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Abstract

The main aim of the thesis is to analysis the nanofluid flow due to trapping

along porous annulus with cilia in the presence of thermal radiation effects.

The structure of the thesis consist of five chapters that includes review work

and the extension. In the first Chapter introduction and literature work is

discussed. In chapter two, basic definitions and fundamental laws which are

used for mathematical modelling are defined. Chapter three contains the

review work done by S. Nadeem and H. Sadaf [17]. For representation of

solution graphs are also drawn in this chapter. Chapter four is extension

of review work, by adding porous media for annulus and thermal radiation

effects. Cylindrical coordinates have selected for mathematical formulation

of the flow problem. This formulation consist of continuity equation, mo-

mentum equation and energy equation. Exact solutions are obtained and

compared with numerical solution. A detailed analysis of model is presented

through graphs. These graphs are constructed for different physical param-

eters. Chapter five contains the conclusion of review and extension work.
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Chapter 1

Introduction and literature review

The word Peristaltic originates from Greek word “Peristaltikos” , which

implies fastening and packing. Peristalsis is an instrument to direct liquids

by methods for moving constrictions on the tube divider. Peristalsis is the

result of many coordinated contractions of the longitudinal and transverse

muscles in the walls of a tubular organ. Peristaltic flow refers to the transport

of fluid in a channel by the act of flexible walls. A single peristaltic wave

takes the form of circular constriction around the lumen that moves along

the length of the organ. The walls of the organ are always slightly relaxed

before the arrival of the constriction, so that the wave appears to push the

contents in the direction in which it travels. Peristaltic wave follows each

other continuously at a fixed rhythm and rate. In man, for example, the

peristaltic rhythm of the stomach is 3 waves/min. Intestinal peristalsis occurs

at the rate of 6 waves/min. Peristalsis is engaged with gulping nourishment

through the throat, transport of chyme in small digestive tract, transport of

bile. There are numerous other critical uses of peristalsis, for example, the

outline of roller pumps which are helpful in drawing liquids without tainting

because of contact with the pumping apparatus. Many biomedical devices

such as dialysis machine, open heart bypass pump machine are designed on

the mechanism of peristalsis.

Latham [1] was first who made study for peristaltic flow. Later on

Shapiro [2] explained this phenomenon in two dimensional flow. He consid-

ered the flow as inertia free with small wave length. Barton and Raynor [3]

discuss peristaltic motion of two dimensional flow in tubes. They take as-

sumption of small Reynolds number. Shapiro et al. [4] talked about the
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peristaltic flow for both planar and axisymmetric cases. They apply the

condition of long wave length and very small Reynolds number. Yin and

Fung [5] studied peristaltic pumping in coordinate channel and axisymmet-

ric tube. They assume the condition of small wave length and low Reynolds

number. Jaffrin [6] examined the inertia and streamline curvature impact

on peristaltic flow. Jaffrin and Shapiro [7] represented peristaltic flow in

distinctive routines. They studied peristaltic motion in existence of pressure

gradient. For circular cylindrical tubes peristaltic pumping is deliberated by

Takabatake et al [8]. In other study Mekhiemer [9] examined the peristaltic

flow of couple stress in an annulus with an endoscope.

The term cilia are regularly utilized for ‘Eukaryotic Cell’. It is gotten from

the ”eyelashes”. Cilia is infinitesimal, cylinder and thread like structure.

Single cilium can be measured on (1-10) micrometer long and less than 1

micrometer wide. The state of the cilia components is particularly like hair.

Cilia movement assume a crucial job in different physiological procedures,

for example, propagation nourishment locomotion respiration and growth.

There are two types of cilia, motile and non-motile. Motile cilia are present

on surface of tissues and are responsible for protecting a person from germs.

Non-motile cilia are responsible for sensing the surrounding environment.

Cilia transport physiological liquids along the epithelium, the covering of the

hole of structures all through the body. Cilia are basically present in the

sensory system, stomach related framework, male and female regenerative

framework.

Agrawal and Anawar-ud-din [10] talked about cilia transference of biofluid

with variable thickness. Barton and Raynor [11] discussed mucou flow due

to motion of cilia. [12, 13] analysed hydrodynamics of protozoa that they

utilize cilia for movement . Velez – cordero and Lauga [14] explained the
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envelop model of cilia by taking newtonian fluid . Mechanical features of

cilia are presented by Rydholm et al [15]. Basten and Giles [16] discussed

function of cilia.

Recently [17] examined flow rate analysis of nanofluid enclosed in annulus

with cilia motion. Keeping above mentioned efforts, research work done by

S. Nadeem and Hina Sadaf will extended by porous annulus and presence of

thermal radiation. This work has not yet been explored in literature.
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Nomenclature

Velocity components are U, V .

Volume fraction of the nano particle is represented by φ.

Temperature of outer tube is represented by T1.

Heat capacity of solid particle is denoted as (ρcp)p.

a1 is radius of inner tube.

