
Dual nature study of convective heat

transfers of nanofluid along a shrinking

surface in a porous medium with thermal

radiation

Thesis Submitted By

ALI RAZA

01-248172-001

Supervised By

Dr. Rizwan ul Haq

A dissertation submitted to the Department of Computer

Science, Bahria University, Islamabad as a partial fulfillment

of the requirements for the award of the degree of MS

Session (2017 - 2019)



i

Copyright c© 2019 by Ali Raza

All rights reserved. No part of this thesis may be reproduced, distributed,

or transmitted in any form or by any means, including photocopying, record-

ing, or other electronic or mechanical methods, by any information storage

and retrieval system without the prior written permission of the author.



ii

Dedicated to

My worthy parents and respected teachers

whose prays and support have always been a source of inspiration

and encouragement for me

My caring and supporting wife and lovely daughters

have always given me care and love.



iii

Acknowledgments

I am thankful to Almighty ALLAH Who has enabled me to learn and to

achieve milestones towards my destination and His beloved Prophet Hazrat

Muhammad ( ) Who is forever a constant source of guidance, a source of

knowledge and blessing for entire creation. His teachings show us a way to

live with dignity, stand with honor and learn to be humble.

My acknowledgment is to my kind, diligent and highly zealous super-

visor, Dr. Rizwan ul Haq, who supported me with his cherished opinions

and inspirational discussions. His valuable expertise, comments, suggestions

and instructions are most welcome that greatly improved the clarity of this

document. I am placing my earnest thanks to Dr. Rizwan ul Haq. I am so

grateful to work under the supervision of such a great person.

My gratitude is to my honorable professors who took me to the apex

of my academia with their guidance. In particular, Prof. Dr. Muhammad

Ramzan and Dr. Jafar Hasnain who have always been supportive in all of

my course work and kept encouraging me throughout the session in Bahria

University, Islamabad Campus. They are the true teachers who have made

Mathematics Department of BUIC, a real place of learning.

My intense recognition is to my mother, brothers, sisters and wife (for

every thing) who are always real pillars for my encouragement and showered

their everlasting love, care and support throughout my life. Humble prayers,

continuing support and encouragement of my family are as always highly

appreciated.

As usual, so many friends and my class-mates have helped me through-

out my MS that I cannot list them all. In particular, Dr. Abid Majeed,

Hamid Shehzad, Shahid Iqbal, Muhammad Zubair, Umar Ali Shah, Syed

Saqib Shah, Syed Hammad Shah, Adeela Mubeen and Salma Batool were



iv

specially remained enormously helpful throughout the period of my MS stud-

ies.

Consequently, My all plea is to Allah, the Almighty, the beneficent

Whose blessings are always showered upon me via strengthening my wis-

dom and bestowed me with the knowledge of what he wants.

Ali Raza

Bahria University Islamabad, Pakistan

June, 2019



v

Contents

Abstract 1

1 Introduction and Literature review 2

2 Fundamental concepts and definitions 5

2.1 Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Fluid mechanics . . . . . . . . . . . . . . . . . . . 5

2.3 Physical properties of fluid . . . . . . . . . . . . 5

2.3.1 Density . . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 Dynamic viscosity . . . . . . . . . . . . . . . . . . 6

2.3.3 Kinematic viscosity . . . . . . . . . . . . . . 6

2.4 Classification of fluid . . . . . . . . . . . . . . . . 6

2.4.1 Ideal fluid . . . . . . . . . . . . . . . . . . . . 6

2.4.2 Real fluid . . . . . . . . . . . . . . . . . . . . 7

2.4.2.1 Newtonian fluid . . . . . . . . . . . . . . 7

2.4.2.2 Non-Newtonian fluid . . . . . . . . . . . 7

2.4.3 Compressible fluid . . . . . . . . . . . . . . . 7

2.4.4 Incompressible fluid . . . . . . . . . . . . . . 8

2.5 Two-Dimensional flow . . . . . . . . . . . . . . . 8



vi

2.6 Boundary layer . . . . . . . . . . . . . . . . . . . 8

2.7 Porous medium . . . . . . . . . . . . . . . . . . . 8

2.8 Heat and mass transfer . . . . . . . . . . . . . . 9

2.9 Nanofluids . . . . . . . . . . . . . . . . . . . . . . 9

2.10 Thermal radiation . . . . . . . . . . . . . . . . . . . 9

2.11 Some useful non-dimensional numbers . . . . . . 10

2.11.1 Prandtl number . . . . . . . . . . . . . . . . . 10

2.11.2 Reynolds number . . . . . . . . . . . . . . . . 10

2.11.3 Biot number . . . . . . . . . . . . . . . . . . . 10

2.11.4 Nusselt number . . . . . . . . . . . . . . . . . . 11

3 Closed form dual nature solutions of fluid flow and

heat transfer over a stretching/shrinking sheet in a porous

medium 12

3.1 Mathematical formulation and solution . . . . . . . 12

3.2 Results and discussion . . . . . . . . . . . . . . . . . 20

4 Dual nature study of convective heat transfers of

nanofluid along a shrinking surface in a porous medium with

thermal radiation 32

4.1 Mathematical modelling and exact solution . . . . 32



vii

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Results and discussion . . . . . . . . . . . . . . . . . 39

