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Abstract 

A mathematical model is envisaged to scrutinize the Darcy Forchheimer flow of 3D 

Eyring Powell nanofluid flow in a porous media. The flow is subjected to zero mass flux 

and convective heat conditions at the boundary. The heat and mass transfer phenomena 

are analyzed in attendance of nonlinear thermal radiation and chemical reaction 

respectively. Apposite transformations are espoused to attain the system of highly 

nonlinear coupled differential equations and then undertaken by the Homotopy Analysis 

Method (HAM) to obtain the series solution. The physiognomies of numerous parameters 

versus the velocity, heat and mass transfer are depicted via graphs and cogitated 

accordingly. It is witnessed that for higher estimates of Schmidt number feeble 

concentration is observed. Furthermore the velocity of the fluid has declined for larger 

values of porosity number. The results obtained in the analysis are substantiated by 

erecting a comparative table with an established result in the literature. An outstanding 

matching is achieved in this regard.     
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Chapter 1

Introduction and literature review

1.1 Introduction

Compared to solids, conventional heat transfer liquids innately have poor thermal conductivity.

Emerging miniaturized technologies comparatively small channels would get blocked, if conven-

tional liquids that contain  or  sized particles were to be used. Nano‡uids (an advanced

heat transfer coolant) are one of the latest developments of the nano technology. Nano‡uids

are highly e¢cient heat-transfer ‡uids prepared by dispersing nanoparticles less than 100  in

diameter in conventional ‡uids. Anticipated increase was observed in the thermal conductivity

as a result of the dispersion of nanoparticles in the base liquid. In many industrial …elds like

transportation, micro electronics, thermal therapy for cancer treatment etc, improved thermal

behavior of nano‡uids is of vital importance. Nano‡uids have a remarkable combination of four

characteristic properties intended in thermal and ‡uid systems:

² with low nanoparticle concentrations thermal conductivity is enhanced.

² strong temperature dependent thermal conductivity.

² nonlinear enhancement in thermal conductivity with (nanoparticle) concentration.

² rise in boiling critical heat ‡ux.

Compared to base liquids, nano‡uids are next generation heat transfer liquids because they

provide exciting new posiibilities to improve heat transfer e¢ciency. In 1856, Henri Darcy(
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a French civil engineer) in his publication put forward the quantitative theory of the ‡ow of

homogenous ‡uids through spongy media. He studied the ‡ow characteristics of sand …lters

used to …lter water in the city of France (Dijon). After these studies and experiments, he came

forward with the results that "viscous forces dominate over inertial forces in porous media"

which came to be known as Darcy Law, globally. Innate in the design of the Darcy ‡ow model

are the following characteristics:

² Darcy’s law assumes laminar or viscous ‡ow (creep velocity); inertia term (the ‡uid

density) doesnot involve in it. This implies that the inertia forces in the liquid are being

ignored which was not the case in classical Navier-Stokes equations.

² Darcy’s law has this inherent supposition that in a poriferous media a vast surface area

is subject to liquid’s ‡ow, as a result the viscosity will signi…cantly surpass acceleration

forces in the liquid unless turbulence is experienced.

With wide utilization in grain stockpiling, petroleum technology, frameworks of ground

water and oil assests, this law is of immense importance in …eld of Fluid Mechanics. Places

where the porous medium has larger ‡ow rates due to non-uniformity, such as near the wall,

Darcy law is not applicable there. Keeping this in mind one has to become mindful of the

non-Darcian e¤ect by porous medium in the ‡ow analysis and heat transfer rate. A Dutch

man named Philippe Forcchheimer, in 1901, while ‡owing gas thorough coal beds revealed that

the relationship between ‡ow rate and potential gradient is non-linear at comparatively greater

velocity, and that non-linearity witnesses surge with increase in ‡ow rate. He at the time was

of view that the this non-linear increase was as a result of turbulence in the ‡uid ‡ow (but it is

now renowned that this non-linearity is due to inertial e¤ects in the spongy media). However

for increased ‡ow rate, the mechanism of Forchheimer expression is deliberated. Basically,

Forchheimer resulted in an improved relation called Darcy Forchheimer expression, by adding

a quadratic term in motion equation. This term which is always there for a bigger Reynolds

number was called as forcheimer term by Muskat in 1946. Physically, quadratic drag for spongy

media in motion equation occurs for high …ltration velocities, due to solid obstructs this drag

is formed and becomes identical with drag at the surface by resistance. There are numerous

examples of the possible situations of practical applications where the inertial e¤ects can be
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signi…cant and darcy’s law is no longer valid. For these situations, one may refer liquid ‡ows

in column reactors, in aquifers and in …lters etc.