Nanofluid density is represented by ρnf .

µnf shows the viscosity of nano fluid.

(ρcp)f shows the heat capacity of fluid.

Viscosity of fluid is represented by µf .

c is wave speed.

λ represent the wave length

Heat capacity of solid particle is represented by (ρcp)p

Z0 shows the reference position of the tip.

Measure of eccentricity is represented by α.

Inner tube temperature is T0.

a2 is radius of outer tube.

Conductivity of nanofluid is denoted by knf .

B represent the heat source or sink parameter.

Conductivity of the fluid is denoted by kf .

ks is conductivity of particle.

Heat absorption constant is represented by Q0.
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Chapter 2

Elementary concepts of fluid

In this section some essential definitions well defined laws have been dis-

cussed.

2.1 Mechanics

It is the most established physical science that deals with both stationery

and moving limits affected by powers. The part of the mechanics that deals

with bodies very still is considered statics while dynamics is the branch that

deal with bodies in movement.

2.2 Fluid

It is a substance with the property of altering shape with application of stress.

2.3 Fluid mechanics

It is is branch of physics that deals with various characteristics of fluid both

in rest and in motion are discussed.

2.4 Physical properties of fluid

Here are some properties of fluid are discussed.
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2.4.1 Density

It is the proportion between mass(m) and volume (v) of a fluid. Mathemat-

ically,

ρ =
mass

volume

2.4.2 Pressure

It is rate of change of force per unit area. Mathematically,

P =
force

area

2.4.3 Viscosity

The shear stress on a fluid with some rate of deformation is called dynamic

viscosity

µ =
shear stress

deformation rate

2.4.4 Temperature

Temperature is motion of molecule from high temperature to lower temper-

ature due to inertial forces.

2.5 Types of fluid

2.5.1 Ideal fluid

It is fluid having zero resistance at every point.
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2.5.2 Real fluid

It is fluid having non zero resistance at every point.

2.5.3 Newtonian fluid

The fluid which follow Newton’s law of viscosity is called newtonian fluid.

Examples of Newtonian fluid are air and water etc. Mathematically,

τyx = µ
du

dy

2.5.4 Non-Newtonian fluid

If shear stress is not linearly proportional to deformation rate, then fluid is

non-newtonian

τyx = k
(du
dy

)n
for n 6= 1,

2.5.5 Incompressible fluid

The fluid in which the volume and thus density of flowing fluid does not

changes during flow. Mathematically it can be expressed as

ρ 6= ρ(x, y, z, t)

.
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2.5.6 Compressible fluid

The fluid in which the volume and thus the density of the flowing fluid

changes during flow. Mathematically it can be express as

ρ = ρ(x, y, z, t)

.

2.5.7 Steady fluid

When there is no change in fluid property at point with time, then it implies

as steady fluid. Mathematically

∂η

∂t
= 0

.

2.5.8 Unsteady fluid

When there is change in fluid property at point with time, then it implies as

steady fluid. Mathematically

∂η

∂t
6= 0

.
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2.6 Nanofluid

Nanofluids are another gathering of nano technologies based liquids made by

dispersing nanometer estimated molecule with typical length scale on request

of (1-100nm) in standard heat transfer fluids. These particles can be found

in the metal such as (Cu, Al), oxides (Al2O3) or non-metal (Nano tubes,

Carbon, Graphite)

2.7 Magnetohydrodynamics

A branch of study in which the effect of magnetic field is discussed on an

electrically conducting fluid.

2.8 Viscous dissipation

It is a physical phenomenon which represents the contribution of viscous

forces in heat dissipation or heat transfer.

2.9 Mixed convection

The phenomenon in which natural as well as forced convection mechanisms

contribute together to transfer heat is known as mixed convection.

2.10 Stream function

A type of function in which farm of flow pattern is discussed is called stream

function. It is the discharge per unit thickness. In case of incompressible fluid

stream function is used to explain the flow field in terms of volume flow. In
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case of incompressible it is used to express flow field in term of mass flow

rate.

2.11 Porous medium

A solid substance contains valid space or pores which are distributed

randomly. Examples are humans skin, wood, sand and cloth etc.

2.12 Types of forces

2.12.1 Body forces

A force acting all through the volume of a body with no physical contact.

Gravity and electromagnetic forces are examples.

2.12.2 Surface forces

Force that acts across an internal and external element in a body through

direct physical contact. Pressure and shear forces are examples of surface

forces.

2.12.3 Inertia forces

A force which resists a change in state of an object.

2.13 Non dimensional parameters

Some of the non-dimensional parameters of physical interest encountered in

this work are explained.
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2.13.1 Reynold number

Ratio of inertia forces to viscous force is defined to be as Reynold number.

Physically it determine the behaviour, weather flow is laminar or turbulent.

