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Abstract

In this proposal MHD flow of a micropolar nanofluid with bioconvection past a penetrable
elongating sheet in attendance of nonlinear thermal radiation and stratification conditions
will be studied. In addition, effects of thermal and concentration stratification boundary
conditions will also be discussed. Boundary layer system of non-linear partial differential
equations will be converted to ordinary differential equations with high non-linearity via
suitable transformations. Renowned Homotopy Analysis method (HAM) will be engaged
to find series solution of the problem. Graphs of pertinent parameters against temperature,

velocity, and concentration distributions will also be a part of this study.
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Nomenclature

T, Shear force applied on the element of fluid
du Shear rate

dy

n, Apparent viscosity

n Similarity variable

K, Consistency index

o Electrical conductivity

Q, Heat added

o Specific heat

m Mass

AT Change in temperature

T, Temperature of the solid surface
T, Temperature of surrounding fluid
A Surface area

h Heat transfer coefficient

k. Ks, Ky, Ky Thermal conductivity

X Coordinate at the boundary

C, Specific heat

7, Wall shear stress
u, Velocity

b Chemotaxis constant

Psi

Density of nanofluid




b, Body force
e Specific internal energy
r Thermal radiation
X,y Coordinate axis
e Dynamic viscosity
1% Kinematic viscosity
N Micro-rotation or angular velocity
P Density
J Microinertia density
7 Spin gradient viscosity
uv Velocity components
B, Applied magnetic field strength
E, Applied electric field
k* Mean absorption coefficient
h, Heat transfer coefficient
a Slip parameter
o Slip coefficient
v, f, Suction/injection velocity
T Fluid temperature
T, Ambient temperature
T, Convective fluid temperature
T, Fluid reference temperature
T, Wall temperature
K Material parameter




M, M/ Hartman number

E Electric parameter

R Radiation parameter

Ec Eckert number

Pr Prandtl number

Lb Bioconvection lewis number

Le Lewis number

Q Microorganisms concentration difference parameter
Pe Bio-convection Peclet number

Nt Thermophoresis parameter

Nb Brownian motion parameter

C Concentration of fluid

C, Ambient concentration

C, Convective fluid concentration

G, Reference concentration of nano particles
Dy Brownian diffusion coefficient

D; Thermophoretic diffusion coefficient

D, Microorganism diffusion coefficient
W, Maximum cell swimming speed

n Density motile of microorganisms

Reference concentration of microorganisms




n, Ambient concentration of microorganisms
n, Surface concentration of microorganisms
S Thermal stratification parameter
P Concentration stratification parameter
Q Motile density stratification parameter
o Skin friction number
Nu, Nusselt number
Sh, Sherwood number
Nn, Local density number
Q, Heat transferred with unit thickness of a substance per unit time
., Heat flux at wall
T Ratio of effective heat
r Cauchy stress tensor
q Heat flux
k Vortex velocity
o Stefan-Boltzmann constant

Q,

Radiative heat flux
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Chapter 1

Introduction and Literature review

1.1 Introduction

Nanofluids have many advantages over other simple fluids due to their thermal efficiency.
Nanofluids are liquid suspensions in which nanoparticles including metals, polymers, metalox-
ides, silica etc., are added to a base fluid such as water, ethylene glycol, oil etc. Nanoparticles
are basically the nanometer sized solid particles having diameter less than 100nm. Nanofluids
have higher heat transfer rates, greater viscosity, higher thermal conductivity and more stability
than other fluids. These fluids possess a better wetting, spreading and dispersion properties
over a solid surface. The use of nanofluids spread over a wide range of fields. Nanofluids serve
as a coolant in heat transfer equipment like electronic cooling system, heat exchangers and radi-
ators etc. The efficiency of polymerase chain reaction can be improved with the use of graphene
based nanofluid. Nanofluids have tunable optical properties and due to these properties, they
are used in solar collectors. Nanofluids are also used in biomedical, transportation, microfluids
and manufacturing. Bioconvection is a phenomenon that occurs when microorganisms (which
are denser than water) swim upward on average. Due to up swimming the microorganisms
involved such as gyrotactic microorganisms like algae tend to concentrate in the upper portion
of the fluid layer thus causing a top heavy density stratification that often becomes unstable.
The study of nanofluid bioconvection describing the spontaneous pattern formation and density
stratification induced by the simultaneous interaction of the denser self-propelled microorgan-

isms, nanoparticles and buoyancy forces seems necessary. These microorganisms may include



gravitaxis, gyrotaxis or oxytaxis organisms. The addition of gyrotactic microorganisms into
the nanofluid increases its stability as a suspension. The bioconvection process is a mesoscale
phenomenon in which the motion of gyrotactic motile microorganisms induces a microscopic
motion (convection) in the fluid. The hydrodynamic convection induced by the oxytactic mi-
croorganisms which are oxygen consumers, leads to a flow system which transport cell and
oxygen from the upper fluid region to the lower fluid region. Bioconvection has been studied
extensively due to its wide applications in the modeling oil, gas-bearing sedimentary basin, mi-
crobial enhanced oil recovery and bio-microsystems. Stratification is a deposition (formation)
of layers which occur as result of different fluids mixtures, temperature variation, densities dif-
ference or concentration differences which occur in fluids. Physically, heat and mass transfer
analysis run concurrently, it is of great interest to explore the mechanism of double stratification
(thermal and mass stratifications) on the convective transport in nanofluid. These draw the
attention of researchers such as due to its frequent occurrence in various industrial and engi-
neering processes namely heat rejection into the surrounding (environment) via rivers, lakes and
seas, also thermal energy storage systems via solar ponds, condenser of power plants, industrial
composition, manufacturing processing and heterogeneous composition in food, atmospheric
density stratification, etc. Stratification is a phenomenon which has key contribution in plenty
of industrial and natural processes. Concentration and temperature variations or fluids having
different densities are responsible for the generation of stratification phenomenon. Simulta-
neously occurring of both mass and heat transfer gives rise to double stratification. Salinity
stratification in water reservoirs and rivers, industrial manufacturing and food processes, het-
erogeneous mixtures in atmosphere are some examples of stratification. It also plays a key role
in controlling the concentration and temperature variations of oxygen and hydrogen in ponds
and lakes which can affect growth rate in different species. Due to this reason stratification can
play an important role in ponds and lakes. The effect of stratification is an important aspect in
heat and mass transfer, and it has been studied by several researchers. Stratification of fluids
arises due to temperature variation, concentration differences, or presence of different fluids of
different densities. In practical situations where heat and mass transfer run simultaneously,
it is important to investigate the effect double stratification on the convective transport in

nanofluids. Stratified fluids are ubiquitous in nature, present in almost any heterogeneous fluid



body. Examples include thermal stratification of reservoirs and oceans, salinity stratification
in estuaries, rivers, groundwater reservoirs, and oceans, heterogeneous mixtures in industrial,
food, and manufacturing processing, density stratification of the atmosphere, and uncountable
similar examples. In the presence of gravity, these density differences have a dramatic impact
on the dynamics and mixing of heterogeneous fluids. For example, thermal stratification in
reservoirs can reduce the vertical mixing of oxygen to the point that bottom water becomes
anoxic through the action of biological processes. Preventing, predicting, and solving such a
reservoir problem, though dependent on other limnological factors, requires an understanding
of the dynamics of stratified fluids. The notion of stratification is essential in lakes and ponds.
It is important to control the temperature stratification and concentration differences of hy-
drogen and oxygen in such environments as they may directly affect the growth rate of all
cultured species. Also, the analysis of thermal stratification is important for solar engineering
because higher energy efficiency can be achieved with better stratification. It has been shown
by researchers that thermal stratification in energy storage may considerably increase system

performance.