Recent enhancements in industrial applications have introduced a broad variety of non-

newtonian liquids which are distinguished by various deviations from the viscous liquids. All

those liquids for which the shear rate is changed and the shear stress doesn’t change in the same

proportion are considered to be non-newtonian. Hence, the di¤erence of shear strength causes

to alter the viscosity of these liquids, which is also called the “apparent viscosity” of the liquid.

Richardson and Chhabra in 2018 de…ned the non-newtonian liquid, whose ‡ow curve (shear

stress against shear rate) is either nonlinear or that dont pass through the origin, which means

that the apparent viscosity is not constant at a given pressure and temperature. These liquids

are generally divided into three categories as time dependent, viscoelastic and time independent

liquids. There have been numerous contributions from non-Newtonian liquids. Numerous things

we use in our everyday life happen to be these kind of liquids. These are shampoo, toothpaste,

sillyputty and whiped cream. It is renowned that mechanics of non-Newtonian liquids o¤er a

certian challenge to mathematiciains and technologists. The nonlinearity may appear itself in

numerous aspects in di¤erent …elds such as biological-engineering and drilling operations. The

Navier-Stokes approach is insu¢cient for such liquids and no single fundamental equation is

provided in the literature which demonstrates the characteristics of all ‡uids. Thus, saveral

non-Newtonian ‡uid models have been introduced. In which one of the model is prepared

for chemical engineering systems is the Powell-Eyring ‡uid model.This rheological model has

particular advantages over the other non-Newtonian formulations, including simplicity, ease of

calculations and compactness.

1.2 Literature Review

Nano‡uids, an emerging …eld of engineering has trapped the eye of numerous researchers who

were looking at the ways to improve the e¢ciency of cooling processes in industry. This amal-

gamated ‡uid is unique in its own nature as nano‡uids are prepared by inserting nanoparticles

into the base ‡uids. By doing so, signi…cant developement in the thermal conductivity of the

base ‡uid is witnessed and the reason behind this fact is that solid metals have a higher ther-
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mal conductivity in comparison to the base ‡uids. The verity was …rstly revealed by Choi and

Eastman [1] in 1995 who presented the idea that thermal conductivity is improved substantially

once metallic nanosized (100nm) are merged into the base ‡uids. This initiative has bene…t-

ted numerous engineering applications like transportation, chilling of microelectronic gadgets,

and food processing processes [2-3]. The excellent features of nanoparticles like the in…nitesi-

mal size and small volume fraction make them highly adequate for preparation of nano‡uids.

The nano‡uids under the in‡uence of magnetohydrodynamics have also numerous interesting

and practical applications like optical switches and modulators, drug delivery, optical …ber,

and cancer therapy. Various studies have been conducted to reveal the di¤erent aspects of the

nano‡uid [4-15].

The material with stomata is termed as porous medium and is customarily …lled by some

liquid. A good number of applications including oil production, water ‡ow in reservoirs and

catalytic vessels etc. The idea of the ‡ow of a liquid past a permeable media was …rst given by a

French, Henry Darcy, in 1856 [16]. But this notion couldn’t be so popular owing to its limitations

of smaller porosity and low velocity. Subsequently, Philippes Forchheimer [17] modify the

momentum equation with the addition of the square velocity term into the Darcian velocity

to address the obvious de…ciency. This term was later named by Muskat [18] as “Forchheimer

term” which is true for high Reynolds number. Mondal and Pal [19] deliberated the Darcy-

Forchheimer model over porous media past the linearly extended surface and concluded that

concentration distribution is a diminishing function of electric …eld parameter. The ‡ow of a

hydromagnetic nano‡uid past a Darcy-Forchheimer porous media with the impact of second-

order boundary condition is examined numerically by Ganesh et al. [20]. Alshomrani et al.