For turbulent flow Re is large while it is smaller for laminar flow. Mathe-

matical farm is

Re =
V hρ

µ

. where ρ is fluid density, V is the velocity, h stand for distance and µ is

dynamic viscosity.

2.13.2 Eckert number

It is ratio of advective transfer and heat dissipation potential. It is mathe-

matically expressed as

Ec =
V 2

∆Tcp

2.13.3 Grashof number

This number is significant in characterizing mixed convection effects and it

is defined as ratio of buoyancy to viscous forces acting upon the fluid. It can

be expressed as;

Gr =
gβT (T1 − T0)L3

ν2

.
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2.13.4 Wave number

It is ratio between width(a) of the channel and wave length( δ). In farm of

mathematics

λ =
a

δ

.
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Chapter 3

Flow rate analysis of nanofluid enclosed in

an annulus with cilia

3.1 Introduction

In this chapter, review work is established that is already published by

S.Nadeem and Hina sadaf [17], on the study of nanofluid flow through a

concentric annulus. Cilia effects are also considered to determine the flow

analysis adjacent to the annulus walls. Mathematical model considered as

movement of cilia in presence of endoscopic tube. Outer tube is taken as

metachronal wave and inner tube taken as rigid. Initially, we formulated

governing equations of the flow. Mathematical formulation of problem is

taken in cylindrical coordinate. First we convert system of leading PDEs into

dimensionless ODEs. Exact solution is calculated and analysed by graphs

and their discussion.

3.2 Formulation of model

Consider movement of cilia for 2-D flow of an incompressible viscous nanofluid

in an annulus.
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Fig. 1: Geometry of model

Continuity and momentum equations can be formulated:

ÛR̂ +
Û

R̂
+ ŴẐ = 0 (3.1)

ρnf
(
Ût̂ + Û ÛR̂ + Ŵ ÛẐ

)
= − P̂R̂ + µnf

( 1

R̂
ÛR̂ + ÛR̂R̂ −

Û

R̂2
+ ÛẐẐ

)
(3.2)

ρnf
(
Ŵt̂ + ÛŴR̂ + ŴŴẐ

)
= −P̂Ẑ + µnf

( 1

R̂
ŴR̂ + ŴR̂R̂ + ŴẐẐ

)
+
(
ρβ
)
nf

ĝ
(
T̂ − T1

)
(3.3)

(ρ cp)nf (T̂t̂ + Û T̂R̂ + Ŵ T̂Ẑ) = knf (
1

R̂
T̂R̂+T̂R̂R̂ + T̂ẐẐ) +Q0 (3.4)

Heat capacity and thermal conductivity of nanofluid express as fol-
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low [18, 19]

αnf (ρcp)nf = knf , µnf (1− φ)2.5 = µf ,
ρnf
ρf

= φ (
ρs
ρf
− 1) + 1

(ρβ)nf
ρfβf

= (1−φ)+φ
ρsβs
ρfβf

,
(ρcp)nf
(ρcp)f

= 1+φ (
(ρcp)s
(ρcp)f

−1) (3.5)

knf ((ks + 2kf ) + φ(kf − ks)) = kf ((ks + 2kf )− 2φ(kf − ks))
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Table 1: Thermo physical characteristics of nanoparticles and fluid

Physical characteristics Copper Pure blood
cp(

J
kgK

) 385 3594

ρ( kg
m3 ) 8933 1063

k( W
mk

) 400 0.492
β.10−5( 1

K
) 1.67 0.18

Mathematically envelope of ciliated tips can be express:

R̂ = ĝ(Ẑ, t̂) = [a2+a2 ε cos(
2π

λ
Z∗)] = R̂2 (3.6)

Cilia move in different ways examined by Sleigh [20] so consider their position

in vertical ways which can be expressed :

Ẑ = ĥ(Ẑ, Ẑ0, t̂) = Ẑ0+a2αεsin(
2 π

λ
Z∗) (3.7)

The perpendicular and parallel velocities of cilia are

Ŵ =
∂Ẑ

∂t̂
=
∂ĥ

∂t̂
+
∂h̃

∂Ẑ

∂Ẑ

∂t̂
=
∂ĥ

∂t̂
+
∂ĥ

∂Ẑ
Ŵ (3.8 a)

Û =
∂R̂

∂t̂
=
∂ĝ

∂t̂
+
∂ĝ

∂Ẑ

∂Ẑ

∂t̂
=
∂ĝ

∂t̂
+
∂ĝ

∂Ẑ
Ŵ (3.8 b)

Solving Eqs. (3.6−3.8) we get

Ŵ = χ̂(Ẑ, t̂) =
−2π
λ
a2cεα cos( 2π

λ
Z∗)

1− 2π
λ
a2εα cos( 2π

λ
Z∗)

(3.9 a)

Û =
2π
λ
a2cε sin( 2π

λ
Z∗)

1− 2π
λ
a2εα cos( 2π

λ
Z∗)

at R̂ = R̂2 (3.9 b)
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Following transformations are used

r̂ = R̂ , ẑ = Z∗ , û = Û , ŵ = Ŵ−c (3.10)

where Z∗ =Ẑ − ct̂.

