄∞)− ∂qr
∂y

. (4.5)

where, γ = µB
√

2π̄c/p̄y is Casson parameter of non-Newtonian fluid. Smaller

value of induced magnetic field is obtain on neglecting electric field as com-

pare to applied magnetic field which results −σB2
ou from the assumption in

the case of magnetic field normal to velocity field. In Eqs. (4.4) and (4.5),

the positive values of k1 and k2 represent constructive chemical reaction of

species and internal heat generation, respectively whereas the negative values

of k1 and k2 are the destructive chemical reaction and internal heat absorp-

tion, respectively. It is observed above that temperature depends upon k1

while k1 is assumed to be constant by [16].

qr in Eq. (4.5) can be written using Rosseland approximation [3] as

qr = −4σ∗

3k∗
∂T̄ 4

∂y
,

Here T̄ 4 can be expanded through Taylor’s series by neglecting its higher
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orders, we can get as T̄ 4 ≡ 4T̄ 3
∞T̄ −3T̄ 4

∞. Therefore, Eq. (4.5) can be written

as

ρcp(ūT̄x+v̄T̄y) = k(T̄xx+T̄yy)+k2(T̄−T̄∞)+
16σ∗T̄ 3

∞
3k∗

T̄yy. (4.6)

The boundary conditions are defined as

ū = ūw = bx, v̄ = v̄w = cx, p = pw, C̄ = C̄w = C̄∞+Bx,

PST: T̄ = T̄w = T̄∞+Ex,

PHF: qw = −k ∂T̄∂y = Ax at y → 0. (4.7)

ū → ūe = ax, C̄ → C̄∞, T̄ → T̄∞ at y → ∞. (4.8)

Transformation to calculate numerical solution of given boundary prob-

lem of hydromagnetic fluid can be introduced as

ψ =
√
bνxF (η), p = pw−

1

2
bµG(η), η =

√
b

ν
y. (4.9)

Stream function in the form of velocity components are expressed as

ū =
∂ψ

∂y
= bxF ′(η), v̄ = −∂ψ

∂x
= −
√
bνF (η), (4.10)

φ(η) = (C̄−C̄∞)/(C̄w−C̄∞), (4.11)
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PST case:

θ(η) = (T̄−T̄∞)/(T̄w−T̄∞). (4.12)

PHF case:

T̄ − T̄∞ =
Ax

k(b/ν)1/2
Φ(η). (4.13)

Here, ν = µ
ρ
, the kinematic viscosity.

Utilizing Eq. (4.10)−(4.12) in Continuity, momentum, concentration and

energy equations (4.1)− (4.4) and (4.6), Continuity equation is satisfied and

the dimensionless ordinary differential equation of momentum, concentration

and energy equations for F , G, φ and θ can be obtained as;

(1+
1

γ
)F ′′′−F ′2+FF ′′+M(r−F ′)+r2 = 0, (4.14)

G′ = 2(1+
1

γ
)F ′′+2FF ′, (4.15)

φ′′+Sc F φ′+Sc(α1−F ′)φ = 0, (4.16)

(1+
4R

3
)θ′′+Pr F θ′+Pr(α2−F ′)θ = 0. (4.17)

The transformed B.Cs are

F (0) = −S, F ′(0) = 1, G(0) = 0,

F ′ → r as η →∞, (4.18)

φ(η = 0) = 1, φ→ 0 as η →∞, (4.19)

PST case: θ(η = 0) = 1, θ → 0 at η → ∞, (4.20)
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PHF case:

Φ′(η = 0) = −1 , Φ → 0 at η → ∞. (4.21)

For S > 0 is suction and S < 0 is an injection parameter. M = σB2
o

ρb
, magnetic

parameter with β = (1 + M)
1
2 . α1 = k1/b, reaction parameter, Pr = µcp/k,

Prandtl number, α2 = k2/ρcpb, internal heat parameter and r = a
b

is the

stagnation point.

4.2 Numerical solution

To solve the nonlinear ODEs Eqs. (4.14)− (4.17) numerically by shooting

method. We assume the functions as;

F = y1, F ′ = y2, F ′′ = y3,

F ′′′ = y′3 = (y2
2−y1y3−M(r−y2)−r2)/(1+

1

γ
), (4.22)

G = y4, G′ = y′4 = 2(y1y2+y3), (4.23)

θ = y5, θ′ = y6,

θ′′ = y′6 = (−Pr(1− e−βη)
β

y8−Pr(α2−e−βη)y7)/(1+
4

3
R), (4.24)

φ = y7, φ′ = y8,

φ′′ = y′8 = −Sc(1− e−βη)
β

y11−Sc(α1−e−βη)y10. (4.25)
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The transformed boundary conditions in Eqs. (4.18)− (4.21) become

y1(0) = −S, y2(0) = 1, y4(0) = 0, y2(η →∞)→ r, (4.26)

PST Case:

y5(0) = 1, y5(η →∞)→ 0, (4.27)

PHF Case:

y5(0) = −1, y5(η →∞)→ 0, (4.28)

y7(0) = 1, y7(η →∞)→ 0 (4.29)

The above nonlinear ODEs are solved by using the bvp4c of MATLAB to

get the solutions graphically.