[21] discussed the 3D Darcy-Forchheimer model with carbon nanotubes and homogeneous-

heterogeneous reactions. The ‡ow of the viscous nano‡uid with Darcy-Forchheimer e¤ect past

a curved surface is studied by Saif et al. [22]. Seth et al. [23] scrutinized numerically the ‡ow

of carbon nanotubes past a permeable Darcy-Forchheimer media in a rotating frame and many

therein [24-28].

The impact of non-Newtonian ‡uids in the industry is more dominating in comparison to

Newtonian ‡uids owing to their utility in varied applications [29]. Examples of non-Newtonian

‡uids may embrace coal water, paints, asphalt, toothpaste, shampoo, and jellies etc. [30].

7



Owing to the di¤erent nature of non-Newtonian ‡uids, numerous mathematical models are

anticipated to meet their respective characteristics. The equations symbolizing these models

are relatively more complex than Newtonian ‡uid models. Amongst these Powell Eyring ‡uid

model is considered to be more e¤ective because of its vast usage in chemical processes. This

‡uid model is erected by utilizing the kinetic theory of liquids in lieu of empirical relation.

Nevertheless, at low/high shear stresses it behaves like Viscous ‡uid [31]. Moreover, Eyring

Powell model is considered to be more accurate and trustworthy in assessing the ‡uid time

scale at varied polymer concentrations [32]. Existing literature highlighting the various aspects

of Eyring Powell ‡uid may include a study by Alshomrani et al. [33] who anticipated the ‡ow of

Eyring Powel nano‡uid past a bi-directional stretching sheet and concluded that heat transfer

rate triggered for improved values of activation energy. The ‡ow of Eyring Powell nano‡uid

‡ow over a stretched surface are studied by Eldabe et al. [34] with the remark that velocity

of the ‡uid is obstructed by high values of Eyring Powell parameter. Gholinia et al. [34]

studied the ‡ow of Eyring Powell nano‡uid with slip condition and homogenous-heterogeneous

reactions over a rotating disk. The ‡ow of Eyring Powell nano‡uid containing Ferrous oxide

and aluminum oxide nanoparticles with Cattaneo-Christov heat ‡ux is examined by Upadhya

et al. [35]. Some more recent investigation highlighting Eyring Powell ‡uid ‡ow may be found

at [36-40].

From the aforementioned deliberations, it is comprehended that nano‡uids are essentials in

many engineering processes and to yield high-quality gadgets keeping in view economic e¢cacy.

Furthermore, it is understood from the above deliberations that presented mathematical model

is inimitable and no such exploration is undertaken in the literature before. Thus, the prime

objective of the present study is to investigate the 3D Eyring Powell nano‡uid ‡ow past a

nonlinear stretched surface under in a Darcy- Forchheimer porous media. Moreover, the novelty

of the presented problem is improved by the addition of impacts of nonlinear thermal radiation,

chemical reaction with zero mass ‡ux condition. None of the above quoted and even existing

literature simultaneously analyzed such e¤ects. Analytical solution of the problem is acquired

by engaging the Homotopy Analysis Method [41-44].
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Chapter 2

Preliminaries

This section contains standard de…nitions, concepts and basic laws which are helpful in under-

standing the works in the second and third chapters.

2.1 Fluid

A material that can ‡ow and continuously deforms under an impact of shear stress. Mercury,

shampoos, cooking oil, blood and oxygen are some of its examples.

2.2 Fluid mechanics

The class of mecahnics deals with the characteristics of ‡uids. It can be classi…ed into two

subclasses.

2.2.1 Fluid statics

It investigates the attributes of liquids in stationary state.

2.2.2 Fluid dynamics

It investigates the attributes of liquids in the state of motion.
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2.3 Flow

Flow is characterized as a material that deforms smoothly and ‡uently under the impacts of

various kinds of forces. Flow is further divided into two major subclasses.

2.3.1 Laminar ‡ow

Laminar ‡ow is obtained when the ‡uid ‡ows in regular paths, with no interruption between

the layers.