Boundary conditions are defined in this farm

Ŵ = 0 at R̂ = R̂1

Ŵ = χ̂(Ẑ, t̂) at R̂ = R̂2 = a2+a2ε cos(2π
λ
Z∗) (3.11)

Non dimensional variables are defined as:

R =
R̂

a2
, p =

a22p̂

cλµf
, r =

r̂

a2
, δ =

a2
λ
, Z =

Ẑ

λ
, t =

ct̂

λ
, Re =

acρf
µf

u =
λû

a2c
, W =

Ŵ

c
, w =

ŵ

c
, r1 =

r̂1
a2

=
a1
a2

= ξ, θ =
T̂ − T̂1
T̂0 − T̂1

, U =
λÛ

a2c

B =
Q0a

2

kf (T̂0 − T̂1)
, Gr =

g βf ρf a
2(T̂0 − T̂1)
cµf

, r2 =
r̂2
a2

= 1 + ε cos(2πz)

(3.12)

After using dimensionless parameter, applying the condition of low Reynolds

number, long wave length approximation and transformation defined in Eqs.

(3.10) and (3.12) Eqs. (3.2−3.4) becomes

pr = 0 (3.13)

−pz +
µnf
µf

(wrr +
1

r
wr) +

(ρβ)nf
(ρβ)f

Grθ = 0 (3.14)

αnf
αf

(
1

r
θr + θrr) +B

(ρcp)f
(ρcp)nf

= 0 (3.15)

Boundary conditions after dimensionless parameters are
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w = −1−2πεαδcos(2πz) at r = r2 (3.16)

w = −1 at r = r1 (3.17)

θ = 1 at r = r1 , θ = 0 at r = r2 (3.18)

u = 2πε sin(2πz)+(2π)2εαδ cos(2πz)sin(2πz) at r = r2 (3.19)

3.3 Obtained results

Solution of the boundary values problem (3.14−3.19) is directly noted:

θ = −d3
r2

4
+d4 Log(r) +d5 (3.20)

w =
1

16(Log(r1)− Log((r2))
(Log(r1)(16χ(z)−d8r2+d8r24−16d11(−r2+r22))

+Log(r2)(16 + d8r
4 − d8r14 − 16d11(+r

2 − r12)− 4d9(+r1
2 − r22)Log(r1))

+(−16 + d8r1
4 − d8r24 + 16d11(−r12 + r22) + 4d9((−r2 + r1

2)Log(r1)

−16χ(z))Log(r))+
dp

dz

−1

4d6(Log(r2)− Log(r1))
((−r12+r22)Log(r)−(r2−r12)Log(r2)

−(−r2+r22)Log(r1) (3.21)

where

d1 =
αf
αnf

, d2 =
(ρcp)f
(ρcp)nf

, d3 = Bd1d2, d4 =
−d3r22 + 4 + d3r1

2

4(Log(r2)− Log(r1))

d5 =
−d3r22Log(r1) + d3r1

2Log(r2) + 4Log(r2)

4(Log(r2)− Log(r1))
, d6 =

µnf
µf

, d7 = (1−φ)+φ
(ρβ)s
(ρβ)f

d8 = −d3Grd7
4b6

, d9 =
d4Grd7
d6

, d10 =
d5Grb7
d6

, d11 =
3d9
8
− d10

4
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By using the following relations we get pressure gradient

Fg =

r2∫
r1

(rw)dr (3.22)

Pressure gradient is

dp

dz
=
Fg − p1
p2

(3.23)

Velocities and flow rate in non dimension form in term of stream function

relation can be written :

Q = Fg +
1

2
(1+

ε2

2
−ξ2) (3.24)

u = −1

r

∂Ψ

∂z
w =

1

r

∂Ψ

∂r
at r = r2 (3.25)

3.4 Graphical results

3.4.1 Velocity profile

This section illustrates the graphs of solution obtained for velocity. Profile of

velocity is plotted against radial axis r in Figs. (2 - 3) for different values of

volume fraction of the nanoparticle and Grashof number. Figs. (2 - 3) show

by higher values of φ and Gr velocity profile also rise in the range of r ∈ [0.1,

0.6] close to endoscopic tube. Velocity profile decreases close to cilia tips.

Fig. (2) explains that when nanoparticle concentration is added into base

fluid, velocity profile extended close to endoscopic tube. Fig. (3) determines

that buoyancy forces assume a prevailing job close endoscopic tube is due to

the velocity profile rises close to the endoscopic tube. Viscous powers assume



20

a important role close tips of cilia so the velocity profile adds to diminish.