1.2 Literature review

Over the past few years, the requirement to model and shape the fluid that comprises rotating
micro constituents has given rise to the micropolar fluid theory. The fluids that couple the
particles rotatory motion and macroscopic velocity field are known as Micro-polar fluids. Such
fluids are made of stiff particles that are cuddled in a viscous or sticky medium. Examples of
such fluid are blood flow, bubbly liquid and ferro fluid. The industrial applications of these fluids
like biological structures, lubricant fluids, and polymer solutions have also great importance. A
lot of research is done on micropolar fluids theory around the world. This concept was first given
by Eringen [1]. Taking into the limitations of thermodynamics, the boundary conditions and
main equations of the micro polar fluids have been derived and solved for the channel flow. The
flow of blood in an artery can be modeled by such fluids because of micro rotational vector that
is engaged in such type of the fluids. Nazar et al. [2] studied the two dimensional stagnation

point flow of micropolar fluid induced by stretching sheet. The heat and mass transfer features



of magnetohydrodynamic (MHD) flow of micropolar fluid due to stretching surface saturated in
a porous medium was reported by Pal and Chatterjee [3]. Later, Mabood et al. [4] added the
effect of chemical reaction in micropolar fluid past a stretching sheet near the stagnation point.
They noticed a strong impact of chemical reaction on micropolar fluid concentration. Recently
Nadeem et al. [5] carried out heat transfer analysis in three dimensional flow of micropolar
fluid generated due to exponential surface. Some other related work on micropolar fluid can be
found in [6 — 9].

On the other hand, the study of nanofluid heat transfer flow has attracted considerable
attention. Nanofluid is a liquid that is made by propagation of strong particles with dimensions
less than 100 nm in fluids. A nanofluid low thermal conductivity is one of its striking para-
meters that can restrain the performance of heat transfer. Because of their low heat transfer
properties, normal heat transport fluids such as water, ethylene glycol, and engine oil have lim-
ited heat transfer capabilities and are therefore unable to meet today’s cooling requirements.
Suspended nanoparticles can improve the fluid flow and heat transfer characteristics of the base
fluids. Necessary studies must be conducted before extensive application for nanofluids can be
encountered. Keeping in view of its applications, Yadav et al. [10] investigated electrically
conducting flow of nanofluid in the presence of internal heating. The effect of magnetic field on
viscoelastic nanofluid flow was explored by Farooq et al. [11]. They have chosen viscoelastic
fluid as a base fluid for nanoparticles and observed that the behavior of thermophoresis and
Brownian motion parameters on nanoparticles concentration is opposite. Sheikholeslami et
al.[12] and Sheikholeslami [13] theoretically analyzed the magneto nanofluid in the absence and
presence of porous medium, respectively. Their output reveals that the temperature gradient
of nanofluid augments with rise of Hartmann number. Pramuanjaroenkij et al. [14] discussed
the mixing thermal conductivity model for a single phase boundary layer flow of nanofluid in
the presence of viscous dissipation. In their work they have used Cu—water, CuO—water, and
Al203-water nanofluids as working fluids in a rectangular channel.

Lu et al. [15] discussed the micropolar nanofluid passed a linear stretched surface under
the influence of homogenous and heterogeneous reaction. Nadeem et al. [16] introduced three
dimension micropolar nanofluid past an exponential stretching sheet by adding magnetic effect.

They solved it numerically by bvp4c function of MATLAB. The impact of thermal and velocity



slip on stagnation point flow of micropolar fluid due to circular cylinder was demonstrated
by Abbas et al. [17]. Their findings indicate that more defiance in the fluid was observed
with increment in velocity slip parameter due to which the shear stress and heat transfer rate
reduced. Sheikholeslami et al. [18] analyzed the heat transfer transport of alumina nanofluid
in a duct. The numerical solutions were found using Runge-Kutta method. The influence of
magnetic field on micropolar nanofluid in the presence of hall current was studied by Shah et
al. [19]. They have considered the flow between two parallel plates rotating in its own axis and
observed that thermophoresis impact is the same on temperature and concentration profiles.
In the rotating system, the three dimensional flow of micropolar nanofluid between parallel
and horizontal plates in the presence of heat generation/absorption was reported by Khan et
al. [20]. Sadiq et al. [21] found numerical solutions of MHD flow of micropolar fluid in the
presence of nanoparticles via Runge-Kutta method. Some interesting features of nanofluid can
also be seen in [22] — [26]

The key function of the thermal radiation is to control the transfer of heat procedures. By
monitoring heat aspects to a particular range, one can improve the attributes and quality of the
ultimate product. In transfer of heat flow, the influence of thermal radiation was extraordinarily
significant for a system operating at above average temperature and where radiation from
heated walls and working fluid is confronted. An important alteration of the temperature at
the walls and away from the walls overstress this entire procedure and show up the value of
thermal radiations. The ultimate product’s preferred value and quality extremely depends upon
understanding with suitable part of the radiative flow over that specific system. Hayat et al.
[27] discussed the effects of thermal radiation mixed convection flow near stagnation point under
the influence of magnetic field. They found the series solution using homotopy analysis method
(HAM) and analyzed the problem for both assisting and opposing flow. The impact of chemical
reaction on radiative flow of viscous fluid over a permeable surface inside a porous medium was
investigated by Pal and Talukdar [28]. Bhattacharyya and Layek [29] illustrated the effect of
thermal radiation on heat transfer flow past a shrinking sheet. The influence of magnetic field
on radiative flow of Jeffery nanofluid due to exponentially stretching surface was deliberated
by Hussain et al. [30]. Ramzan and Bilal [31] demonstrated the effect of thermal radiation on

electrically conducting unsteady flow of second grade nanofluid induced by stretching surface.



Hayat et al. [32] investigated three dimensional flow of viscoelastic nanofluid in the presence
of non-linear thermal radiation. The influence of thermal radiation on boundary layer flow of
Jeffer nanofluid in the presence of heat generation and absorption was presented by Ramzan
et al. [33]. In another study, Pal and Mandal [34] analyzed the influence of thermal radiation
on magnetic flow of micropolar nanofluid due to stretching surface with heat source and sink.
They noticed an opposite behavior on velocity and temperature profiles by mixing nanoparticles
to the working fluid. Siddiq et al. [35] and Ghadikolaei et al. [36] discussed the linear and
nonlinear thermal radiation phenomenon in electrically conducting flow of micropolar nanofluid,
respectively.

From the above literature survey, it is evident that less attention is paid towards the effect
of nonlinear thermal radiation on micropolar nanofluid. However, no work is done so far on
bioconvective MHD flow of micropolar nanofluid in the presence of nonlinear thermal radiation
and joule heating. The aim of present analysis is to fill this gap and analyze the influence
of thermal radiation on bioconvective MHD flow of micropolar nanofluid with joule heating
effects. The velocity slip at boundary wall is also taken into consideration. The series solutions
of transformed governing equations are obtained via homotopy analysis method. The results

are displayed graphically and discussed.
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Chapter 2

Basic preliminaries and laws

This chapter contains some elementary definitions, concepts and laws that are helpful in un-

derstanding the works in the second and third chapters.

2.1 Fluid

A material which deforms continuously when shear force is utilized. Gases and liquids are

examples of fluid.

2.1.1 Liquid

A type of fluid which has a certain volume however no certain shape e.g. blood, water and milk

etc.

2.1.2 Gas

A fluid which has no certain shape and volume is known as gas. Nitrogen, hydrogen and oxygen

are examples of gases.

2.2 Fluid mechanics

The physical science’s branch that deals with the behavior of fluid in motion or in rest. It can

be further subdivided in to two branches as follows:

11



2.2.1 Fluid statics

It describe the properties of fluid that are at rest.