2.3.2 Turbulent ‡ow

Turbulent ‡ow is obtained when the ‡uid particles have irregular velocity in the ‡ow …eld.

2.4 Viscosity

It is the primary characteristic of ‡uid that measures the ‡uid’s resistance to ‡ow when numer-

ous forces are acting on it. Mathematically, can be represented as follows:

viscosity () =
shearstress

gradient of velocity
. (2.1)

2.4.1 Dynamic viscosity

It is de…ne as the measure of ‡uid resistivity to ‡ow. Its unit is .

2.4.2 Kinematic viscosity

The ratio of the absolute viscosity of the ‡uid () to the ‡uid density () is recognised as

kinematic viscosity. Mathematically, it is represented by

 =



 (2.2)

In SI system is 2

 .
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2.5 Newtonian ‡uids

Fluids that satisfy the Newton’s law of viscosity and the value of  is constant. In these ‡uids

shear force () is proportional linearly to the gradient of velocity
³




´
. Alcohol, water,

glycerine and kerosene are common examples of this ‡uids.

2.6 non-Newtonian ‡uids

Fluids that doesnot satisfy the Newton’s law of viscosity. Here, nonlinear and direct relationship

exists between shear stress and gradient of velocity. Mathematically

¿  /

µ




¶

  6= 1 (2.3)

or

¿  = 



  = 

µ




¶¡1

 (2.4)

where  is termed as apparent viscosity, ¿  the shear stress,  denotes consistency index, and

 is the ‡ow behaviour index. For  = 1 Eq. (24) represents the Newton’s law of viscosity.

Yougurt, honey and mayonnaise exhibits the non-Newtonian ‡uid behavior.

2.7 Newton’s law of viscosity

Liquids which show the direct and linear corrspondence between velocity gradient and shear

stress. Mathematically, it can be represented as follows:

 /



 (2.5)

or

 = 

µ




¶

 (2.6)

in which  indicate the shear force applied on the ‡uid’s element and  indicate the propor-

tionality constant.
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2.8 Density

Mass of a material per unit volume, named as density. This quantity is used to calculate that

how much stu¤ of a material present in a unit volume.

Mathematically, expessed as follows:

 =



 (2.7)

where  is the mass of the substance and  is the volume. In SI system units it is calculated

as 3

2.9 Pressure

Pressure is de…ned as force employed on a surface per unit area.

Mathematically pressure is given by:

 =
1

 (2.8)

The SI unit of pressure is ¡2.

2.10 Porous surface

It is a material which made out of pores, over which ‡uid or gas can travel through. Few

examples are biological tissues, cork and rocks. Sponges, fabrics, ceramics and foams are also

gathered for the purpose of porous media.

2.11 Porosity

The measure of spongy space in a porous substance is known as porosity.
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2.12 Permeability

It is the strenght of a porous substance to allow ‡uid to travel through it. Those materials

which have low porosity are minor permeable while materials having large pores are easily

permeated and have high porosity.

2.13 Mechanism of heat ‡ow

A form of energy that moves to colder area from hotter is said to be heat. Flow of heat takes

place between two objects when they are of di¤erent temperatures. The transfer of heat occurs

through any one of the following three ways:

2.13.1 Conduction

A phenomenon in which heat moves from warmer to cooler areas in liquids and solids because

of the collisions of free electrons and molecules is called conduction. In this process molecules

do not move for heat transfer to take place. Mathematically

q


= 

µ
1 ¡ 2
1 ¡2

¶

= 
¢

¢
 (2.9)

where

q = ¡



 (2.10)

in which q represents the heat ‡ow,  the area of the surface,  the thermal conductivity, 1

temperature is greater than 2,

 denotes the temperature gradient and minus sign indicates

that heat is conducted from higher to lower temperature.

2.13.2 Radiation

Radiation is a process where heat ‡ows to colder from hotter region as a result of the electro-

magetic waves. This phenomenon plays vital role in heat transfer in vaccum. Mathematically

q = ¤ (¢ )4  (2.11)
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where q denotes the heat transfer,  for emissivity of the system, ¤ for Stephen-Boltzmann’s

constant,  for area and (¢ )4 for the temperature di¤erence between two systems of fourth

power.