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 51

References 53



viii

List of Figures

1 Solution β as function of S . . . . . . . . . . . . . . . . . . . . 22

2 Solution β as function of Ξ . . . . . . . . . . . . . . . . . . . . 22

3 Solution β as function of α . . . . . . . . . . . . . . . . . . . . 23

4 Variations of skin friction with S . . . . . . . . . . . . . . . . 23

5 Variations of skin friction with α . . . . . . . . . . . . . . . . 24

6 Variations of skin friction with Ξ . . . . . . . . . . . . . . . . 24

7 Variations of skin friction with Φ . . . . . . . . . . . . . . . . 25

8 Effects of suction parameter on velocity profile . . . . . . . . . 25

9 Effects of stretching parameter on velocity profile . . . . . . . 26

10 Effects of viscosity ratio parameter on velocity profile . . . . . 26

11 Effects of porous medium parameter on velocity profile . . . . 27

12 Streamlines for stretching parameter, α = −0.05 . . . . . . . . 27

13 Streamlines for stretching parameter, α = −0.1 . . . . . . . . 28

14 Streamlines for stretching parameter, α = −0.3 . . . . . . . . 28

15 Variations of Nusselt number with suction parameter . . . . . 29

16 Variations of Nusselt number with viscosity ratio parameter . 29

17 Effects of suction parameter on temperature profile . . . . . . 30

18 Effects of Biot number on temperature profile . . . . . . . . . 30

19 Effects of viscosity ratio parameter on temperature profile . . 31

20 Effects of porous medium parameter on temperature profile . . 31

21 Geometry of the problem . . . . . . . . . . . . . . . . . . . . . 33

22 Solution β as function of S . . . . . . . . . . . . . . . . . . . . 42

23 Solution β as function of Ξ . . . . . . . . . . . . . . . . . . . . 42

24 Solution β as function of α . . . . . . . . . . . . . . . . . . . . 43

25 Solution β as function of Φ . . . . . . . . . . . . . . . . . . . . 43

26 Variations of skin friction with S . . . . . . . . . . . . . . . . 44



ix

27 Variations of skin friction with α . . . . . . . . . . . . . . . . 44

28 Variations of skin friction with Ξ . . . . . . . . . . . . . . . . 45

29 Variations of skin friction with Φ . . . . . . . . . . . . . . . . 45

30 Effects of suction parameter, S, on velocity profile . . . . . . . 46

31 Effects of stretching parameter, α, on velocity profile . . . . . 46

32 Effects of viscosity ratio parameter, Ξ, on velocity profile . . . 47

33 Effects of porous medium parameter, Φ, on velocity profile . . 47

34 Variations of Nusselt number with suction parameter, S . . . . 48

35 Effects of suction parameter, S, on temperature profile . . . . 48

36 Effects of Biot number, Bi, on temperature profile . . . . . . . 49

37 Effects of viscosity ratio parameter, Ξ, on temperature profile 49

38 Effects of porous medium parameter, Φ, on temperature profile 50

List of Tables

1 Thermophysical properties of fluid and nanofluid . . . . . . . . 41



x

Nomenclature

V velocity vector
ρ fluid’s density
T fluid’s temperature
τ Cauchy stress tensor
µeff effective viscosity
µ dynamic viscosity
ρCp heat capacity
knf effective thermal conductivity of nanofluid
v̄w surface mass transfer
h̄f heat transfer coefficient
T̄f convective fluid temperature
T̄∞ temperature at infinity
a, b positive constant numbers
K permeability of porous medium
Cf skin friction coefficient
Nu local Nusselt number
τ̄w skin friction at wall
q̄w heat transfer
α stretching parameter
Ξ viscosity ratio parameter
Pr Prandtl number
Φ porous medium parameter
Bi Biot number
S mass suction parameter
Re Reynolds number
ν kinematic viscosity
φ nanofluid volume fraction



1

Abstract

The aim of this thesis is to express whole concept of analytic dual nature

exact solutions. The thorough study of the heat transfers of nanoparticles

of fluid along a shrinking surface in the presence of thermal radiation is an-

alyzed. Initially, mathematical formulation is extracted that is consisting

of momentum and energy equations. Later on, these PDEs of momentum

and energy are converted in the dimensionless non-linear ODEs by applying

some suitable similarity variables and the boundary conditions are defined

with the thermal radiation term. Then the acquired solution of the dimen-

sionless nonlinear ODEs will be evaluated by incomplete gamma solution,

analytically. The results obtained through solutions for different physical

parameters, namely, mass suction, stretching, porous medium, viscosity ra-

tio, Prandtl number, Biot number, nanoparticle volume friction and thermal

conductivity on velocity and temperature profiles are analyzed and elabo-

rated graphically. Graphical presentation of the skin friction and Nusselt

number also depicted.
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Chapter 1

Introduction and literature review

Medium containing a minute opening in the surface that allows passage

of fluids through these holes is called porous medium. The objects consist-

ing of the porous surfaces have void empty spaces or pores through which

fluid particles penetrate the object. It exists in a nature as sands, limestone,

wooden materials, tissue papers, human lungs and biological tissues. There

are many man-made materials containing pores like cements, foams, sponges

and many more. Electric conduction is one of the property of media whose

deduction tends to complexity. This media has widely been discussed in

applied sciences (such as geosciences, biology and biophysics and material

sciences) and engineering: filtration, mechanics. The flow under considera-

tion is being studied by Nield and Bejan [7] and some of the literature is also

being found in Pop and Ingham [6] comprehensively.

Flow around the surface is an essential concept in Fluid mechanics that

raises in the domain of the such surfaces in which the viscous result is impor-

tant. Governing equation of the Navier Stokes has greatly been made easier

to understand with assumptions of the layer in the immediate vicinity of the

fluid flow. In recent times, the flow on the boundary of fluid with the trans-

fer of heat is enormously engaged researchers due to its several consequential

utilizations of expulsion of liquefied polymer via slit die, glass wares, paper

making, metal spinning and artificial fiber etc. Sakiadis [1, 2] was the pio-

neer in the work about the boundary layer but his work was not done for a

closed form solutions. So, Crane [3] was the first to calculate the solution of

steady and 2-D stretching surfaces in closed form in which the velocity is far

from the boundary and is also proportional to distance from the fixed point.
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Later, many other researchers like Kumaran and Ramanaih [5], Miklavcic

and Wang [8], Fang and Zhang [13], Fang et al. [15], Salleh et al. [16] and

Qasim [23] have discussed the layer about the boundary over the stretch-

ing/shrinking surfaces. The analysis of such medium around the surfaces of

fluid flow on stretching/shrinking sheet has very significant feature that has

not been dealt with properly till now. Though, there are some researchers

who tempted to look into the study of flow in the stretching sheet and they

just endeavored the law introduced by Henry Darcy who acknowledged the

apparent equation developed for the movement of the flow in Newtonian

fluid at a tiny Reynold’s number. In accordance with this law, “The flow is

linearly dependent upon the pressure gradient and the velocity produced is

proportional to the pressure gradient.”

Khan and Pop [17] and [21, 22] inspected the flows on boundary of normal

nano-particles of fluids passing through a stretching/shrinking surfaces in

various thermic conditions on the boundaries. They also utilized some of

the models to evaluate the consequences of numbers with no dimensions and

framework for the nano particles of the fluid on skin friction. There were

many work discussed on shrinking sheet by some of the renowned researchers

such as Hayat et al. [10], Muhaimin et al. [11] and Wang [12].

According to the French engineer Leveque in 1928, “The convective heat

transfer in a flowing fluid is affected only by the velocity values very close

to the surface.” The flows affected from the very large Prandtl number may

influence the changes in the mass/temperature beyond the thin area near

the surface due to which the velocities in this area remain linear and have

the distance normal to this surface. Here, heat transfer analysis is performed

with many other models and their boundary conditions [20, 24, 26–29]

The recent research is attempted to analyze dual nature closed form so-
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lution for the given flow of the fluid and transfer of heat because of stretch-

ing/shrinking sheet inside medium through which the fluid can flow. That’s

why omission of the second order inertial term from the N-S equations are

supposed to be done with the Brinkman-Forchheimer model [7]. Further-

more, the slow motion of flow has been considered so that the term of change

in temperature vanishes in the momentum equations. The analysis in trans-

fer of Heat has been executed for some models with non-identical boundary

conditions. Consequently, the incomplete gamma function is obtained from

the solutions of velocity and temperature profiles. The descriptions of these

fields are then investigated precisely. The results obtained in this regard has

been taken out in an excellent form.

The nanometer-sized particles in a fluid are called nanoparticles and such

fluids are designed with the suspension of the mixture of nanoparticles in the

base fluids like water, ethylene glycol and oil. All those particles with size

less than 100 nanometers are of the characteristics varying from the usual

solids. As compare to the micro-sized particles, nanoparticles have greater

potential of the increase via heat transfer. Some researchers tempted hard

to get highly affected heat transfer fluids from suspension of nanoparticles

in the fluids. Choi (1995) remains the first to introduce the term nanofluids

obtained from the suspension of the nanoparticles. The fundamental usage of

the nanofluids are the increased thermal properties in heat transfer equipment

as coolants and performance of heat transfer may be remarkably boosted

by the suspension of the nanoparticles in heating or cooling fluids. Some

of the values of physical properties like heat capacity, density and thermal

conductivity have been used for both the base fluid (water) and nanofluid

particle (Cu) [9].