3.4.2 Temperature Profile

Figs. (4 - 5) represent temperature profile for distinct values of B ( heat

source) and volume fraction of nanoparticle. Fig. (4) indicates that tem-

perature profile rise with rising values of B. On other hand with increasing

values of φ temperature profile declines. Fig. (5) describes that fluid tem-

perature decreases with increasing nano particle. For quick dissipation high

thermal conductivity of nanoparticle assume imperative role. Different type

of copper nanoparticle can be used as coolant.

3.4.3 Pressure gradient

Figs. (6 -8) represent graph of dp/dz for distinguish values of ε, φ, and

Gr. It has been observed from Figs. (6 - 8) that pressure gradient obtained

higher range in narrow part of annulus in domain z ∈ [0.75, 1.26] and take

small values in wider portion of annulus in domain z ∈ [0.26, 0.74] and z ∈

[1.27, 1.74]. In wider part of annulus flow can easily pass. But in narrow

part of tube more dp/dz is needed to attain same flux.

3.4.4 Pressure rise

Figs. (9 - 10) are plotted to see the behaviour of the solid volume fraction of

the nanoparticle, cilia length parameter, and Grashof number on the pressure

rise for different values. Fig. (9) explains that ∆p extended in range Q ∈

[-1, 0.4] with extending value of cilia length parameter and decreases in rest

of region. Fig. (10) illustrates pressure rise stretch in region Q ∈ [−1, 0.05]

for largest values of φ and decline in remaining part of annulus.
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3.4.5 Streamlines

The trapping phenomenon for distinguish values of length of cilia and volume

fraction of nano particle is discussed by Figs. (11 - 16). Streamlines for

volume fraction of nano particles are represented by Figs. (11 - 13). Figs.

(14 - 16) represent streamlines for distinguish values of cilia length. By rising

values of φ, number of trapped bolus reduced. By rising values of cilia length

size of bolus decline but number of bolus is fixed. By using theses figures we

can judge that ciliated tips help movement of fluid so so the trapped boluses

show up close to the right divider when contrasted with the left endoscopic

divider because of the more circulation of the liquid.
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Fig. 2: Velocity profile for variation of φ

Fig. 3: Velocity profile for variation of Gr
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Fig. 4: Profile for temperature w.r.t B

Fig. 5: Profile for temperature w.r.t φ
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Fig. 6: Pressure gradient for variation of Gr

Fig. 7: Pressure gradient for variation of φ
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Fig. 8: Pressure gradient for variation of ε

Fig. 9: Pressure rise for variation of ε
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Fig. 10: Pressure rise for variation for φ
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Fig. 11: Stream lines

Fig. 12: Stream lines
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Fig. 13: Stream lines

Fig. 14: Stream lines
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Fig. 15: Stream lines

Fig. 16: Stream lines
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Chapter 4

Analysis of nanofluid due to trapping along a

porous annulus with cilia in the presence of

thermal radiation

4.1 Introduction

This chapter is extended work of previous chapter with adding porous an-

nulus and existence of thermal radiation. Mathematical model considered as

movement of cilia in presence of endoscopic tube. First we convert system

of non linear PDEs into dimensionless non linear ODEs by using non dimen-

sional parameter. Numerical solution is calculated for temperature profile

as well as velocity profile. Results for temperature profile, velocity profile,

pressure gradient, pressure rise are constructed and evaluated graphically.

4.2 Formulation of model

Consider movement of cilia for two 2-D flow of an incompressible viscous

nanofluid in porous annular region with existence of thermal radiation. Con-

tinuity and momentum equations can be formulated as

ÛR̂ +
Û

R̂
+ ŴẐ = 0 (4.1)

ρnf
(
Ût̂ + Û ÛR̂ + Ŵ ÛẐ

)
= − P̂R̂ + µnf

( 1

R̂
ÛR̂ + ÛR̂R̂ −

Û

R̂2
+ ÛẐẐ

)
(4.2)
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ρnf (Ŵt̂ + ÛŴR̂ + ŴŴẐ) = −P̂Ẑ + µnf (
1

R̂
ŴR̂ + ŴR̂R̂ + ŴẐẐ)− µnf

k0
Ŵ + (ρβ

)
nf

ĝ (T̂ − T1)

(4.3)(
ρ cp
)
nf

(
T̂t̂ + Û T̂R̂ + Ŵ T̂Ẑ

)
= knf

( 1

R̂
T̂R̂+T̂R̂R̂ + T̂ẐẐ

)
+
µnf
k0

Ŵ 2 − ∂qr

∂R̂
+Q0

(4.4)

The radiative heat flux is

qr =
16σ∗T0

3

3k∗
∂T

∂R̃

Heat capacity and thermal conductivity of nanofluid express as follow [18, 19]

αnf (ρcp)nf = knf , µnf (1− φ)2.5 = µf ,
ρnf
ρs

= (1− φ)
ρf
ρs

+ φ

(ρβ)nf
ρsβs

= (1−φ)
ρfρf
ρsρs

+ φ,
(ρcp)nf
(ρcp)s

= φ + (1−φ)
(ρ cp)f
(ρ cp)s

knf ((ks + 2kf ) + φ(kf − ks)) = kf ((ks + 2kf )− 2φ(kf − ks))