2.2.2 Fluid dynamics

Fluid dynamics studies the features of fluid that are in the state of motion.

2.3 Stress

It is defined as the surface force that act on the unit area within the body which is deformable.
It’s unit in SI system is Nm~2 or kg/m.s? and its dimension is [%} Stress can be further

divided into two types:

2.3.1 Shear stress

Stress is recognized as shear stress when the force acts parallel to the unit area of the surface.

2.3.2 Normal stress

Stress is known as normal stress when the force acts normal to the surface of unit area.

2.4 Strain

A quantity that is used to measure the distortion or deformation of an object when a force acts

on it.

2.5 Flow

Flow is described as a material that deform continuously or smoothly under the effects of various
type of forces. There are two ways to explain the flow:
2.5.1 Laminar flow

When fluid is flowing in the manner that various layers of fluid never cross each other and the

velocity at each point is constant is called as laminar flow.

12



2.5.2 Turbulent flow

When fluid is flowing in the manner that various layers of fluid cross each other and velocity at

each point deviates with the magnitude and direction is called Turbulent flow.

2.6 Viscosity

An intrinsic property of the fluid which measures the resistance of fluid against any gradual
distortion or deformation when different forces acts on it is known as viscosity. There are two
ways to express the viscosity.

2.6.1 Dynamic viscosity

The property of fluid which measures the fluid’s resistance against any distortion or deformation

when a force acts on it. Mathematically, it can be stated as:

shear stress

viscosit = .
y (W) gradient of velocity

Its SI unit is Ns/m? and dimension is [L—MT]

2.6.2 Kinematic viscosity

Kinematic viscosity expresses the ratio of dynamic viscosity (u) to the density of fluid (p).
Mathematically, it is denoted by:
L
v=-=. (2.2)
p

Its SI unit is m?/s and its dimension is [%2] .

2.7 Newton’s law of viscosity

It describes the shear force that deforms the fluid element directly and linearly proportional to

the gradient of the velocity. Mathematically, it can be stated as:

du
Tyw X d_y’ (2.3)

13



or

— <§—Z> , (2.4)

in which 7,, denotes the shear force applied on the element of fluid and p represents the

proportionality constant and fl—qy‘ is shear rate.

2.7.1 Newtonian fluids

Newtonian fluids are those that satisfy the Newton’s law of viscosity and the value of p is
constant. In such fluids shear force 7, is linearly proportional to the gradient of velocity (Z—Z).

Glycerine, water, air and kerosene are some common examples of such fluids.

2.7.2 Non-Newtonian fluids

Such fluids for which Newton’s law of viscosity don’t hold are the non-Newtonian fluids. Here,
direct and nonlinear relationship exists among the shear stress 7,, and gradient of the velocity.

Mathematically, it is specified as:

d n
Tyz X <d—Z> , n#1, (2.5)
or )
du du\""
Tyx = 771d—y7 and = kQ <d_y> 5 (26)

where 7;,n and kp denote apparent viscosity, index of flow behavior and consistency index
respectively. For n = 1 Eq. (1.6) converts to Newton’s law of viscosity. Ketchup, paints and
honey describe the non-Newtonian fluid behavior. Such fluids are characterized mainly into

three types i.e. (i) differential type (i7) integral type (iii), and rate type.

2.8 Rate type fluids

Fluids that depict the impacts of retardation and relaxation times are known as rate type fluids.
Some common examples of rate type fluid models are Burgers, Oldroyd and Maxwell and Jeffery

fluids etc.
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2.8.1 Retardation Time

When the shear stress is applied, an opposing force is produced and a time is required to balance

this force is known as retardation time.

2.8.2 Relaxation Time

When the stress is applied, then a system from an equilibrium position goes to perturb position.
Once the stress is taken off, time required for a perturb system back to an equilibrium position

is known as relaxation time.

2.9 Joule heating

Joule heating (also stated to as ohmic or resistive heating) defines the process where the energy

of an electric current is transformed into heat as it flows through a resistance.

2.10 Magnetohydrodynamics (MHD)

The word magnetohydrodynamics is combination of the words magneto means magnetic, hydro
means water or liquid and dynamic refer to the motion of an object by force. Magnetohydro-
dynamics is the branch in which we study the dynamics of the high conducting fluids where
the magnetic field is present. Blood, liquid metals and salt water are some examples of MHD

fluids. Its parameter is called as Hartmann.

2.11 Micropolar fluids

Micropolar fluids are fluids with microstructures. They belong to a class of fluids with a
nonsymmetric stress tensor. Micropolar fluids consist of rigid, randomly oriented or spherical
particles with their own spins and microrotations, suspended in a viscous medium. Physical
examples of micropolar fluids can be seen in ferrofluids, blood flows, bubbly liquids, liquid

crystals, and so on, all of them containing intrinsic polarities.
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2.12 Nanofluid

A nanofluid is a fluid comprising nanometer-sized particles, known as nanoparticles. Such
fluids are persuaded colloidal suspensions of nanoparticles in the base fluid. The nanoparticles
consumed in nanofluids were naturally made of carbides, oxides, metals, or carbon nanotubes.

Some common base fluids are water, oil and ethylene glycol.

2.13 Stratification

Sometimes the mechanism of deformable density happened/appeared in the shallow fluid medium
owing to change in the state of concentration, pressure, temperature and dissolved substances
termed as stratification. It is witnessed that in case of stratification, density is the function of

space variable as well as time. By cause of which layer formation occurs.

2.14 Thermal stratification

It happens as result of temperature imbalance, which provide rise to density imbalance in the
fluid medium. Commomly, the reasons are thermal energy from heated bodies e.g, sun.

2.15 Concentration stratification

This type of stratification has application in many mechanism like transportation in the sea
where stratification occurs due to salinity imbalance. As a result of existence of various fluids,

a stable standpoint arises when the lighter fluids stands over the denser one.

2.16 Microelectromechanical system

A MEMS (micro-electro-mechanical-system) is a mini machine which has both electronic and
mechanical components. The physical dimensions of a MEMS can vary from several milli-meters

to less than 1 micro-meter.
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2.17 Magnetic field

A magnetic field is a vector field which defines the magnetic impact of magnetized materials

and electrical currents.

2.18 Electric field

An electric field (occasionally abbreviated as E-field) is a vector field neighboring an electric
charge which exerts force on further charges, repelling or attracting them. Mathematically,
the electric field is a vector field which associates to every point in space the force, known as
the Coulomb force, which would be experienced per unit of the charge by an infinitesimal test
charge at that point. In the SI system the units of the electric field are Newtons per coulomb

(N/C), or volts per meter (V/m).

2.19 Uniform magnetic field

When magnetic field lines are parallel then magnetic force experienced by an object is same
at all points in that field and such a field is called uniform magnetic field. For example a bar
magnet’s strength is greater at its poles[non uniform] however inside a solenoid the magnetic

field lines are parallel.

2.20 Incompressible flow

In fluid mechanics or more commonly continuum mechanics, incompressible flow (isochoric flow)
states a flow in which the material density is constant within a fluid cartonl or an infinitesimal
volume which moves with the flow velocity. In other words incompressible flow means a small

elements of fluid are not compressible i.e. their volume is constant.

2.21 Angular velocity

Angular velocity is the rate of velocity at which an object or a particle is rotating around a

center or a specific point in a given time period. It is also known as rotational velocity. Angular
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velocity is measured in angle per unit time or radians per second (rad/s). The rate of change
of angular velocity is angular acceleration. It is typically represented by the symbol omega (w,

sometimes Q).