5

Chapter 2

Fundamental concepts and definitions

Some of the fundamental definitions and few laws associated with the

flow of fluid have been discussed in this chapter, briefly.

2.1 Fluid

The continuous deformation of a substance by applying stress on it, called

fluid.

2.2 Fluid mechanics

The type of mechanics dealt with the properties of fluid in motion or

at rest. It is subdivided into three categories. They are; fluid dynamics,

kinematics and statics. Fluid dynamics deals with study of the motion of

fluid’s particles. Fluid kinematics deals with study of the motion of fluid’s

particles without any external force acting upon it and the fluid statics is the

study of fluid’s particles which are at rest.

2.3 Physical properties of fluid

2.3.1 Density

Density is the ratio of mass and volume of the fluid’s particle and it is

expressed by ρ. Mathematically,

ρ =
m

V
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The dimension of density is [ML−3].

2.3.2 Dynamic viscosity

The ratio of the shear stress and rate of deformation is called dynamic

viscosity and is denoted by a Greek letter µ. Mathematically,

µ =
shear stress

deformation rate

Its dimension is [L2T−1].

2.3.3 Kinematic viscosity

It is the change in dynamic viscosity of the fluid to density. It is expressed

by ν. Mathematically kinematic viscosity is expressed as

ν =
dynamic viscosity

density
=
µ

ρ

2.4 Classification of fluid

2.4.1 Inviscid fluid

The fluid with zero viscosity is called ideal fluid or inviscid fluid.
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2.4.2 Real fluid

The fluid with viscosity which is not at zero, is called real fluid. This fluid

is classified into two types, they are;

2.4.2.1 Newtonian fluid

It is the fluid that obeys Newton’s law of viscosity. Some examples of such

type of fluid are the air, water, mercury, etc. Mathematically,

τ̃yx = µ
du

dy

Here τ̃yx , u, du
dy

and µ are the shear stress, velocity component, deformation

rate and viscosity, respectively.

2.4.2.2 Non-Newtonian fluid

It is such a fluid which does not obey Newton’s law of viscosity. Blood,

paints, ketchup, etc. are the examples. its mathematical expression is;

τ̃yx = k(
du

dy
)n

for n 6= 1, where, k and n are the consistency and behavior index, respec-

tively.

2.4.3 Compressible fluid

If the density of fluid changes with temperature and pressure, then such

kind of fluid is called a compressible fluid. One of most common example is
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of gases.

2.4.4 Incompressible fluid

If density is not depending upon the temperature and pressure, then such

a fluid is known as incompressible fluid. In general, liquids are considered to

be incompressible.

2.5 Two-Dimensional flow

Dimensions are basically the space coordinates and mostly the fluid mo-

tions are considered to be three dimensional but for the convenience in its

calculation, it is taken to be two dimensional so that it can easily be dealt

with. 2-D flow means flow to be in the plane coordinate.

2.6 Boundary layer

It is the fluid’s layer near surface where viscosity of fluid is dominant. In

general, boundary layer is the domain where the effects of the viscosity is

dominant.

2.7 Porous medium

Medium containing a minute opening in the surface that allows passage of

fluids through these holes are called porous medium. The objects consisting

of the porous surfaces have void empty spaces or pores through which fluid

particles penetrate the object. Sands, limestone, wooden materials, tissue
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papers, human lungs and biological tissues are some of examples existing in

the nature and cements, foams and sponges are the man-made examples.

2.8 Heat and mass transfer

Kinetic process in which heat transfer is the movement of energy from one

particle to another. Whereas mass transfer is the movement of mass from

one place to another like absorption, evaporation etc. Hence, the efficiency

of these two processes are considered collectively.

2.9 Nanofluids

The nano-meter sized particles in the suspension with some of the base

fluids (water, oil, etc.) are called nanofluids. They exhibit enhanced thermal

conductivity and the convective heat transfer coefficient compared to the base

fluid. Nanofluids play an essential role in utilization of many applications in

heat transfer equipment as coolants and radiators.

2.10 Thermal radiation

Thermal radiation is the generation of electromagnetic radiation with its

thermal motion of particles in matter. The emission of thermal radiation of

all matters is for the temperature greater than absolute zero.
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2.11 Some useful non-dimensional numbers

2.11.1 Prandtl number

It is the non-dimensional number which is a change in kinematic viscosity

ν with respect to thermal diffusivity α. Mathematically,

Pr =
ν

α

It has no dimension.

2.11.2 Reynolds number

The non-dimensional number defining the change in the inertial forces to

the viscous forces. Mathematically;

Re =
ax2

ν

2.11.3 Biot number

It is a non-dimensional number defined as, When the heat transfer co-

efficient is being multiplied with the characteristic length and divided with

thermal conductivity of the body. Generally, it can be expressed as;

Bi =
Lch

k
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Here Lc = V olume of body
surface area

, characteristic length, h and k are heat transfer

coefficient and thermal conductivity, respectively.

2.11.4 Nusselt number

A dimensionless number which is the ratio between the convective and

the conductive heat transfer at the boundary is called local Nusselt number.

Mathematically, it is expressed as;

Nux =
xhx
k
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Chapter 3

Dual nature exact solutions of viscous flow past a

moving stretching/shrinking surface enclosed in a

porous medium

The aim of this chapter is to investigate the flow of boundary layer

and heat transfer of viscous fluid on a stretching/shrinking surface in porous

medium with convective boundary conditions. Initially, we formulated gov-

erning equations of the flow. Later, with the application of similarity vari-

ables, we have transformed the governed nonlinear (PDEs) to the dimen-

sionless nonlinear (ODEs) to obtain closed form solution of momentum and

energy. The presence of some other parameters on energy equation can also

be seen. This chapter is the review of [30].

3.1 Formulation of the problem

Let us Consider a flow to be steady, 2-D and incompressible on stretch-

ing/shrinking sheet in the porous medium. Assuming stretching velocity to

be linear, that is, ūw(x) = bx, where b is a positive constant. The considera-

tion of the slow motion of flow vanishes the term of the change in temperature

in momentum equations. The governing equations are;

∇ · V = 0 (3.1)

ρ

ε
(V · ∇)V = divτ − εµ

K
V (3.2)

(ρCp)(V ·∇)T = τ · (∇V )−divqc (3.3)
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Here, τ can be expressed as;

τ = −pI + µeffE1 (3.4)

Brinkman stated that µeff and µ are equal to each other but generally not

equal [7], and E1 is first Rivlin-Ericksen tensor, that is,

E1 = (∇V )+(∇V )T (3.5)

∇V = gradV (3.6)

qc = −k (∇T ) (3.7)

For given problem, we define the velocity and temperature field as;

V = [ū(x, y), v̄(x, y), 0] and T = T (x, y) (3.8)