(4.5)
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Table 2: Thermo physical properties of nanoparticles and fluid

Physical properties Copper Pure blood
cp(

J
kgK

) 385 3594

ρ( kg
m3 ) 8933 1063

k( W
mk

) 400 0.492
β.10−5( 1

K
) 1.67 0.18

The internal surface of the tube is ciliated with metachronal waves and

the flow happens because of aggregate beating of the cilia. The envelops of

the cilia tips can be expressed in mathematical farm:

R̂ = ĝ(Ẑ, t̂) = [a2+a2εcos(
2π

λ
Z∗)] = R̂2 (4.6)

In the light of various examples of cilia movement analysed by Sleigh [20],

vertical positions of the cilia tips can be composed as

Ẑ = ĥ(Ẑ, Ẑ0, t̂) = Ẑ0+a2αεsin(
2 π

λ
Z∗) (4.7)

The vertical and horizontal velocities of cilia are

Ŵ =
∂Ẑ

∂t̂
=
∂ĥ

∂t̂
+
∂ĥ

∂Ẑ

∂Ẑ

∂t̂
=
∂ĥ

∂t̂
+
∂ĥ

∂Ẑ
Ŵ (4.8 a)

Û =
∂R̂

∂t̂
=
∂ĝ

∂t̂
+
∂ĝ

∂Ẑ

∂Ẑ

∂t̂
=
∂ĝ

∂t̂
+
∂f̂

∂Ẑ
Ŵ (4.8 b)

Solving Eqs (4.6−4.8) we get

Ŵ = χ̂(Ẑ, t̂) =
−2π
λ
a2cεα cos( 2π

λ
Z∗)

1− 2π
λ
a2εα cos( 2π

λ
Z∗)

(4.9 a)

Û =
2π
λ
a2cε sin(

2π
λ
Z∗)

1− 2π
λ
a2εα cos( 2π

λ
Z∗)

at R̂ = R̂2 (4.9 b)
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Following transformations are used

r̂ = R̂ , ẑ = Z∗ , û = Û , ŵ = Ŵ−c (4.10)

where Z∗ =Ẑ − ct̂.

Suitable boundary conditions are formulated as

Ŵ = 0 at R̂ = R̂1

Ŵ = χ̂(Ẑ, t̂) at R̂ = R̂2 = a2+a2ε cos(2π
λ
Z∗) (4.11)

Non dimensional variables are defined as:

R =
R̂

a2
, p =

a22p̂

cλµf
, r =

r̂

a2
, δ =

a2
λ
, Z =

Ẑ

λ
, t =

ct̂

λ
, Re =

acρf
µf

u =
λû

a2c
, W =

Ŵ

c
, w =

ŵ

c
, r1 =

r̂1
a2

=
a1
a2

= ξ, θ =
T̂ − T̂1
T̂0 − T̂1

, U =
λÛ

a2c

B =
Q0a

2

kf (T̂0 − T̂1)
, Gr =

g βf ρf a
2(T̂0 − T̂1)
cµf

, r2 =
r̂2
a2

= 1 + ε cos(2πz)

(4.12)

After using dimensionless parameter, applying the condition of low Reynolds

number, long wave length approximation and transformation defined in Eqs.

(4.10) and (4.12),

Eqs. (4.2−4.4) becomes

pr = 0 (4.13)

−pz +
µnf
µf

(wrr +
1

r
wr − (w + 1)σ2) +

(ρβ)nf
(ρβ)f

Grθ = 0 (4.14)
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αnf
αf

(
1

r
θr + (1 +Rn)θrr + σ2Em(w+1)2) +B

(ρcp)f
(ρcp)nf

= 0 (4.15)

where

σ2 =
a2

2

k0
, Em =

c2µnf

knf (T̃0 − T̃1)
, Rn =

16σ∗T0
3

3k∗
σf
knf

, σf =
a22

(T̃0 − T̃1)

Boundary conditions after dimensionless parameters are

w = −1−2πεαδcos(2πz) at r = r2 (4.16)

w = −1 at r = r1 (4.17)

θ = 1 at r = r1 , θ = 0 at r = r2 (4.18)

u = 2πε sin(2πz)+(2π)2εαδ cos(2πz)sin(2πz) at r = r2 (4.19)
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Table 3: Velocity profile for r1 = 0.1, σ = 0.1, Em = 0.1, z = 0.08,
Φ = 0.02, ε = 0.05,Rn = 1, B = 0.17, δ = 0.11, α = 0.02

r Gr = 1
w(r)

Gr = 2
w(r)

Gr = 3
w(r)

Gr = 4
w(r)