2.22 Electrical conductivity

Electrical conductivity is the measure of the amount of an electrical current a material can carry
or its capacity to carry a current. Electrical conductivity is also called as specific conductance.
Conductivity is an intrinsic property of any material. Electrical conductivity is symbolized as

o and has SI units of siemens per meter (S/m).

2.23 Specific heat

The specific heat is the amount of heat per unit mass essential to increase the temperature by
one degree Celsius. The relationship among temperature and heat change is typically expressed
in the form shown below where Q1 is heat added, ¢ is the specific heat, m is mass and AT is
change in temperature.

Q1 = emAT (2.7)

2.24 Stefan-Boltzmann constant

The Stefan-Boltzmann constant (also Stefan’s constant), a physical constant represented by the
Greek letter o (sigma), is the proportionality constant in the Stefan-Boltzmann law: the total
intensity radiated over all wavelengths increases as the temperature increases, of a black body

that is proportional to the fourth power of the thermodynamic temperature.

2.25 Heat transfer coefficient

The heat transfer co-efficient or film co-efficient, or film effectiveness, in thermodynamics and in
mechanics is the constant of proportionality between the thermodynamic driving force and the

heat flux for the heat flow (i.e. the temperature difference, AT): The total heat transfer rate
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for combined modes is typically expressed in terms of an overall heat transfer or conductance

coefficient. In that case, the heat transfer rate is:

Q=hA(T, - T1), (2.8)

where
A: surface area where the heat transfer takes place,
T5: temperature of the surrounding fluid,
T1: temperature of the solid surface.

The general definition of the heat transfer coefficient is:

g =dQ/dA, (2.9)

where ¢: heat flux, W/m?; i.e., thermal power per unit area,

h: heat transfer coefficient, W/ (m?.K)

AT: difference in temperature between the solid surface and surrounding fluid area, K

It is used in calculating the heat transfer, characteristically by phase transition or convection
among a fluid and a solid. The heat transfer coefficient has the SI units in watts per squared

meter kelvin: W/(m?K).

2.26 Ambient temperature

Ambient temperature is the air temperature of an object or environment. In computing, ambient
temperature denotes to the air temperature nearby computing equipment.

2.27 Material parameter

Material Parameters are distinct kind of material expression nodes which allow you to alter
the look of a material deprived of having to recompile the material to see the results. Material
parameter expression nodes work like any other material node that you might use in the material

graph but with one key difference.
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2.28 Heat flux

Heat flux or thermal flux, occasionally referred to as heat flux density or heat flow rate intensity
is a flow of energy per unit area per unit time. In the SI, its units are watts per square
metre(VV.mQ). It has both a magnitude and direction, and thus it is a vector quantity. To
express the heat flux at a certain point in space, one can takes the limiting case where the size
of the surface turn into infinitesimally small. Heat flux is generally denoted E, the subscript ¢

specifying heat flux, as opposed to momentum flux or mass.

2.29 Arbitrary constant

An arbitrary constant is that whose value can be expected to be anything, just so long as it
does not depend on the additional variables in an expression or equation. A constant which is

not arbitrary can typically just take one value (or may be, a set of possible values).

2.30 Density

Density is expressed as mass of a material per unit volume. This extent is used to measure that

how much stuff of the material present in a unit volume. Mathematically,

(2.10)

_ K
p=—.
v

The SI unit of density is kg/m3, where p is density, p is dynamic viscosity and v is kinematic

viscosity.

2.31 Pressure

Pressure is defined as a magnitude of force applied perpendicular to a surface per unit area.

Mathematically expression for the pressure is given by:

F
P=—. 2.11
) (2.11)
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The SI unit of pressure is N/m?.

2.32 Thermal conductivity

Thermal diffusivity is a material’s specific property for signalizing the heat conduction. This
value defines that how much heat is transferred in a material. From the Fourier’s law for heat
conduction it can be expressed as a ratio of heat transferred with unit thickness of a substance

per unit time and per unit surface area divided by the temperature difference. Mathematically,

k7 = A(QALT) . (2.12)

The SI unit is kgm/s®.k and its dimension is (%), where @y, is heat transferred with unit
thickness of a substance per unit time, k7 is thermal conductivity and AT is the temperature

gradient.

2.33 Convective boundary condition

Convective boundary condition is sometime called Robin boundary conditions. This kind of

conditions were usually expressed on a wall. Mathematically, these are stated as

i ( or > = BTy t) ~ Tuli, ) (2.13)

8mi
This equation utters that condition is equal to convection, where h specifies the heat transfer
coefficient , z; is the coordinate at the boundary , Ty convective fluid temperature and T, the

wall temperature.

2.34 Dimensionless numbers

2.34.1 Radiation parameter

The radiation parameter describes the relative influence of conduction heat transfer to thermal

radiation transfer and that can be stated as follows:

21



403T3,
h= kik*

(2.14)

in which k* stands for mean absorption coefficient, ky is thermal conductivity, T, describes

ambient temperature and o7 signifies the reaction rate constant.

2.34.2 Prandtl number

The ratio of Momentum diffusivity (v) to thermal diffusivity («) is called as Prandtl number.

Mathematically, it can be stated by:

pr_ Y _ Ko

2.1
‘-tz (215)

where p1 signifies the dynamic viscosity, ¢, represents the specific heat and k3 stands for thermal
conductivity. In heat transfer, Prandtl number is used to control the thicknesses of momentum

and thermal boundary layers.

2.34.3 Hartmann number

It expresses the connection among frictional force and viscosity induced by magnetism. It plays
a vital role in the magneto-hydrodynamics. Hartmann number is the ratio of electromagnetic

to the viscous force i.e.

oB?

=0
b

MIQZM:
pa

(2.16)

where By is the applied magnetic field strength, o the electrical conductivity and p stands for

density.

2.34.4 Skin friction coefficient

When fluid is passing across a surface, particular amount of drag emerges that is known as Skin
friction. It occurs among the solid’s surface and fluid that leads to decelerate the motion of

fluid. The Skin friction co-efficient can be expressed as:

Cp, = —2

: 2.17
T3l (217)
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in which 7, stands for wall shear stress, p stands for density and U, represents the velocity.

2.34.5 Nusselt number

The dimensionless number which signifies the relation between convection and conduction heat
transfer coefficients through the boundary/wall is characterized as Nusselt number. Mathemat-

ically,
m

Nuy = ——do
ka(Ty — To)

(2.18)

where ¢, stands for heat flux at wall, k4 for thermal conductivity and Ty for fluid reference

temperature.

2.34.6 Local Sherwood number

It is a mass transfer rate at the wall. Mathematically, ratio of mass transfer by convection to

diffusion can be expressed as follows

TGm,
Shy = ——m 2.19
Dg (Cy — Co) (2.19)

here Dp Brownian diffusion coefficient, Cy convective fluid concentration and Cp reference

concentration of nano particles.

2.34.7 Peclet number

The Péclet number (Pe) is a class of dimensionless numbers relevant in the study of transport
phenomena in a continuum. It is named after the French physicist Jean Claude Eugéne Péclet.
It is defined to be the ratio of the rate of advection of a physical quantity by the flow to the rate
of diffusion of the same quantity driven by an appropriate gradient. In the context of species
or mass transfer, the Péclet number is the product of the Reynolds number and the Schmidt
number. In the context of the thermal fluids, the thermal Peclet number is equivalent to the

product of the Reynolds number and the Prandtl number. The Péclet number is defined as:

advective transport rate
Pe

- dif fusion transport rate’
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For mass transfer, it is defined as:

(2.20)

where b is the chemotaxis constant, W, the maximum cell swimming speed and D,,, the mi-

croorganisms diffusion coeficient.

2.34.8 Thermophoresis parameter

Thermophoresis is a method that is used to inhibit the mixing of various particles because of
a pressure gradient when they move jointly or isolate the mixture of particles after they get
mixed up. In a cold surface thermophoresis is positive and it is negative for a hot surface.