Using Eq. (3.8) in Eqs. (3.5) and (3.6), we get

∇V =


ūx ūy 0

v̄x v̄y 0

0 0 0

 and (∇V )T =


ūx v̄x 0

ūy v̄y 0

0 0 0

 (3.9)

Now, by utilizing Eq. (3.9) in Eq. (3.5), we obtain

E1 =


2ūx (ūy + v̄x) 0

(v̄x + ūy) 2v̄y 0

0 0 0

 (3.10)
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Substituting Eq. (3.10) in Eq. (3.4), it results

τ =


−p+ 2µeff(ūx) µeff(ūy + v̄x) 0

µeff(v̄x + ūy) −p+ 2µeff v̄y 0

0 0 −p

 (3.11)

To express the matrix Eq. (3.11) in component form, we have

τxx = −p+2µeff(ūx), τxy = τyx = µeff(v̄x+ūy) (3.12)

τxz = τzx = τyz = τzy = 0, τyy = −p+ 2µeff(v̄y), τzz = −p

(3.13)

Using Eqs. (3.12) and (3.13) in Eq. (3.2), we get

ρ

ε
(ūūx + v̄ūy) = −∂p

∂x
+µeff∇2ū− εµ

K
ū (3.14)

ρ

ε
(ūv̄x + v̄v̄y) = −∂p

∂y
+ µeff∇2v̄− εµ

K
v̄ (3.15)

0 = −∂p
∂z

(3.16)

In the R.H.S of Eq. (3.3), the first term is taken to be zero because of the

absence of viscous dissipation and qc from Eq. (3.7) gives;

τ · (∇V ) = 0 (3.17)



15

qc = −k [Tx , Ty , 0] (3.18)

Now, utilizing the above equations Eqs. (3.17) and (3.18) in Eq. (3.3), we

obtain

ρCp (ūTx + v̄Ty) = km∇2T (3.19)

The boundary conditions of above problem are

ū = ūw(x) = ax, v̄ = v̄w at y = 0 (3.20)

ū(y → ∞) → 0 (3.21)

Here, v̄w, mass transfer on the surface for suction velocity (v̄w < 0) and

injection velocity (v̄w > 0). Consequently, the conditions on the boundary of

the convection appear as [14, 18, 19].

−k Ty|y=0 = h̄f(T̄f−T ) (3.22)

T (T → ∞) → T̄∞ (3.23)

Cf and Nux can be written as

Cf =
τ̄w
ρū2

w

, Nux =
xq̄w

km(T̄w − T∞)
(3.24)

τ̄w = µ(ūy) , q̄w = −km(Ty) at y = 0 (3.25)

We convert the given nonlinear PDEs to dimensionless nonlinear ODEs by
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introducing similarity variables [30] as

ū = axf ′(η), v̄ = −(aν)1/2f(η), η = y(
a

ν
)1/2, θ(η) =

T − T̄∞
T̄f − T̄∞

(3.26)

Here, prime symbolizes the differentiation of a function w.r.t. η. By apply-

ing the above similarity transformations Eq. (3.26) on Eqs. (3.14), (3.15)

and (3.19), we obtain the dimensionless ODE as

Ξf ′′′+ff ′′−f ′2−Φf ′ = 0 (3.27)

1

Pr
θ′′+ fθ′ = 0 (3.28)

The reduced boundary conditions are

f(η = 0) = S , f ′(η →∞) = 0 , f ′(η = 0) =
b

a
= α (3.29)

θ′(η = 0) = −Bi[1 + θ(η = 0)] , θ(η →∞) = 0 (3.30)

Where, S is the suction for (S > 0) or injection for (S < 0).

Pr =
ν

α
, Ξ = ε

µeff
µ
, Φ =

ε2ν

aK
, Bi =

hf
km

√
ν

a
, α =

b

a
, S =

vw√
bν

(3.31)
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Also, using Eq. (3.26) in Eqs. (3.24) and (3.25), we get

(Rex)
1/2Cf = f ′′(η = 0) , Nux/(Rex)

1/2 = −θ′(η = 0) (3.32)

where, Rex = (ax2/ν), local Reynolds number.

To establish the solution of the transformed dimensionless nonlinear ODEs,

we assume the solution of Eq. (3.27) satisfying boundary conditions as

f(η) = S +
α

β
(1− e−βη) (3.33)

Using Eq. (3.33) in Eq. (3.27), it yields

Ξβ2−Sβ−(α+Φ) = 0 (3.34)

Solving the above equation for the value of β, we get

β =
S ±

√
S2 + 4Ξ(α + Φ)

2Ξ
(3.35)

Eq. (3.35) shows the dual nature solution of the given problem. From Eqs.

(3.25) and (3.32), we obtain

f ′(η) = αe−βη and f ′′(0) = −αβ (3.36)

To get the solution of dimensionless nonlinear ODE of energy equation, we

consider a new variable ζ as follows

ζ =
Pr

β2
e−βη (3.37)
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To apply this variable in Eq. (3.28), we convert the differentiation w.r.t η

by using chain rule for first and second order ODEs, that is,

d
dη = d

dζ ·
dζ
dη and d2

dζ2 (
dζ
dη)

2 + d
dζ ·

d2ζ
dη2 (3.38)

After applying the above chain rule on Eq. (3.28), we obtian

ζ
d2θ

dζ2
+ (1− Pr + αζ)

dθ

dζ
= 0 (3.39)

and the reduced boundary conditions are

Pr

β
θ′(
Pr

β2
) = Bi [1− θ(Pr

β2
)] , θ(0) = 0 (3.40)

Considering dθ
dζ

= ω and using in Eq. (3.39), we get

dω

dζ
+ (

1− Pr
ζ

+ α)ω = 0 (3.41)

=⇒ d

dζ
(ζ1−Preαζω) = 0 (3.42)

On integrating Eq. (3.42), it gives

ζ1−Preαζω = C1 (3.43)

or

ω = C1ζ
Pr−1e−αζ (3.44)
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Using ω = dθ
dζ

in Eq. (3.44) and integrating, we get

θ(ζ) = C1

∫ ∞

0

ζPr−1 e−αζ dζ (3.45)

=⇒ θ(ζ) = C1Γ(Pr, αζ) + C2 (3.46)

where, Γ(a, x) =
∫∞
0
ta−1e−tdt is the incomplete Gamma function. C1 and

C2 are the constants of integration. Using ζ in Eq. (3.46), we get

θ(η) = C1Γ(Pr,
αPr

β2
e−βη) +C2 (3.47)

Differentiating w.r.t η, we get

θ′(η) = C1βe
−αPr

β2
e−βη

(
αPr

β2
e−βη)Pr (3.48)

Applying boundary condition Eq. (3.30) in Eqs. (3.47) and (3.48), it gives

C1 =
−Bi

βe
−αPr

β2 (αPrβ2 )Pr +Bi Γ(Pr, αPrβ2 )−Bi Γ(Pr, 0)
(3.49)

C2 =
Bi Γ(Pr, 0)

βe
−αPr

β2 (αPrβ2 )Pr +Bi Γ(Pr, αPrβ2 )−Bi Γ(Pr, 0)
(3.50)