0.1 -1 -1 -1 -1
0.2 -0.958843 -0.917463 -0.876083 -0.834703
0.3 -0.946129 -0.891910 -0.837691 -0.783472
0.4 -0.946314 -0.892196 -0.838078 -0.783960
0.5 -0.953436 -0.906381 -0.859325 -0.812270
0.6 -0.964075 -0.927616 -0.891157 -0.854697
0.7 -0.975826 -0.951087 -0.926347 -0.901608
0.8 -0.986787 -0.972988 -0.959189 -0.945391
0.9 -0.995347 -0.990096 -0.984844 -0.979592
1 -1.000080 -0.999550 -0.999022 -0.998494

Table 4: Velocity profile for r1 = 0.1, σ = 0.1, Gr = 3, Em = 0.1, z = 0.08,
ε = 0.05, Rn = 1, B = 0.17, δ = 0.11, α = 0.02

r φ = 0.01
w(r)

φ = 0.02
w(r)

φ = 0.03
w(r)

φ = 0.04
w(r)

0.1 -1 -1 -1 -1
0.2 -0.911467 -0.876083 -0.842582 -0.81092
0.3 -0.884048 -0.837691 -0.793808 -0.752338
0.4 -0.884341 -0.838078 -0.794249 -0.752913
0.5 -0.899544 -0..859325 -0.821262 -0.785300
0.6 -0.922314 -0.891157 -0.861673 -0.833822
0.7 -0.947485 -0.926347 -0.906348 -0.887458
0.8 -0.970978 -0.959189 -0.948038 -0.937506
0.9 -0.989330 -0.984844 -0.980601 -0.976595
1 -0.999473 -0.999022 -0.998596 -0.998193
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Table 5: Temperature profile for r1 = 0.1, σ = 0.1, Gr = 1, Em = 0.5,
z = 0.03, ε = 0.05, Rn = 1, B = 6, δ = 0.11 α = 0.02

r φ = 0.02
θ(r)

φ = 0.04
θ(r)

φ = 0.06
θ(r)

φ = 0.08
θ(r)

0.1 1 1 1 1
0.2 0.976894 0.967749 0.959255 0.951346
0.3 0.933736 0.919010 0.905333 0.892596
0.4 0.871104 0.853156 0.836486 0.820962
0.5 0.789224 0.769945 0.752040 0.735365
0.6 0.688211 0.669254 0.651647 0.635250
0.7 0.568133 0.551008 0.535101 0.520289
0.8 0.429036 0.415159 0.402270 0.390267
0.9 0.270950 0.261674 0.253059 0.245036
1 0.093897 0.090529 0.087400 0.084487
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4.3 Graphical results

4.3.1 Velocity profile

This section consist of plots showing the influence of various physical param-

eters appearing the considered flow problem. Grashof number Gr, porosity

parameter σ2, nanoparticle volume fraction φ, thermal radiation Rn, and r1

have been varied for analysis of velocity in Figs. (17 - 21). The numerical

tables (see Tables 3 and 4) are also presented to describe the behaviour of

velocity against the above said parameters.

It is depicted from Fig. (17) that velocity profile extended with increase

in nanoparticle volume fraction. The reason behind the state is that nanopar-

ticle has extended the thermal conductivity. Fig. (18) identifies influence of

Grashof number on velocity profile. It is apparent that with rise in Grashof

number causes boost in velocity profile. Because buoyancy forces play an

important role to create the disturbance in the given fluid for given domain.

Fig. (19) exhibits the impact of porosity parameter on velocity profile. Since

the flow in porous medium resist so velocity profile decline, so velocity profile

decline with higher values of σ. Fig. (20) identifies the effects of thermal

radiation on velocity profile. It is observed that velocity profile increase with

rising values of Rn. Radiation parameter increased the momentum of fluid

molecule which caused the increase in velocity. Fig. (21) demonstrates the

change of velocity with higher values of r1. It is noticed that with increasing

values of r1 velocity profile reduce.

4.3.2 Temperature profile

Plot in Figs. (22 - 24) are prepared to see changes in profile of temperature

for influential parameters namely heat source B, nanoparticle volume frac-
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tion φ, radiation parameter Rn. It can be depicted from Fig. (22) that with

increasing values of B temperature profile extended. The effects of nanoparti-

cle volume fraction on temperature profile are shown in Fig. (23). By adding

the high concentration of nanoparticle velocity of fluid molecules will show

the low momentum due to dense space. Fig. (24) exposes the behaviour

of velocity by rising values of thermal radiation parameter. It is discovered

from Fig. (24) that temperature profile declines with increase in values of Rn.

Radiation plays an inverse role in temperature profile compared to velocity

profile.

4.3.3 Pressure gradient

Pressure gradient describes the rate of flow in the direction of pressure

changes. Pressure gradient is plotted in Figs. (25 - 27) for distinguish values

of nanoparticle volume fraction, cilia length and porosity parameter. In Fig.

(25) it is observed that pressure gradient is reduced with increasing values of

σ. Fig. (26) represent that by rising values of φ pressure gradient declines.