Mathematically, it can be expressed as

(pc)pDr(Ty —To)

N pu—
' (pc)g VT

: (2.21)

where Ty, Ty and T, are the convective fluid temperature, fluid reference temperature and
ambient temperature , Dy is thermophoretic diffusion coefficient and v the kinematic viscosity.
2.34.9 Brownian motion parameter

Brownian motion happens due to size of the nano-particles in a nano-fluid. It is a nano-scale

mechanism which shows the thermal impacts of nano-fluid. Mathematically,

Ny = TDB(Ci —Coo). (2.22)
where
IO
oo (2.23)

In the above equation 7 is the ratio of effective heat and heat capacity of the nano-particles
and fluid respectively, v the kinematic viscosity. Cy the convective fluid concentration, Cy the

ambient concentration and Dp the Brownian diffusion coefficient.
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2.35 Fundamental laws

The funddamental laws that are used for the flow specification in the subsequential analysis are

given below.

2.35.1 Law of mass conservation

It states that the total mass in any closed system will remain constant. Mathematically,

Dp _
o7 V-V =0, (2.24)
or
Ip
o5+ (V-V)p+pV.V =0, (2.25)
or
dp
5 T V-(oV)=0. (2.26)

It is known as the equation of continuity. For the steady flow Eq. (2.25) becomes
V.(pV) =0, (2.27)
and if the fluid is incompressible then Eq. (2.26) implies that
V.V =0. (2.28)

2.35.2 Law of momentum conservation

It is stated that the total linear momentum of a closed system is constant. Generally, it is given

by:
DV

pﬁ = div ‘7'*‘|‘pb17 (229)

where 7" denotes the Cauchy stress tensor and b; stands for body force.
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2.35.3 Law of energy conservation

Law of conservation of energy is also known as energy equation and is given by:

De

P = "L — V.q+pr,

(2.30)

in which e stands for specific internal energy, q for heat flux vector and r for thermal radiation.

Energy equation without thermal radiation takes the form

(2.31)

(2.32)

DT * 2
— =7"L T
POy =T +ks VT,
where e =¢,T', q = —k5VT, k5 denotes the thermal conductivity and T" for temperature.
2.35.4 Law of concentration conservation
For nanoparticles, the volume fraction equation is stated as:
oC 1
— +V.VC=-——V,
ot pp 7
or
oC V2T
— +V.VC=DpV?C +Dr
ot Too

2.36 Homotopy

(2.33)

Homotopy is the fundamental concept of topology. It is a continous mapping in which one

function can be continuously converted into the other function. If one function f; and other

function fs are maps from one topological space X into the other Y then there exist F' such

that

F:Xx[0,1] =Y,
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where x € X and
F(x,0) = fi(z),

F(x,1) = fa(x), (2.35)

F' is known as homotopy.
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Chapter 3

Radiative and Joule heating effects
in the MHD flow of a micropolar
fluid with partial slip and convective

boundary condition

3.1 Mathematical Formulation

Let’s consider a steady 2-dimensional incompressible MHD flow of a micropolar fluid upon a
penetrable elongating sheet with a slip velocity. At this point uniform electric and magnetic
fields were also exploited to observe the flow performance with convective transfer of heat. Joule
heating effects and thermal radiation due to electric and magnetic fields were also entertained.

The boundary layer equations representing the system are:

ou Ov

% + a—y =0, (3.1)
ou  Ou  pu+k Pu kKON o 5
u8$ +Uay - ( P )ayz + p Oy + p(EOBO - Bou)a (32)

ON ON ~*9°N k < 8u>
tv—=—=—75-——=(2N++— ),
Ox dy  pj 0y*  pj dy
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OT | OT _ ki 0T | (uBy— Eo)Po | 160" 4 O°T

el - _ 3.4
o v dy  pcp Oy? PCp 3k* T 0y’ (34)
with the following boundary conditions
T
u—aac—i—a*[(u—i—k)g—z—i-k]\f], V= Uy, N——ng—z, —kg—y—hf(Tf—T), at y=0,
u—0, N—0, T-—>Tyw, as y— oo. (3.5)

Where, n is a constant and 0 < n < 1. It is noted that n = 0 represents strong concentration,
n = 1/2 indicates that anti-symmetrical part of the stress tensor vanishes which tends to weak

concentration. The case n = 1 is for turbulent flows. On setting

T-Tw

0= e v = vass), N =an (2, o) - 7= (36)

Eq. (3.1) is satisfied automatically, and Eqgs. (3.2) to (3.4) take the form

(1 +K)fl/l +ff” _ f/2 +Kh/ _ M2f/ +M2E — O, (37)
K " / ! "

(L4 )R + fh' = f'h = K(2h + f") = 0, (3.8)

(1+ %)0" + Prf0 + M?Ec[f* + E*> - 2Ef'] =0, (3.9)

f=tu f'=1+a(d+K)f", h0)=—nf"(0), 0(0) = —y (1 - 6(0))

f'(00) =0, h(cc) =0, O(co) = 0. (3.10)
with
B2
K=-, f:M:u7 fw:_(ay)*%ij oz—oz*,u\/j,
pa
protote g Bop dely (3.11)
7(}— ks, - %UBgy - k*kl . .
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The local Skin friction and Nusselt number are defined as:

2Ty TGy
Cy = , Nupy=—7+——, 3.12
7 pawy Fally — To0) (312
where 7,, (wall shear stress) and ¢, (heat flux at wall) are given by:
0 oT
ru= (e G+ hN) =k (5
ay y:O ay y:O
Dimensionless form of the above equations are
1
5Cr Rel/?2 = (14 (1 —n)K) f(0), Nuy/Rel/? =—6'(0). (3.13)

where the local Reynolds number is given by Re, = ux/v.

3.2 Series solutions

The choice of HAM requires to define initial guesses and linear operators [37] for questioned

series solutions:

1 n _ yexp(—n)

fo(n) = fu+ m (1 - e—n)7 go(n) = me_n7 0o(n) T+y (3.14)

Ly=f"—f, Lp=h"=N, Ly=0"—0. (3.15)

These auxiliary linear operators [38] possesses the ensuing features
L¢(Hy + Hoe " + Hze) =0, Ly(Hae "+ Hse") =0, Lo(Hse "+ Hre") = 0, (3.16)

in which H; (i = 1 — 7) symbolize arbitrary constants.
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3.2.1 Zeroth-order deformation problems

The zeroth order deformation problems are given as under:
(1=p) Ly | £059) = fom)| = phsNy | Fmi ), hi(mi) |

(1—p) Ly, [ﬁ(n;p) — ho(n)] = phpNj, [f (), f%(n;p)] :

(1=p) Lo |0(n:p) = bo(n)| = phaNy | f(n; p). h(nip). 0(n.p) |

f0;p) = fw,  f(0;p) =1+ a(1+ K) f(0;p),

~

f'(00sp) =0, h(0;p) = —nf"(0;p), h(co;p) =0,

N ~

0 (0,p) = —y(1=0(0,p)), 6(c0,p) =0,

~ 3 7 o 2
Nilf(n,p)] = (1+K)8];72’p)— (3f(avz7,p)> N

. 9*f(n,p) . _Oh 20f(n,p) | 4 o
f(n,p) an? +K8_17(77’p)_M —,  TME

A~ ~ 2A ) ~
Nilf(n,p), h(n,p)] = (1 - %) 0 2(7;72’73) +f(n,p)%7z7’p) _
0f(n.p); ; &f(n.
%h(n,p) — 2K h(n,p) — K 8(77772 p)7
A ~ 2@ . é
Nol0(n, p), f(n,p)] = (1 + %) %:;p) +Pr f(n,p)%i;p)