2.13.3 Convection

Mechanism where by heat ‡ows from hot to cold area of liquids or gases due to the movement

of molecules is said to be convection. Mathematically,

 =  ( ¡ 1)  (2.12)

where  is coe¢cient heat transfer (convective),  for system temperature,  for area and 1

for the ambient temperature.

2.14 Convective boundary conditions

Convective boundary conditions are some time called Robin boundary conditions.These kind

of conditions are usually de…ne on wall (surfaces). Mathematically



µ




¶



=  ( ( )¡ ( ))  (2.13)

This equation says that condition is equal to convection. where  indicates the coe¢cient of

heat transfer (convective) ,  is the coordinate at the boundary,  the convective ‡uid

temperature and  represents wall temperature.

2.15 Nano‡uid

A liquid that has very small particles in it (called nanometer particles) is said to be Nano‡uid.

These liquids are formed by the colloidal suspensions of nanoparticles in the conventional liquid.

The nanoparticles employed in nano‡uids typically are nanotubes, oxides and metals. Most

ordinary base ‡uids are oil and water.
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2.16 Powell Eyring ‡uid

This ‡uid falls in class of non-newtonian ‡uids which have the properties of shear thinning

‡uids. Initially, it was extracted from kinetic theory of ‡uids instead of obtaining it from the

empirical relation. Furthermore, it accordingly brings down to newtonian ‡uid for small and

high shear rates. The Powell Eyring ‡uid model explains characteristics of shear thinning ‡uids.

An appropriate example of Powell Eyring ‡uid would be human blood. The cauchy stress tensor

is stated as follows:

 = ¡ +  (2.14)

in which, extra stress tensor  is

 = 



+
1


sinh¡1

µ
1

1




¶

 (2.15)

with 1 and  are the Eyring Powell ‡uid characteristics,  is dynamic visocsity,  is Identity

Tensor and  is Pressure.

2.17 Darcy’s law

It interprets the ‡ow of a liquid through a spongy medium. This law was originated and

dependent on the consequences of analysis on the ‡ow of water across the beds of sand. It

additionally models the scienti…c basis of ‡uid permeability needed in the Geo sciences.

2.18 Darcy Forchheimer Law

Movements in spongy medium with Reynolds numbers greater than 10, and in which inertial

e¤ects are prominant. So, this inertial term is add on the Darcy’s equation and is called as

Forchheimer term. This term represents the non-linear behavior of the pressure di¤erence vs

‡ow data.




=


¤
 ¡



1
2  (2.16)
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where 1 represents inertial permeability and  represents forchheimer velocity.

2.19 Non-dimensional numbers

2.19.1 Reynolds number (Re)

The signi…cant dimensionless number which is used to recognize that either the ‡ow is laminar

or is turbulent. It describes inertial to viscous forces ratio. Mathematically, this number is

expressed as:

Re =
inertial forces

viscous forces
 (2.17)

=
 £ 


 (2.18)

Here,  depicts the velocity of ‡uid,  describe the characteristic length and  represent kine-

matic viscosity. Reynolds number are utilized to describe distinct ‡ow behaviours (laminar or

turbulent ‡ow) within a similar ‡uid. Laminar ‡ow arises at small Reynolds number, in which

we can note that viscous e¤ects are eminent. Turbulent ‡ow arises at high Reynolds number,

where inertial e¤ects are eminent.

2.19.2 Prandtl number (Pr)

Momentum di¤usivity to the thermal di¤usivity ratio is termed as Prandtl number. Mathe-

matically, it can be written as

Pr =


¤
 (2.19)

=


 (2.20)

in which  denotes the dynamic viscosity,  represent the speci…c heat and  stands for thermal

conductivity.
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2.19.3 Radiation parameter ()

It is de…ne as the relative contribution of conduction to the thermal radiation transfer, which

can be expressed as follows:

 =
4¤ 31


 (2.21)

where  is the mean absorption coe¢cient,  stands for temperature dependent thermal con-

ductivity, 1 for ambient temperature and ¤ denotes the Stefan-Boltzmann constant.