4.3 Results and discussion

In order to obtain required results of above boundary value problems. we first

transformed all the PDEs of momentum, energy and concentration into non-

linear ODEs by similarity transformation with their corresponding boundary

conditions. One very interesting behavior is observed that the energy equa-

tion is being transformed into two case: The PST case and The PHF case.

The results for both of these cases are shown independently through graphs.

The nonlinear ODEs are illustrated for the velocity, temperature and concen-

tration profiles and the effects are seen with all physical parameters involved.



31

The effects of some of physical parameters are seen in velocity profile

where the magnetic parameter, stagnation point and Casson fluid are de-

picted and interesting behavior is seen. Fig. (10) illustrates effect of stagna-

tion point on velocity distribution in which velocity increases with increasing

stagnation point.

In Figs. (11) and (12), it is observed that velocity decreases with an

increase in magnetic parameter and Casson fluid. One more thing is observed

while applying Casson fluid, γ on velocity that for very large values of γ, the

velocity distribution gives a straight line, consequently.

Figs. (13a) and (13b) illustrate the effects of temperature distribution for

PST and PHF cases. It is seen that increasing values of magnetic parame-

ter, M for Pr = 6.7, thermal radiation and internal heat parameter results

in increasing of temperature distribution in both PST and PHF cases. In-

terestingly, temperature distribution for PST case meets at unity whereas

it does not meet at unity for PHF case rather disperses on greater values.

This behavior is observed for all temperature profiles on different physical

parameters.

In Figs. (14a) and (14b), temperature decreases with increase Prandtl

number for PST and PHF cases with fixed internal heat parameter, α2 = 0.1.

Same behavior is observed as previous Figs. (14a) and (14b) that temper-

ature converges at unity in PST case but not in PHF. This is because of

adiabatic temperature in the boundary condition. This result is seen at a

particular point of the flow.

Figs. (15a) and (15b) depict the variation of temperature for the values

thermal radiation. Increase in thermal radiation results an increase in tem-

perature profile. The adiabatic temperature in boundary condition has an

effect on temperature distribution for the thermal radiation and convergence
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at unity is again seen in PST case except on the PHF case.

In Figs. (16a) and (16b), the variation of temperature profile is ana-

lyzed for magnetic parameter at internal heat parameter tends to zero i.e.

α2 → 0. Increasing magnetic parameter increases temperature distribution.

Interestingly, the effect of all parameters on temperature depict convergence

at unity in PST case but not in PHF case and one more thing is observed

here that temperature distribution is qualitatively same in PST and PHF

cases whereas quantitatively different.

Figs. (17) and (18) depict the variations of M and Sc on concentration

profile. Concentration increases with increase in magnetic parameter whereas

decreases with the increase in the values of Schmidt number. Fig. (19)

illustrates the effects of suction parameter on velocity profile where increasing

suction parameter increases velocity distribution.
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Chapter 5

Conclusion

Initially, an article was reviewed and formulated its mathematical equa-

tions. Later, equations are solved analytically to get its closed form solution.

The parameters obtained from these equations were shown graphically using

Mathematica. At the end, a thorough discussion on results and graphs are

upheld.

Addition of some new parameters in review article took place in an exten-

sion work where mathematical equations have been passed through numerical

solution of nonlinear ODEs and are analyzed for heat and mass transfer of

Casson fluid with thermal radiation and magnetic field. The following points

are noted from the above results.

• Increasing magnetic parameter decreases velocity distribution.

• Two cases (PST and PHF) are analyzed for variable values of α2 in

which increasing magnetic parameter causes an increase in temperature

distribution.

• For both PST and PHF case, increase in Pr decreases temperature

distribution.

• Different behavior is observed in variation of concentration profile for

M , Sc and α1.

• Velocity profile increases on the stagnation point and magnetic param-

eter whereas decreases for the Casson fluid.

• Interesting behavior is seen in the temperature profile with its both

cases (PST and PHF) on magnetic parameter, Prandtl number, internal

heat parameter and thermal radiation.
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• Magnetic parameter and thermal radiation increase the temperature

distribution for Pr = 6.7 and α2 → 0, α2 = 0 whereas Prandtl number

decrease temperature profile.

• Effects of the magnetic parameter and Schmidt number are also seen

in the concentration profile.

• Magnetic parameter increases concentration whereas Schmidt number

decreases.
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