~ 2 ~
+MEc (L (n.p )> + MEc <E2 _op2fnp) )> .
an n
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(3.20)
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(3.22)
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where p is an embedding parameter, s, iy, and hy are the non-zero auxiliary parameters and

Ny, Nj, and Ny the nonlinear operators. For p =0 and p = 1 we have

F:0) = fo(n), fn;1) = f(n), (3.24)
h(n;0) = ho(n), h(n;1) = h(n), (3.25)
0(n,0) = o(n), 0(n,1) = 0(n), (3.26)

and f(n,p), h(n,p) and 8(n,p) vary from fo(n), ho(n), 6o(n) to f(n), h(n) and 6(n) when p

varies from 0 to 1. By Taylor’s series expansion, we obtain

B 3 - _ 1 o"f(mp)
f(n,p)—fo(n)erX:)lfm(n)p >fm(77)—m! o p:o’ (3.27)
b ) — > m _ 1 9mh(mp)
h(n,p)—ho(n)erZ:Il B (m)p™, Bum(n) = ml o pzo, (3.28)
i) — > m _ 1 9m00np)
0(n, p) —90(n)+mZ:19m(n)p s () = — B p:o’ (3.29)

where the convergence of above series sturdily influenced by hy, hj, and hg. Selecting hy, hj, and

hg in an appropriately manner so that Eqs. (3.27) — (3.29) converge at p = 1, and consequently

we have
fl) = folm) + 3 finl) (330
() = o) + 3 hon(r). (331)
n) = o(m) + 3= ). (332

3.2.2 mth-order deformation problems

The subjected problems of the mth order are

Ly [fm) = xfm—1(n)] = hgRym(n), (3.33)
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fm(0) =
him(0) =

K

Rl (n) = (1 t3

L, [hin(n) = Xmbm-1(0)] = B Ry m(n),

Ly [0m(n) = Xom Om-1(1n)] = hoRom(n),

fws fm(0)=a @+ K) fr,  f(o0) =0,
_nfivll(oo)7 hm(OO) =0, 0;71(0) - '79771(0) =0, em(oo) =0,

RI(n)=(1+K)fo_ i+ Khl_y — M*f),_4

m—1

+ 3 (fm—1=kft = fra1nfr) + M?E (1= x,,),

)

k=0
h/l/ 2Kh _ K " m=! h/ gl h/
= m—1 Jm_1+ kX_DO [frn—1=kh — [ khy]

4K

m—1
RO ()= (1 + _> O 1+ > [Pl" Sm-1-x0% + MECfV/nflfkflﬂ
k=0

3

—2EMEcf), 1+ MEcE*(1 - x,,) .

0 m <1,
Xm =
1 m > 1.

3.3 Convergence Analysis
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(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

The series solution (3.29—3.31) includes of auxiliary parameters hif , iy, and hy. Such parameters
are valuable in monitoring and regulating the convergence of the achieved series solutions. The
suitable values of such parameters are reasonably vital to shape the convergent explanations
via the homotopy analysis method (HAM). To choose the suitable values of h¢, Ay, and hy ,
h-curves are drawn that are depicted in figure 3.1 and it is examined that tolerable ranges of
hy¢, by and hg are —1.7 < hy < 0.7, —=2.2 < by, < —0.4 and —2.3 < hy < —0.8. Table 3.1
expresses the convergence of series solutions of energy equations, micro-rotation and momentum

and it demonstrates that the 25" order of guesstimates are adequate for the convergent series



explanations that are in good understanding to graphical illustration shown in figure 3.1.

K=02,M=02,R=01E=02,a=01,n=05,y=01,Ec =02,fw=01,Pr =1
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Fig. 3.1: h—curves of f, h and 6.

Table 3.1: Convergence of series solution for different order of approximations when 5 = 0.1,

K =0.02, M =0.05,v=0.1,Pr =1, hiy = hy, = hg = —0.5.

Order of approximations | —f”(0) | —h'(0) | —6'(0)
1 0.85626 | 0.41857 | 0.08950
5 0.82136 | 0.39501 | 0.08753
10 0.80942 | 0.38886 | 0.08678
15 0.80347 | 0.38632 | 0.08644
20 0.79963 | 0.38487 | 0.08624
25 0.79685 | 0.38391 | 0.08612
30 0.79685 | 0.38391 | 0.08612

3.4 Discussion

In this particular section we have observed the analysis of various parameters on temperature
profiles, micro-rotation and velocity. Impact of Hartmann number M on the velocity profile
is shown in figure 3.2. As probable the velocity profile reduces with an increase in Hartmann

number. The Lorentz force also increases with an increase in the Hartmann number that opposes
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the fluid motion. So, the velocity profile decreases. Performance of slip parameter « on velocity
profile is sketched in figure 3.3. Both the velocity and boundary layer thickness decrease with
an increase in slip parameter. Figure 3.4 is plotted for the performance of material parameter
K on the velocity profile. It is shown that the velocity profile decreases with an increase in
the material parameter and boundary layer thickness also decreases. Figure 3.5 is plotted for
the effect of electric parameter E on velocity profile. It is clear from the figure that velocity
and boundary layer thickness increase with an increase in electric field parameter. Variation
of suction parameter f,, on velocity profile is presented in figure 3.6. Velocity profile decreases
with an increase in suction parameter. Additional velocity boundary layer thickness is higher
for small values of suction parameter. Figure 3.7 is outlined for behavior of Hartmann number
M on micro-rotation parameter. The micro-rotation is found to increase when Hartmann
number increases. Figure 3.8 is illustrated to observe the effect of slip parameter o on micro-
rotation distribution. It is seen that micro-rotation decreases by increasing slip parameter.
Effect of material parameter K on micro-rotation is displayed in figure 3.9. It is showed that
micro-rotation decreases when material parameter increases. Effect of electric field parameter
E on micro-rotation is presented in in figure 3.10. It is witnessed that micro-rotation field
reduces when electric field is increased. Analysis of Hartmann number on the distribution of
temperature is illustrated in figure 3.11. Temperature distribution and thermal boundary layer
thickness are more prominent for higher values of Hartmann number. Effect of electric field
E on temperature profile is displayed in figure 3.12. It is obvious that temperature profile
increases with an increase in electric field E. Variation of Eckert number Fc¢ on temperature
profile is presented in figure 3.13. Here temperature profile increases with an increase in Eckert
number Fc. Further thermal boundary layer thickness is higher for large values of Eckert
number. Behavior of Pr on temperature profile is examined in figure 3.14. Here the temperature
and thermal boundary layer decrease for large Prandtl number. Influence of Biot number ~
on temperature profile is inspected in figure 3.15. It is noted that temperature and thermal
boundary layer thickness increase due to increase in Biot number. Effect of radiation parameter
R on temperature profile is displayed in figure 3.16. It is found that temperature increases due
to an increase in radiation parameter. Additionally, the thermal boundary layer thickness is

higher for higher values of radiation parameter R. Table 3.2 specifies the behavior of different
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parameters on Nusselt number. It is observed that Nusselt number increases with the increase

of K, Pr, E, v and S though it decreases when M, R, & and 3 are increased.
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Fig. 3.2: Effect of M on f’.
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Fig. 3.3: Effect of @ on f.
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Fig. 3.7: Effect of M on h.

38



M=0.2,R=0.2,Pr=1,E=0.2,K=0.2,n=0.5,y=0.1,Ec=0.2,f,,=0.1
0.5 ]
0.4
03
=
=
0.2
0.1
0 ]
0 1 2 3 4 5
n

Fig. 3.8: Effect of a on h.
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Fig. 3.10: Effect of E on h.
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Fig. 3.12: Effect of E on 6.
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Table 3.2: Values of local Nusselt number —¢’ (0) for different values of the parameters when

n = 0.5.