2.19.4 Skin friction coe¢cient ()

Liquid passing over a surface experiences certain amount of drag that is known as Skin friction.

It takes place between the ‡owing liquid and the solid’s surface that causes reduction in the

rate of ‡ow of ‡uid. Mathematical expression for Skin friction is given as follows:

 =

1
2

2


 (2.22)

in which  demonstrate wall shear stress,  represents the density and  denotes the velocity.

2.19.5 Nusselt number ()

This dimensionless number that represents the relationship among convection and conduction

heat transfer coe¢cients at the boundary is known as Nusselt number. Mathematically

 =
¢

¢
=



 (2.23)

where  and  represent heat transfer coe¢cient (convective), characteristic length and ther-

mal conductivity respectively.

2.19.6 Biot number ()

The ratio of internal di¤usion resistivity to external convection resistance. Mathematically, it

is represented as follows:
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 =



 (2.24)

where  and  represent the thermal conductivity and heat transfer coe¢cient (convective)

respectively.

2.19.7 Thermophoresis parameter ()

Thermodi¤usion is utilized to prevent the mixing of di¤erent mobile particles of liquid due to

a pressure gradient or separate the mixture of particles after mixing up due to the presence of

thermal gradients.

Thermophoresis is positive for cold surface and it is negative for a hot surface.

Mathematically

 =
() ( ¡ 1)

() 1
 (2.25)

where  and 1 denotes the convective ‡uid temperature and ambient temperature,  stand

for thermophoretic coe¢cient and  represents the kinematic viscosity.

2.19.8 Brownian motion parameter ()

A random movement of nanoparticles in base liquid which occurs due to size of the nanoparticles

is called as brownian motion. It is a nanoscale phenomenon that exhibits the thermal in‡uences

of nano‡uid.

Mathematically

 =
() ¢ (1)

()
 (2.26)

in the above equation  is the ratio of e¤ective heat and heat capacity of the nanoparticles and

‡uid respectively,  denotes the kinematic viscosity.  stands for wall’s concentration, 1

stands for ambient concentration and and  represents brownian di¤usion coe¢cient.
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2.19.9 Schmidt number ()

This dimensionless quantity can be expressed with the ratio of non-newtonian viscosity (kine-

matic) to mass di¤usivity.

Mathematically

 =



 (2.27)

where  represents the kinematic viscosity and  stand for mass di¤usivity.

2.19.10 Forchheimer number ()

The Forchheimer number is proposed to identify di¤erent ‡ow patterns. This number is deter-

mined with the ratio of pressure gradient to the viscous resistance.

Mathematically

 =
¤¤


 (2.28)

with ¤non-Darcian coe¢cient and ¤the permeability of porous medium.

2.19.11 Chemical reaction parameter (1)

The non-dimensional number used to measure the strenght of chemical reaction rate is called

chemical reaction parameter and can be written as:

1 =


(+ )1¡  (2.29)

whence  and  represents the rate constant and power law index.

2.20 Conservation laws

A measurable quantity that remains unchanged with the progression of time in an isolated

system is called conserved quantity and the law which deals with this quantity is recognized

as conservation law. The conservation laws that are used for the ‡ow speci…cation in the

subsequential analysis are given below.
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2.20.1 Mass conservation law

Conservation law for mass de…nes that the whole mass in any closed system will remain con-

served. Mathematically



+ rV = 0 (2.30)

or



+ (Vr)+ rV = 0 (2.31)

or



+r (V) = 0 (2.32)

The above equation is known as equation of continuity. For the steady ‡ow Eq. (232) becomes

r (V) = 0 (2.33)

and for the incompressible ‡uid, Eq. (233) will be stated as:

rV = 0 (2.34)

2.20.2 Momentum conservation law

It is de…ned as the total linear momentum of a closed system is constant. Generally, it is given

by


V


= div ¿+b (2.35)

where ¿ = ¡pI+ S, the Cauchy stress tensor, 
 represents the material time derivative and

b stands for body force.