Utilizing C1 and C2 from Eqs. (3.49) and (3.50) in Eq. (3.47), we obtain

the solution as,

θ(η) =
Bi Γ(Pr, 0)−Bi Γ(Pr, αPrβ2 e

−βη)

βe
−αPr

β2 (αPrβ2 )Pr +Bi Γ(Pr, αPrβ2 )−Bi Γ(Pr, 0)
(3.51)
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3.2 Results and discussion

In order to narrate variations of dimensionless ODE of momentum, energy,

skin friction and Nusselt number with some parameters. Figs. (1) - (3) de-

termine different parameters on the domain of solution β, in this situation,

amazing behavior is observed. Physically, the change occurred in upper and

lower branches of the solution for some specific values assigned to the S, Ξ

and α. Here, the (+) sign in the solution Eq. (3.35) corresponds to upper

branch and (−) sign to lower branch. For the fixed values of Ξ, Φ and −α,

β increases for the increasing value of S (for upper branch) else reduces for

lower branch. Figs. (4) - (7) show changes in the skin friction coefficient by

using different physical parameters. Increase in the value of α (shrinking case

only) decreases the skin friction coefficient whereas it can also be seen that

the increase in Φ and Ξ increased Cf for both branches of solution. Larger

Cf only exists for suction rather than injection.

Figs. (8) and (9) illustrate the variations of S and α on non-dimensional

velocity for both branches of dual nature solution. S increases the dimen-

sionless velocity in lower branch which causes an increase in boundary layer

thickness and increase in skin friction takes place whereas the upper branch

illustrates opposite behavior.In Fig. (9), effects of α on dimensionless velocity

is examined in both the branches where it is found that Eq. (3.29) obviously

shows the dependence of stretching parameter on the non-dimensional ve-

locity profile. Increasing α causes decrease in the velocity profile on upper

branch which consequences decrease in skin friction. Figs. (10) and (11) por-
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trayed the variations in Phi and Ξ on non-dimensional velocity, respectively.

These effects are opposite on both the parameters inside the boundary layer

thickness in upper and lower branches. Fig. (10) shows increase in resistance

of flow by increasing Ξ in upper branch however, in Fig. (11), Φ makes no

eminent effect on non-dimensional velocity in upper branch.

In Figs. (12a) and (12b), streamlines are plotted for the value of stretch-

ing parameter at α = −0.05, Fig. (13a) and (13b) shows the streamlines

at α = −0.1, and Fig. (14a) and (14b) depict the streamlines at α = −0.3

which express the effects of the patterns of flow. The patterns in upper

branch are quite different than that of the lower branch. Figs. (15) and

(16) illustrate the change in Nusselt number with S and Φ in which Nus-

selt number increases with an increase in Biot number on both branches of

solution. In Figs. (17) and (18), the effects of S and Bi are depicted on

non-dimensional temperature profile. The result is evident that increasing

S, decreases non-dimensional temperature due to thermal boundary layer.

Consequently, the convective boundary layer thickness decreases dual solu-

tion and no-dimensional temperature is dependent on convective heat trans-

fer coefficient due to which it is derived that heat transfer will be greater for

its greater coefficient.

Figs. (19) and (20) show the variations of the dimensionless temperature

due to Ξ and Φ on both branches. In Fig. (19), Ξ is increased by the

dimensionless temperature in the presence of suction parameter S due to

which thermal boundary layer thickness also increased. Whereas, Fig. (20)

depicts the effects of Φ that reduces non-dimensional temperature in the

thermal boundary layer for the upper and lower branch solutions.
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Fig. 1: Solution β as function of S

Fig. 2: Solution β as function of Ξ
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Fig. 3: Solution β as function of α

Fig. 4: Variations of skin friction with S
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Fig. 5: Variations of skin friction with α

Fig. 6: Variations of skin friction with Ξ
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Fig. 7: Variations of skin friction with Φ

Fig. 8: Effects of suction parameter on velocity profile
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Fig. 9: Effects of stretching parameter on velocity profile

Fig. 10: Effects of viscosity ratio parameter on velocity profile
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Fig. 11: Effects of porous medium parameter on velocity profile

(a) Streamlines at α = −0.05 (b) Streamlines at α = −0.05

Fig. 12: Streamlines for stretching parameter, α = −0.05
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(a) Streamlines at α = −0.1 (b) Streamlines at α = −0.1

Fig. 13: Streamlines for stretching parameter, α = −0.1

(a) Streamlines at α = −0.3 (b) Streamlines at α = −0.3

Fig. 14: Streamlines for stretching parameter, α = −0.3
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Fig. 15: Variations of Nusselt number with suction parameter

Fig. 16: Variations of Nusselt number with viscosity ratio parameter
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Fig. 17: Effects of suction parameter on temperature profile

Fig. 18: Effects of Biot number on temperature profile
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Fig. 19: Effects of viscosity ratio parameter on temperature profile

Fig. 20: Effects of porous medium parameter on temperature profile
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Chapter 4

Dual nature study of convective heat transfers of

nanofluid along a shrinking surface in a porous

medium with thermal radiation

This chapter is the extension of previous chapter. Here the effect of

nanofluid particle (Cu) and thermal radiation is studied with all physical

properties graphically. The thorough study of heat transfers of nano-particles

of fluid along a shrinking surface in porous medium with thermal radiation

have been discussed. Later, the mathematical formulation modeled accord-

ingly with their boundary conditions. For a mathematical formaulation, all

the PDEs of momentum and energy are transformed into nonlinear ODEs by

using the similarity variables. Lastly, the nonlinear ODEs are computed by

incomplete gamma function to get dual nature closed form solutions.

4.1 Mathematical modelling and exact solu-

tion

Let us consider the steady flow across the boundary passing through a

shrinking sheet in porous medium with linear velocity ūw(x) = bx, where b

is positive constant. The governing equations are;

∂ū

∂x
+
∂v̄

∂y
= 0 (4.1)

ρnf
ε

(V · ∇)V = divτ − εµnf
K

V (4.2)
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Fig. 21: Geometry of the problem

(ρCp)nf(V · ∇)T = κnf(∇2T )− ∂qr
∂y

(4.3)

Now, τ for Newtonian fluid is expressed as:

τ = −pI + µeffE1 (4.4)

Where, E1 = (gradV )+(gradV )T , is the first Rivlin-Erickson tensor, µeff is

the effective velocity and according to Brinkman, effective and dynamic vis-

cosities are equal particularly but not in general [7] and ε is the dimensionless

Forchheimer drag constant. Using Rosseland approximation [4]

qr = −(
4σ

3K
)(
∂T 4

∂y
) (4.5)
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Here, T 4 = 4T̄ 3
∞T − 3T̄ 4

∞ , using this value in Eq.(4.5), we get

qr = −(
16σT̄ 3

∞
3K

)(
∂T

∂y
) (4.6)

Eq. (4.3) gives

(ρCp)nf(V · ∇)T = κnf(∇2T ) + (
16σT̄ 3

∞
3K

)(
∂T

∂y
) (4.7)

Assuming the fields for velocity and temperature as;

V = [ū(x, y), v̄(x, y), 0] and T = T (x, y) (4.8)