K |M|R |E |a |~y |B |S |Pr|-0(0)

03102(01]02]01(01]0.2|0.1]1.0] 0.08591
0.6 0.08601
0.9 0.08608
0.2 0.3 0.08595
0.6 0.08490
0.9 0.08381
0.2 0.3 0.08540
0.6 0.08440
0.9 0.08351
0.11(0.3 0.08580
0.6 0.08605
0.9 0.08599
0.2 1] 0.3 0.08515
0.6 0.08440
0.9 0.083390
0.1]03 0.2021
0.6 0.3440
0.9 0.3666
0.1103 0.08544
0.6 0.08455
0.9 0.08355
02103 0.08745
0.6 0.08951
0.9 0.09110
0.1 | 2.0 | 0.08951
3.0 ] 0.09194
4.0 | 0.09340
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Chapter 4

Bioconvective MHD Micropolar
nanofluid flow with nonlinear
thermal radiation and Joule heating

effects in a stratified medium

4.1 Mathematical analysis

Let us assume a two-dimensional, an incompressible MHD micro-polar nanofluid flow along a
preamble stretched plane having slip velocity. The behavior of flow along with the convective
transfer of heat has been examined by the uniform electric and magnetic fields. Under the

boundary layer approximations, following are the governing equations:

ou Ov

% -+ 6_y =0, (4.1)
ou ou  (p+k\*u kON o 9
hrr +U@y B ( P ) oy?  p Oy - p (EoBo = Byu) (4.2)

ON 8N_7*82N_£< au>

UF— + V= ——F— 2N + —
Ox dy  p; Oy*  p; dy
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or 9T 9T oT OC Lh~<aT>2+(uBo—£bVa__ 1 0gr

il o _ 2 Dp—=—~ et B el
u8m+U8y a8y2 T B@y@y 7—Too dy pCp (pc); Oy

ox oy | P 9y2 To \0y2 )|’

u@—i-v@—i-ibwc 2 ng =D @
dr 0y  (Cp—Cy) oy \ ay /)] “T\oy?r)’

with suitable boundary conditions

u=azx+a* [(,u—l—k:)@jtk:N}, v =y,
Ay
N:—ng—z, T=T="Ty+ bz,

C:Cf:C()—i-dlx, n=mny=ng+ex at y=0,
T =Ty =Ty + box, C:COOZCO-FCZQIE,
n = Ne = Ng + €2 at  y = oo,

u— 0, N—0, at y — oo.

(4.4)

(4.7)

Dimensionless form of above mathematical model is obtained by utilizing following transforma-

tions:
a a C_COO
n = \/;y, Y = avzf (n), N—a:c\/;g(n)a ¢(n) = Cr—Co’
n =Moo _ -1
ﬂmfw_m7”m*@_%’

u=zxaf (n), v=—vavf(n),

_ —40* 0T*  —160* TS@_T
@ = "3p dy  3k* oy’

T =Too [1+ (6 —1)0].

Here, satisfaction of Eq. (4.1) is inevitable. However, Eqs. (4.2 — 4.7) take the form

A+ K) "+ ff = f?+Kg — M*f + M*E =0,
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<1+§> g +fq —f’g—K(2g+f”> =0, (4.10)

<1 AR+, - 1) 9)3> 0" + 4R ((ew — 1) (14 (0 — 1) 9)2) 92

3
+Pr (0'¢/Nb+ 0Nt + f0' — f' (S +0)) + M?*[f? + E* —2Ef'] = 0, (4.11)
¢" + LePr ( fé — f’¢) — PrLePf + %0” — 0, (4.12)

€ +Lb ( e — f’f) _ LbQf' — Pe [¢>” E+Q)+oe] =0 (4.13)

f:fw7 f/:1+a(1+K)f”7 g:_nf”7 0:1_57

p=1—-P, n=1-@Q, at n=0

ff=0, g=0, 6=0, $=0, n=0 atn=o0 (4.14)
with
v o bW, Tso ba k1
Lb=—, Le=—, Pe= Q= = = = 4.1
e A M s PR
14 EO k 2 O-Bg d2 €2
Pr=— F= K=— M{i=M=—— P=— = —= 4.16
I &a uwBO’ /J’ 1 paa dla Q 61, ( )
Dy (Ty —T; D — *T3
Nt — T T( f 0)’ Nb— T B(Cf CO)’ R= do Too‘ (4.17)
V1 v ki k*

Skin friction, local Nusselt, local Sherwood number and local density of number of the motile

microorganisms are given by:

(4.18)
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__p (%
Gn = —Dn < 8y>yzo' (4.19)

Dimensionless forms of Skin friction, local Nusselt, local Sherwood number and local density of

number of the motile microorganisms are appended as follows:

SO ReY2 = (14 (1= ) K) " (0),
NuyRe;Y? = -0/ (0), ShyRe; Y2 = —¢/ (0), NnyRe;? = —¢(0). (4.20)

where Re, = upz?/lv is the Reynolds number.

4.2 Series solutions

Homotopy analysis method is a powerful analytical technique proposed by Liao in 1992, is
engaged to find out convergent series solution. This technique has an edge over other analytical
methods because of following characteristics:
i) Independency from selection of large and small parameters.
i1) Convergence of series solution is guaranteed.
i11) Ample liberty for selection of linear operators and base functions.
Following this method, the initial guesses ( fo, go, 0o, ¢g, &) and linear operators (Ly, Ly, Ly, Ly, L¢) are

selected are given as follows:

1 n

fo(n) = fu+7 (1 —exp(=m)), go(n)

+a(l+K)

bo(n)=(1—S)exp(-n), ¢om)=(1—Plexp(-n), &) =(1-Q)exp(-n) (421)

= m@(p(—ﬁ),

‘Cf:f/”_f,a ‘Cg:g”_ga ‘69:0”_9’

Lo=¢"—¢, Le=¢"—¢ (4.22)

with
Ly (Hy + Hyexp(—n) + Hz exp(n)) = 0, (4.23)
Ly (Hyexp(—n) + Hs exp(n)) = 0, (4.24)
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Ly (Hg exp(—n) + Hrexp(n)) =0, (4.25)
Ly (Hgexp(—n) + Hgexp(n)) = 0, (4.26)
Le (Hioexp(—n) + Hirexp(n)) =0 (4.27)

where H; (i =1 —11) are the arbitrary constants.

4.3 Convergence analysis

Homotopy analysis technique is used for the series solutions of highly nonlinear problems.
Therefore, we have plotted the i-curves in the Figure 4.1. The admissible ranges of the auxiliary
parameters hy, hg,hg, he and hy are —1.4 < 7y < —0.1, —=1.2 < hy < —0.1,-1.2 < hy <
-0.1,-1.2 < hy < 0.1 and —1.2 < g < —0.1 when Nt = Nb = 2.0, 2 = 0.2, Pe = a = 0.5,
R=01,5S=6=04,Pr=12, Lb=Le=1.0,0, = 1.0l and M = E = 0.7. Table 4.1
expresses the convergence of series solutions of momentum, micro-rotation, energy equation,
concentration and bio-convection and it demonstrates that the 25" order of guesstimates are

adequate for the convergent series solution that are in good agreement to graphical illustration

shown in figure 4.1.
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Fig. 4.1: h—curves of [/, 9,60, ¢ and &.

Table 4.1: Convergence of series solution for different order of approximations when Nt =

Nb=20,Q=02 Pe=a=05 R=01,8=65=04 Pr=12, Lb= Le = 1.0, 6, = 1.01
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and M = E = 0.7, hy = hy = hg = hy = he = —0.8.