2.20.3 Law of energy conservation

This law is also known as energy equation and is described as total energy is conserved at the

whole system. For nano‡uids it is speci…ed by
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= ¤¤ + r2 + 

µ

rr +


1
rr

¶

 (2.36)

in which  represents the base ‡uid density,  stands for speci…c heat of base ‡uid, ¤ the

stress tensor, ¤ for the strain tensor,  denotes the density of nanoparticles,  denotes

the Brownian di¤usivity,  represents the thermophoretic di¤usion coe¢ecient,  denotes the

thermal conductivity and  for temperature.

2.20.4 Law of conservation of concentration

For nanoparticles, the volume fraction equation is




+VrC = ¡

1


rj (2.37)

j = ¡r ¡ 
r

1
(2.38)




+VrC = Dr

2C +D
r2

1
 (2.39)

Here,    and  stand for Brownian di¤usivity, nanoparticle concentration, temperature

and thermophoretic coe¢cients respectively.

2.21 Thermal di¤usivity

It is a material speci…c property for describing the unsteady conductive heat ‡ow. This value

describes how speedily a material respond to change in temperature. It is the ratio of thermal

conductivity to speci…c heat capacity and density. Mathematically,

¤ =



 (2.40)

where  the thermal conductivity,  the speci…c heat capacity and  the density.
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2.22 Thermal conductivity

It is the measurement of the capacity of a substance to conduct heat . The fourier law of heat

conduction " The amount of heat transfer rate () through a material of unit thickness () times

unit cross section area () and unit temperature di¤erence (¢ )". Mathematically, written as:

 =


(¢ )
 (2.41)

In SI system thermal conductivity has unit 
 .

2.23 Homotopic solutions

Homotopy is one of the basic concept of topology. It is stated as continous mapping in which

one function can be constantly transformed into the another function. If one function 1 and

the other 2 are maps from the topological space  with the other topological space  then

there exists a continous mapping  such that

 :  £ [0  1]!  (2.42)

where  2  and

 ( 0) = 1() (2.43)

 ( 1) = 2() (2.44)

That mapping  is termed as homotopy.

2.24 Homotopy analysis method

The Homotopy Analysis method (HAM) is involved to …nd the series solutions of highly non-

linear problems. This method presents us with convergent series solutions for highly nonlinear

systems. To have the basic concept of homotopy analysis method, lets suppose a di¤erential
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equation

 [ ()] = 0 (2.45)

here  represents nonlinear operator,  () is not known function while  is for the independent

variable. Zeroth-order problem would be written as follows:

(1¡ Þ)L [̧ (;Þ)¡ 0 ()] = Þ~ [̧ (;Þ)]  (2.46)

in this 0 () is for the initial approximation, L represents the auxiliary linear operator, Þ

2 [0 1] symbolizes an embedding parameter, ~ stands for nonzero auxiliary parameter and

̧ (;Þ) denotes the not known function of  and Þ.

Taking Þ = 0 and Þ = 1 one has

̧ (; 0) = 0 () and ̧ (; 1) = 0 ()  (2.47)

The solution ̧ (;Þ) di¤er from initial approximation 0 () to the expected …nal solution  ()

when Þ vary from 0 to 1. Utilizing taylor series expansion, we have

̧ (;Þ) = 0 () +
1X

=1

 ()Þ  () =
1

!

̧ (;Þ)

Þ

¯
¯
¯
¯
Þ=0

 (2.48)

For Þ = 1 we get

 () = 0 () +
1X

=1

 ()  (2.49)

Di¤erentiate  times the zeroth deformation with respect to Þ, and divide it by ! and lastly

putting Þ = 0 we obtain the th order equation

L [ ()¡ ¡1 ()] = ~R ()  (2.50)

R () =
1

(¡ 1)!