Now, utilizing velocity field from Eq. (4.8) in Eqs. (4.1 − 4.2), Continuity

equation (4.1) holds and nonlinear partial differential equation of momentum

in component form yields

ρnf
ε

(ū
∂ū

∂x
+ v̄

∂ū

∂y
) = (divτ)x −

εµnf
K

ū (4.9)

ρnf
ε

(ū
∂v̄

∂x
+ v̄

∂v̄

∂y
) = (divτ)y −

εµnf
K

v̄ (4.10)

0 = (divτ)z (4.11)

After the calculation of first Rivlin-Erickson tensor using velocity field, we

obtain

E1 =


2ūx ūy + v̄x 0

v̄x + ūy 2v̄y 0

0 0 0

 (4.12)
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Substituting Eq. (4.12) in Eq. (4.4), it gives

τ =


−p+ 2µeff

∂ū
∂x µeff(

∂ū
∂y + ∂v̄

∂x) 0

µeff(
∂v̄
∂x + ∂ū

∂y ) −p+ 2µeff
∂v̄
∂y 0

0 0 −p

 (4.13)

τ in component form is expressed as

τxx = −p+2µeff
∂ū

∂x
, τxy = τyx = µeff(

∂v̄

∂x
+
∂ū

∂y
) (4.14)

τxz = τzx = τyz = τzy = 0, τyy = −p+2µeff
∂v̄

∂y
, τzz = −p (4.15)

Utilizing Eqs. (4.14) and (4.15) in Eqs. (4.9)− (4.11), we get

ρnf
ε

(ū
∂ū

∂x
+v̄

∂ū

∂y
) = −∂p

∂x
+µeff(

∂2ū

∂x2
+
∂2ū

∂y2
)−εµnf

K
ū (4.16)

ρnf
ε

(ū
∂v̄

∂x
+v̄

∂v̄

∂y
) = −∂p

∂y
+µeff(

∂2v̄

∂x2
+
∂2v̄

∂y2
)−εµnf

K
v̄ (4.17)

0 = −∂p
∂z

(4.18)

The nonlinear PDE of energy equation (4.7) after the application of the

temperature field for τ · (∇V ) = 0, is expressed as

(ρCp)nf(ū
∂T

∂x
+ v̄

∂T

∂y
) = κnf(

∂2T

∂x2
+
∂2T

∂y2
) + (

16σT̄ 3
∞

3K
)(
∂T

∂y
)

(4.19)
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The boundary conditions for the momentum and energy equations are

ū = ūw(x) = bx, v̄ = v̄w at y = 0 (4.20a)

ū(y → ∞) → 0 (4.20b)

−k (∂T∂y )|y=0 = h̄f(T̄f−T ) and T (T → ∞) → T̄∞ (4.20c)

Assuming the following similarity transformation to reduce the governing

PDEs into the dimensionless nonlinear ODEs

ū = axf ′(η), v̄ = −(aν)1/2f(η), η = y(
a

ν
)1/2, θ(η) =

T − T̄∞
T̄f − T̄∞

(4.21)

(ρCp)nf = (1−φ)(ρCp)f+φ(ρCp)s, µnf =
µf

(1− φ)2.5
(4.22a)

ρnf = (1−φ)ρf+φρs,
νnf
νf

=
1

(1− φ)2.5[(1− φ) + φ ρsρf ]
(4.22b)

knf
kf

=
(ks + 2kf)− 2φ(kf − ks)
(ks + 2kf) + φ(kf − ks)

(4.22c)

Applying above Eqs. (4.21) and (4.22(a, b, c)) in Eqs. (4.16)− 4.19), we

get

Ξ A1 f
′′′+ff ′′−f ′2−Φ A2 f

′ = 0 (4.23)

1

Pr
(1+

4

3
R)A3 θ

′′+fθ′ = 0 (4.24)

f(0) = S, f ′(0) = b/a = α, f ′(∞) = 0 (4.25)
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θ′(η = 0) = −Bi[1+θ(η = 0)], θ(η → ∞)→ 0 (4.26)

Here, the physical parameters are defined as

Pr =
νf
αf
, Ξ = ε

µeff
µf

, Φ =
ε2νf
bK

, S =
vw√
bν

Bi =
hf
km

√
νf
b
, A1 =

νnf
νf
, A2 = A1(1− φ)2.5

A3 =
(ks + 2kf)− 2(kf − ks)φ

((ks + 2kf) + φ(kf − ks))((1− φ) + φ
(ρCp)s
(ρCp)f ))

(4.27)

Where νf and νnf are kinematic viscosity of fluid and nanofluid parameters,

respectively. Cf and Nux are expressed below;

Cf =
τ̄w
ρū2

w

, Nux =
xq̄w

km(T̄w − T̄∞)
(4.28)

Here the skin friction at wall and the heat transfer from the plate can be

presented as

τ̄w = µnf(ūy)|y=0, q̄w = −knf(Ty)|y=0 (4.29)

After applying similarity transformation Eq. (4.21) in Eqs. (4.28) and

(4.29), we obtain [25]

(Rex)
1/2Cf =

µnf
µf

f ′′(0), Nu/Re1/2
x = −knf

kf
θ′(0) (4.30)

Here Rex = (ax2/ν), the local Reynolds number.
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4.2 Methodology

The dual nature solution of Eq. (4.23) satisfying the constraints in Eq. (4.25)

is assumed as

f(η) = S +
α

β
(1− e−βη) (4.31)

Using the above equation in Eq. (4.23), the β solution yields

β =
S ±

√
S2 + 4A1Ξ(α + A2Φ)

2A1Ξ
(4.32)

It is evident from Eq. (4.32) that the proposed problem has dual solution.

Eqs. (4.29) and (4.30) depict f ′(η) and f ′′(0) at the surface, they are

f ′(η) = αe−βη, and f ′′(0) = −αβ (4.33)

Introducing a new variable, ξ, to get the solution of dimensionless nonlinear

ODE of energy equation, that is,

ξ =
Pr

β2
e−βη (4.34)

Utilizing Eqs. (4.31) and (4.34) into Eqs. (4.24) and (4.26), we get

(1+
4

3
R) A3 ξ

d2θ

dξ2
+((1+

4

3
R) A3−Pr+αξ)

dθ

dξ
= 0 (4.35)
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The boundary conditions will be

θ(0) = 0,
P r

β
θ′(
Pr

β2
) = Bi[1− θ(Pr

β2
)] (4.36)

Let us consider, dθ
dξ = ψ and using in Eq. (4.35), we obtain

dψ

dξ
+(

(3 + 4R) A3 − 3Pr

(3 + 4R)A3ξ
+

3α

(3 + 4R) A3
)ψ = 0 (4.37)

=⇒ d

dξ
(ξ

(3+4R)A3−3Pr
(3+4R)A3ξ e

3αξ
(3+4R)A3ψ) = 0 (4.38)

After the integration of Eq. (4.38), substitution of ψ results the exact solu-

tion in the incomplete gamma function, that is,

θ(η) =
Bi (Γ( 3Pr

(3+4R)A3
,0) − Γ( 3Pr

(3+4R)A3
, 3αPre−βη
(3+4R)A3β

2 ))

β ( 3αPr
(3+4R)A3β

2 )
3Pr

(3+4R)A3 e
− 3Prα

(3+4R)a3β
2

+BiΓ( 3Pr
(3+4R)A3

,0)−BiΓ( 3Pr
(3+4R)A3

, 3αPr
(3+4R)A3β

2 )

(4.39)

4.3 Results and discussion

In order to see the variations of nanofluids on physical parameters in

the problem. It is observed that particle volume fraction is taken as 0.1 for

the whole calculations. Figs. (22) - (25) depict variations of the S, Ξ, α

and Φ on solution domain for β and change is seen in both the branches of

solution. Varying the values of the parameters (S, Ξ, α and Φ) may affect

the solution β accordingly. Increasing these parameters increase the upper
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branch else it decreases the lower branch. The arrows in the figures indicate

the increase/decrease in upper and lower branch with the variable values of

the parameters.