Order of approximations | —f”(0) | —¢’(0) | —6'(0) | —¢'(0) | =€ (0)
1 0.52582 | 0.13145 | 0.22653 | 0.56282 | 0.94438
5 0.49505 | 0.10587 | 0.20271 | 0.73186 | 0.97843
10 0.48358 | 0.10058 | 0.17451 | 0.73428 | 1.00280
15 0.47771 | 0.09892 | 0.16275 | 0.73357 | 1.01560
20 0.47391 | 0.09822 | 0.15635 | 0.73234 | 1.02410
25 0.47114 | 0.09789 | 0.15240 | 0.73086 | 1.03000
30 0.47114 | 0.09789 | 0.15240 | 0.73086 | 1.03000

4.4 Results and discussion

This section is devoted to observe the effects of numerous parameters on associated profiles.
Higher values of the slip parameter o reduce the velocity field and corresponding boundary
thickness as depicted in figure 4.2. In fact higher velocity slip parameter results in less adhe-
sive force between the wall and fluid particles which provides more resistance for transfer of
stretching velocity to the fluid. Therefore velocity distribution decreases. From figure 4.3 we
observed that velocity field and its connected boundary layer thickness are decreasing functions
of material parameter K. It is analyzed that velocity distribution is higher at the surface of
wall for small values of material parameter K. Explanation of an electric field E on the velocity
distribution is represented in figure 4.4. It is perceived that velocity and associated velocity
boundary layer thickness has foremost behavior for advanced values of an electric parameter.
It is because of fact that addition in an electric field resembles to a higher Lorentz force in
the path of flow. Therefore, velocity distribution rises. The behavior of suction parameter f,,
on the velocity distribution is showed in figure 4.5. Velocity distribution is foremost for small
quantities of suction parameter. Additional velocity boundary layer thickness turns out to be
more thin with an increment in suction parameter. Figure 4.6 is drawn to understand the influ-
ence of Hartmann number M on velocity field. A reduction in velocity profile is detected with
a gradual increase in the values on M. This is because of increasing values of the Hartmann

number augments the Lorentz force that resist the fluid motion and effects in diminution in the
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velocity distribution. Furthermore, momentum boundary layer thickness also decrease. Figure
4.7 is outlined for behavior of the Hartmann number M on micro-rotation. The micro-rotation
is found to increase when the Hartmann number increases. Physically it aligns that a high
magnetic field tends to rotate the fluid elements more obviously which offers more confronta-
tion in the horizontal velocity although an increase in micro-rotation velocity. Consequence of
an electric field parameter £ on micro-rotation is presented in figure 4.8. It is perceived that
micro-rotation field decreases when electric field is increased. Analysis of material parameter K
on micro-rotation velocity is demonstrated in figure 4.9. Micro-rotation distribution decreases
when material parameter K increases. Figure 4.10 is shown to perceive the influence of slip
parameter a on micro-rotation distribution. It is observed that micro-rotation declines by in-
tensifying slip parameter. Figure 4.11 is depicted to see the influence of Prandtl number Pr on
temperature distribution. It is noted that an energy profile is reducing function of Pr. This
is since an increase in the Prandtl number produces a feebler thermal diffusivity and thinner
boundary layer thickness. In figures 4.12 and 4.13 it is noted that the temperature of fluid
and thermal boundary layer thickness are growing function of Nb and Nt, because to that
the concentration profile rises. Clearly when Nt rises then extra nanoparticles transfer from
the heated surface that ultimately rises the concentration of nano-particles. Both temperature
field and its thermal boundary layer thickness increases with the mounting values of radiation
parameter R. That fact is exposed in figure 4.14. Figure 4.15 displays the influence of thermal
stratification parameter S on temperature profile. It is observed that thermal boundary layer
increases for small S . In fact when S increases then temperature difference between heated
surface and away from the surface decreases. Thus fluid temperature is observed to decrease.
The influence of Lewis number Le on concentration distribution is drawn in figure 4.16. It is
seen that concentration profile declines with the rise in values of Le. As an increase in Le is
proportional to thinner concentration boundary layer and weaker mass diffusivity. Figures 4.17
and 4.18 shows the result of thermophoresis parameter Nt and Brownian motion parameter Nb
on concentration distribution. An opposite behavior on concentration field is observed for Nb
and Nt, i.e., the mass transfer decrease for increasing Nb and improve for rising values of Nt.
Influence of concentration stratification parameter P on concentration profile is displayed in

figure 4.19. It is analyzed that the volumetric fraction between surface and reference nanopar-
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ticles decrease when P increases. Hence the concentration profile decreases. Influence of motile
density stratification parameter () on density profile is sketched in figure 4.20. An increase in
() decreases the concentration difference of microorganisms between the surface and away from
the surface and so decrease in the density profile is noticed. Variation of Peclet number Pe
on motile density profile is presented in figure 4.22. It is noted that the motile density profile
decreases for a larger Pe. Increase in Pe affects to a decrease in the diffusivity of microor-
ganisms and hence motile density of fluid declines. Figures 4.21 and 4.23 highlighted out the
influence of microorganism’s intensity difference parameter and bio-convection Lewis number
Lb on motile density. It is observed that rise in €2 improves the concentration of microorganisms
in the ambient fluid and reduces in the density profile. Though for higher values of Lb the
diffusivity of microorganisms declines and therefore the motile density decays. Influences of £
and M on the Skin friction number is shown in figure 4.24. It is disclosed that the Skin friction
number increases for increasing values of £ and M . Influences of Nt and Nb on the local
Nusselt number is shown in figure 4.25. It is disclosed that the local Nusselt number increases
for increasing values of Nt and Nb. Influences of Le and Nt on the local Sherwood number is
shown in figure 4.26. It is disclosed that the local Sherwood number decreases for increasing
values of Le and Nt . Influences of Pe and Lb on the local density number is shown in figure

4.27. Tt is disclosed that the local density number increases for increasing values of Pe and Lb .
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Fig. 4.2: Effect of o on f.
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Chapter 5

Conclusions and Future work

5.1 Chapter 3

Here, we have examined the MHD boundary layer flow of micropolar fluid with slip velocity and
electric field. Convective heat transfer analysis is carried out with Joule heating and thermal

radiation effects. The main observations are:

e Material parameter decreases the velocity and micro-rotation profiles.
e Velocity and micro-rotation profiles decrease with an increase in slip parameter.
e Electric field increases the temperature and thermal boundary layer thickness.

e Velocity profile decreases with an increase in Hartmann number while the temperature

increases.

e Biot number and radiation parameter increase both the temperature and thermal bound-

ary layer thickness.

5.2 Chapter 4

Here, we have examined the MHD micropolar nanofluid with stratified medium. Bioconvective
heat transfer analysis is carried out with Joule heating and non thermal radiation effects. The

main observations are:
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e Material parameter decreases the velocity and micro-rotation profiles.
e Velocity and micro-rotation profiles decrease with an increase in slip parameter.
e Electric field increases the temperature and thermal boundary layer thickness.

e Velocity profile decreases with an increase in Hartmann number while the temperature

increases.

e Thermophoresis parameter and Brownian motion parameter increase while the tempera-

ture increase.

5.3 Future work
Few interesting possible problems that could be researched in future are as follows:

e The work may be extended to any non-Newtonian fluid.
e The impact of Darcy-Forchheimer may also be added.

e The effects of heat generation/absorption, with Joule heating and viscous dissipation may

also be entertained.

e The concentration equation may be enriched by addition of chemical reaction or Arrhenis

activation energy with gravity effects.

e The boundary conditions may be changed melting heat, convective heat and mass condi-

tions.
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