Fig. (27) illustrates that pressure gradient is extended with increase in cilia

length.

4.3.4 Pressure rise

Figs. (28 - 30) illustrate the behaviour of pressure rise versus various values

of nanoparticle volume fraction, cilia length and porosity parameter. Figs.

(28 - 29) indicate that by taking higher values of σ and φ pressure rise

is found to be increase in domain Q ∈ [−1, 0] and on the other hand it

decreases in the domain Q ∈ [0, 1]. From these figures on can judge that

increase in the flow rate causes increase in pressure rise per wave length

in the narrow pumping area due to less volume the heat transfer increases
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and pressure rise enhances. And inverse behaviour is observed in the wider

pumping domain. It is perceive from Fig. (30) that by increasing cilia length

parameter pressure rise is rises in region Q ∈ [0, 1]in region Q ∈ [−1, 0.1]

and decline in Q ∈ [0.1, 1].
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Fig. 17: Velocity profile for variation of φ

Fig. 18: Velocity profile for variation of Gr
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Fig. 19: Velocity profile for variation of σ

Fig. 20: Velocity profile for variation of Rn
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Fig. 21: Velocity profile for variation of r1

Fig. 22: Temperature profile for variation of B
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Fig. 23: Temperature profile for variation of φ

Fig. 24: Temperature profile for variation of Rn
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Fig. 25: Pressure gradient for variation of σ with φ = 0.02

Fig. 26: Pressure gradient for variation of φ with σ = 0.01
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Fig. 27: Pressure gradient for variation of ε with φ = 0.02, σ = 0.01

Fig. 28: Pressure rise for variation of σ with φ = 0.02
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Fig. 29: Pressure rise for variation of φ with σ = 0.01

Fig. 30: Pressure rise for variation of ε with σ with φ = 0.02
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Chapter 5

Conclusion

In Present study we consider results of viscous nanofluid due to cilia motion

in porous annulus with presence of thermal radiation. Major findings are

• Velocity profile increases with rising values of Grashof number, Volume

fraction of nanoparticle, radiation factor.

• Velocity profile decline with rising values of porosity parameter.

• Temperature of fluid is decline when nanoparticle is added to base fluid

and thermal radiation is added.

• Temperature of fluid is extended with increasing the values of heat

source parameter.

• Pressure gradient reduces for rising values of both φ and σ.

• Pressure gradient is rises when we extend length of cilia.

• Pressure rise increases for various values of φ, ε, and σ.



48

References

[1] Latham, T. W. (1966). Fluid motion in peristaltic pumps, M S (Doctoral

dissertation, Thesis, MIT, Cambridge, MA).

[2] Shapiro, A. H. (1967). Pumping and retrograde diffusion in peristaltic

waves. In Proceedings of the workshop in ureteral reflux in children,

Washington, DC (pp. 109-126).

[3] Barton, C., & Raynor, S. (1968). Peristaltic flow in tubes. The Bulletin

of mathematical biophysics, 30(4), 663-680.

[4] Shapiro, A. H., Jaffrin, M. Y., & Weinberg, S. L. (1969). Peristaltic

pumping with long wavelengths at low Reynolds number. Journal of fluid

mechanics, 37(4), 799-825.

[5] Yin, F., & Fung, Y. C. (1969). Peristaltic waves in circular cylindrical

tubes. Journal of Applied Mechanics, 36(3), 579-587.

[6] Jaffrin, M. Y. (1973). Inertia and streamline curvature effects on

peristaltic pumping. International Journal of Engineering Science, 11(6),

681-699.

[7] Jaffrin, M. Y., & Shapiro, A. H. (1971). Peristaltic pumping. Annual



49

review of fluid mechanics, 3(1), 13-37.

[8] Takabatake, S., Ayukawa, K., & Mori, A. (1988). Peristaltic pumping

in circular cylindrical tubes: a numerical study of fluid transport and its

efficiency. Journal of Fluid Mechanics, 193, 267-283.

[9] Mekheimer, K. S. (2008). Peristaltic flow of a couple stress fluid in an

annulus: application of an endoscope. Physica A: Statistical Mechanics

and its Applications, 387(11), 2403-2415.

[10] Agrawal, H. L., & Anawaruddin. (1984). Cilia transport of bio-fluid

with variable viscosity. INDIAN JOURNAL OF PURE & APPLIED

MATHEMATICS, 15(10), 1128-1139.

[11] Barton, C., & Raynor, S. (1967). Analytical investigation of cilia

induced mucous flow. The Bulletin of mathematical biophysics, 29(3),

419-428.

[12] Jahn, T. L., & Bovee, E. C. (1965). Movement and locomotion of

microorganisms. Annual Reviews in Microbiology, 19(1), 21-58.

[13] Jahn, T. L., & Bovee, E. C. (1967). Motile Behaviour of Protozoa, In

reesearch in proto-zoology, Vol. 1.



50
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