Figs. (26) - (29) indicate the change in skin friction with some parameters.

The figures clearly show the increase in α causes a decrease in Cf whereas it

has been seen that the increase in Ξ and Φ make an increase in Cf on both

branches of solution. It is also illustrated that larger values of Cf is valid

only for S.

In Figs. (30) - (33), the change in the velocity profile is being discussed

that the effect of physical parameters are opposite on the upper and lower

branch. Briefly, it can be described as the increase in S is an increase in

lower branch and vice-versa. Similar behavior is seen in variations of α. On

examining the effects of Ξ on the non-dimensional velocity distribution depict

that increasing in Ξ is the increase in the resistance of flow in upper branch

and vice-versa whereas no clear effect can be seen by varying the porous

medium parameter, Φ.

Fig. (34) exhibits the change in local Nusselt number with suction pa-

rameter where the increase in α makes an increase in the Nu on upper and

lower solutions. Figs. (35) and (36) illustrate the effects of non-dimensional

temperature by varying the suction parameter and Biot number which clearly

shows that the increase in S and Bi cause a decrease in dimensionless tem-

perature profile due to thermal boundary layers. As a result, it seems obvious

that the convective boundary layer gets decreased on both the branches. It

can also been seen that the non-dimensional temperature profile depends

upon the convective heat transfer coefficient due to its dependence and ac-

cumulated that the excess of heat transfer is also the excess of its coefficient

on the profile.
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Figs. (37) and (38) depict the effects of non-dimensional temperature due

to Ξ and Φ on both branches in which Ξ is increased by dimensionless tem-

perature for fixed value of suction parameter, S = 1.5, which has caused the

increase in thermal boundary layer thickness. Whereas, Fig. (35), evidently

shows that the change in Φ reduces the non-dimensional temperature in the

same layer for both branches (upper and lower).

Table 1: Thermophysical properties of fluid and nanofluid

Physical properties Base fluid (water) Nanofluid (Cu)

Cp(J/kgK) 4179 385

ρ(kg/m3) 997.1 8933

K(W/mK) 0.613 400
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Fig. 22: Solution β as function of S

Fig. 23: Solution β as function of Ξ
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Fig. 24: Solution β as function of α

Fig. 25: Solution β as function of Φ
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Fig. 26: Variations of skin friction with S

Fig. 27: Variations of skin friction with α



45

Fig. 28: Variations of skin friction with Ξ

Fig. 29: Variations of skin friction with Φ
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Fig. 30: Effects of suction parameter, S, on velocity profile

Fig. 31: Effects of stretching parameter, α, on velocity profile
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Fig. 32: Effects of viscosity ratio parameter, Ξ, on velocity profile

Fig. 33: Effects of porous medium parameter, Φ, on velocity profile
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Fig. 34: Variations of Nusselt number with suction parameter, S

Fig. 35: Effects of suction parameter, S, on temperature profile
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Fig. 36: Effects of Biot number, Bi, on temperature profile

Fig. 37: Effects of viscosity ratio parameter, Ξ, on temperature profile
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Fig. 38: Effects of porous medium parameter, Φ, on temperature profile
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Chapter 5

Conclusion

This chapter is the conclusion of analytic and graphical results obtained

from the review and extension work. All the findings from the above two

chapters are discussed here in this chapter. The effect of parameters on

velocity and temperature profiles including skin friction and Nusselt num-

ber are deduced in which the rise and fall, increase and decrease in the

graphs are seen. Similar behavior is noticed in extension with an addition of

nano-particle (Cu) with base fluid and thermal radiation, results are slightly

different with the application of these additions. Following points are noted:

• For an exact solution, the governing PDEs are first converted into the

nonlinear dimensionless ODEs through similarity transformation.

• Some assumptions yielded as dual nature solution in closed form from

the dimensionless non-linear ODEs of momentum and energy.

• Basically, the effects of stretching α, viscosity ratio Ξ, mass suction S,

porous medium Φ and Prandtl number Pr are described and shown in

the figures for velocity, skin friction, streamlines, Nusselt number and

energy profiles.

• Arrows in figures indicate the increasing or decreasing behavior of pro-

files with variations to the parameters applied.

• Cu-water nanofluid was considered to see some variations in the dual

nature solution.

• Increase in the heat transfer occurred for volume fraction of nanopar-

ticle [9], φ = 0, 0.1, 0.2.
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• The change in Cf is also identified by varying volume fraction of nanopar-

ticle φ from 0 to 0.2.

• Increasing the value of φ also increased thermal boundary layer thick-

ness.

• Amazing and quite interesting changes are seen in the profiles by vary-

ing the values of parameters.



53

References

[1] Sakiadis BC. Boundary-layer behavior on continuous solid surface: I.

Boundary-layer equations for two-dimensional and axisymmetric flow. J

AIChe, 7 (1961), 26 – 28.

[2] Sakiadis BC. Boundary-layer behavior on continuous solid surface: II.

Boundary-layer equations for two-dimensional and axisymmetric flow. J

AIChe, 7 (1961), 221 – 225.

[3] L.J. Crane, Flow past a stretching plate, Z. Angew. Math. Mech., 21

(1970), 645 - 647.

[4] M. A. Hossain, M. A. Alim, and D. A. S. Rees, “The effect of radiation

on free convection from a porous vertical plate,” Int. J. of Heat and Mass

Transfer, 42 (1999), 181 – 191.

[5] V. Kumaran, G. Ramanaiah, A note on the flow over a stretching sheet,

Acta Mech., 116 (1996), 229 - 233.

[6] I. Pop, D.B. Ingham, Convective Heat Transfer: Mathematical and Com-

putational Modelling of Viscous Fluids and Porous Media, Oxford, Perg-

amon, 2001.

[7] D.A. Nield, A. Bejan, Convection in Porous Media, 3rd ed. Springer, New

York, 2006.

[8] M. Miklavcic, C.Y. Wang, Viscous flow due to shrinking sheet, Quart.

Appl. Math., 64 (June 2006), 283 - 290.

[9] Oztop HF, Abu Nada E. Numerical study of natural convection in po-

tentially heated rectangular enclosures filled with nanofluids, Int. J. Heat

fluid flow, 29 (2008), 1326 - 1336.



54

[10] Hayat T, Sajid M and Javed T, Nonlinear Dynamics, 51 (2008), 259 –

265.

[11] Muhaimin, Kandasamy R and Khamis A B, Applied Mathematics and

Mechanics English Edition, 29 (2008), 1309.

[12] Wang C Y, International Journal of Non-Linear Mechanics, 43 (2008),

377.

[13] T. Fang, J. Zhang, Closed-form exact solutions of MHD viscous flow

over a shrinking sheet, Commun. Nonlinear Sci. Num. Simul. 14 (2009),

2853 – 2857.

[14] A. Aziz, A similarity solution for laminar thermal boundary layer over a

flat plate with a convective surface boundary condition, Comm. Nonlinear.

Sci. Num. Simul. 14 (2009), 1064 – 1068.

[15] T. Fang, J. Zhang, S. yao, A new family of unsteady boundary layers

over a stretching surface, Appl. Math. Comput. 217 (2010), 3747 - 3755.

[16] M.Z. Salleh, R. Nazar, I. Pop, Boundary layer flow and heat transfer

over a stretching sheet with Newtonian heating, J. Thaiwan inst. Chem.

Eng. 41 (2010), 651 – 655.

[17] W.A. Khan, I. Pop, Boundary layer flow of a nanofluid past a stretching

sheet, Int. J. Heat Mass Transfer 53 (2010), 2477 – 2483.

[18] E. Magyari, Comment on ”A similarity solution for laminar thermal

boundary layer over a flat plate with a convective surface boundary con-

dition” by A. Aziz, Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 599 –

601.



55

[19] S. Yao, T. Fang, Y. Zhong, Heat transfer of a generalized stretch-

ing/shrinking wall problem with convective boundary conditions, Comm.

Nonlinear. Sci. Num. Simul. 16 (2011), 752 – 760.

[20] S. Munawar, A. Mehmood, A. Ali, Time-dependent flow and heat trans-

fer over a stretching cylinder, Chinese J. Phys., 50 (2012), 828 - 848.

[21] W.A. Khan, I. Pop, Heat Transfer Near Stretching Surface in Porous

Medium Using Thermal Non-Equilibrium Model, AIAA J. Thermo-phys.

Heat Transfer 26 (2012), 681 – 685.

[22] W.A. Khan, I. Pop, Boundary-Layer Stagnation-Point Flow Toward a

Stretching Surface in a Porous Nanofluid-Filled Medium, J. Thermophys.

Heat Transfer 26 (2012), 147 – 153.

[23] M. Qasim, Heat and mass transfer in a Jefferey fluid over a stretching

sheet with heat source/sink, Alexandria Eng. J. 52 (2013), 571 – 575.

[24] H. A. Attia, A. L. Aboul-Hassan, M. A. M. Abdeen, A. El-Din Ab-

din, W. Abd El-Meged, Unsteady couette flow of a thermally conducting

viscoelastic fluid under constant pressure gradient in a porous medium,

Chinese J. Phys., 52 (2014), 1015 - 1027.

[25] Rizwan Ul Haq, D. Rajotia, and N.F.M. Noor, Thermophysical effects

of water driven copper nanoparticles on MHD axisymmetric permeable

shrinking sheet: Dual-nature study, Eur. Phys. J. E., 39 (2016).

[26] Y. Shagaiya Daniel, Z. A. Aziz, Z. Ismail, F. Salah, Effects of thermal

radiation, viscous and Joule heating on electrical MHD nanofluid with

double stratification, Chinese J. Phys, 55 (2017), 630-651.



56

[27] S. Saleem, M. Awais, S. Nadeem, N. Sandeep, T. Mustafa, Theoretical

analysis of upper-convected Maxwell fluid flow with Cattaneo-Christov

heat flux model, Chinese J. Phys, (2017).

[28] Fiaz Ur Rehman, S. Nadeem, Rizwan Ul Haq, Heat transfer analysis for

threedimensional stagnation-point flow over an exponentially stretching

surface, Chinese J. Phys, (2017).

[29] Feroz Ahmed Soomro, Rizwan-ul Haq, Zafar Hayat Khan, Qiang Zhang,

Passive control of nanoparticle due to convective heat transfer of Prandtl

fluid model at the stretching surface, Chinese J. Phys, (2017).

[30] Z.H.Khan,M. Qasim, Rizwan ul Haq, Qasem M.Al-Mdallal, Closed

form dual nature solutions of fluid flow and heat transfer over a stretch-

ing/shrinking sheet in a porous medium, Chinese Journal of Physics, 55

(2017), 1284 - 1293.



57



58



59


	 Abstract
	 1   Introduction and Literature review 
	 2   Fundamental concepts and definitions
	    2.1  Fluid . . . . . . . . . . . . . . . . . . . . . . . . . .
	    2.2  Fluid mechanics . . . . . . . . . . . . . . . . . . .
	    2.3  Physical properties of fluid . . . . . . . . . . . .
	       2.3.1  Density . . . . . . . . . . . . . . . . . . . . . .
	       2.3.2  Dynamic viscosity . . . . . . . . . . . . . . . . . .
	       2.3.3  Kinematic viscosity . . . . . . . . . . . . . .
	    2.4  Classification of fluid . . . . . . . . . . . . . . . .
	       2.4.1  Ideal fluid . . . . . . . . . . . . . . . . . . . .
	       2.4.2  Real fluid . . . . . . . . . . . . . . . . . . . .
	          2.4.2.1  Newtonian fluid . . . . . . . . . . . . . .
	          2.4.2.2  Non-Newtonian fluid . . . . . . . . . . .
	       2.4.3  Compressible fluid . . . . . . . . . . . . . . .
	       2.4.4  Incompressible fluid . . . . . . . . . . . . . .
	    2.5  Two-Dimensional flow . . . . . . . . . . . . . . .
	    2.6  Boundary layer . . . . . . . . . . . . . . . . . . .
	    2.7  Porous medium . . . . . . . . . . . . . . . . . . .
	    2.8  Heat and mass transfer . . . . . . . . . . . . . .
	    2.9  Nanofluids . . . . . . . . . . . . . . . . . . . . . .
	    2.10  Thermal radiation . . . . . . . . . . . . . . . . . . .
	    2.11  Some useful non-dimensional numbers . . . . . .
	       2.11.1  Prandtl number . . . . . . . . . . . . . . . . .
	       2.11.2  Reynolds number . . . . . . . . . . . . . . . .
	       2.11.3  Biot number . . . . . . . . . . . . . . . . . . .
	       2.11.4  Nusselt number . . . . . . . . . . . . . . . . . .
	 3   Closed form dual nature solutions of fluid flow and heat transfer over a stretching/shrinking sheet in a porous medium
	    3.1  Mathematical formulation and solution . . . . . . .
	    3.2  Results and discussion . . . . . . . . . . . . . . . . .
	  4    Dual nature study of convective heat transfers of nanofluid along a shrinking surface in a porous medium with thermal radiation
	    4.1  Mathematical modelling and exact solution . . . .
	    4.2  Methodology . . . . . . . . . . . . . . . . . . . . . . .
	    4.3  Results and discussion . . . . . . . . . . . . . . . . .
	  5    Conclusion . . . . . . . . . . . . . . . . . . . . . . .
	 References