 [̧ (;Þ)]

Þ

¯
¯
¯
¯
Þ=0

 (2.51)

where

 =

8
<

:

0  · 1

1   1
 (2.52)

23



Chapter 3

Darcy-Forchheimer 3D ‡ow of

Williamson nano‡uid over a

convectively heated nonlinear

stretching surface

3.1 Mathematical formulation

In this chapter, we consider a steady, 3D Williamson nano‡uid ‡ow bounded by nonlinear

stretchable surface in existence of convective heat and zero mass ‡ux conditions. The ‡uid

‡ow comply with Darcy-Forchhiemer spongy medium. Here,   and  are velocities along

(  ) directions respetively. The stretching is in the ¡ and ¡ directions with respective

velocities  ( ) =  (+ ) and  ( ) =  (+ ) whereas ¡ in the normal direction,

with     0.  and  are the temperature of ‡uid and nano‡uid’s concentration. Likewise,

1 and 1 represents the ambient concentration and temperature. The governing system

representing the given scenario is given as:

 +  + = 0 (3.1)
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 +  + =  +
p
2¡ ()¡



¤
¡ 2 (3.2)

 +  + =  +
p
2¡ ()¡



¤
 ¡ 2 (3.3)

 +  + = 
¤ () +

()
()

¢

µ

 () +


1
()

2

¶

 (3.4)

 +  + =  () +


1
()  (3.5)

with the boundary conditions

 =   =   = 0¡ =  ( ¡  ) 

 +


1
 = 0 at z = 0,

! 0  ! 1 ,  ! 1 as  !1 (3.6)

Dimensionless form of above mathematical model is obtained by utilizing following transforma-

tions:

 =

sµ
 (+ 1)

2

¶

(+ )
(¡1)
2   () =

 ¡1
1



 =  (+ )  0 ()   =  (+ ) 0 ()   () =
 ¡ 1
 ¡ 1



 = ¡

sµ
 (+ 1)

2

¶

(+ )
¡1
2

µ

( + ) +

µ
¡ 1

+ 1

¶


¡
 0 + 0

¢
¶

 (3.7)

Here, satisfaction of Eq. (31) is inevitable. However, Eqs.(32¡ 36) reduce

 000 + ( + )  00 ¡

µ
2 ¢ 

+ 1

¶
¡
 0 + 0

¢
 0 + 00 000 ¡

µ
2

+ 1

¶³
 0 + 

¡
 0
¢2
´
= 0 (3.8)

000 + ( + ) 00 ¡

µ
2 ¢ 

+ 1

¶
¡
 0 + 0

¢
0 +00000 ¡

µ
2

+ 1

¶³
0 + 

¡
0
¢2
´
= 0 (3.9)
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00 +Pr
³
( + ) 0 +00 +

02
´
= 0 (3.10)

00 +  ( + )0 +



00 = 0 (3.11)

(0) = 0  (0) = 0  0(0) = 1 0 (0) =  ¶(0) = ¡ (1¡  (0))  0 (0)+0 (0) = 0 (3.12)

 0(1)! 0 0 (1)! 0  (1)! 0 (1)! 0 (3.13)

with

 = ¡

r
 (+ 1)


(+ )(3¡1)2   =



¤
(+ )1¡   =

() ( ¡ 1)

() 1


Pr =


¤
  =




  =



¤
12
  =

()1

() 
  =




  =





r



 (3.14)

Skin friction and local Nusselt number in dimensionless quantities are appended as follows:

Re
12
 =

sµ
+ 1

2

¶µ

 00 (0) +


2
 00

2
(0)

¶

 (3.15)

 Re
12
 = ¡32 ¢

sµ
+ 1

2

¶µ

00 (0) +


2
00

2
(0)

¶

 (3.16)

Re
¡12
 = ¡

µ
+ 1

2

¶ 1
2

0 (0)  (3.17)

In the existence of zero mass ‡ux condition, the Sherwood number is analogously vanish and

Local Reynolds numbers are given as, Re = 
 (+ ) and Re = 

 (+ ).

3.2 Homotopic solutions

An analytical methodology called (HAM) Homotopy analysis method is involved to …nd out the

convergent series solutions. This technique has an edge over the analytical methods because of

following characteristics:

) Independency from selection of large and small parameters.

) Convergence of series solution is guaranteed.

) Ample liberty for selection of linear operators and base functions.
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Following this method, the initial approximations (0 0 0 0) and relevant linear opera-

tors (L L L L) are expressed as follows:

0 () = (1¡ exp (¡))  0 () =  ¢ (1¡ exp (¡)) 

0 () =

µ


1 + 

¶

¢ exp (¡)  0 () = ¡


1 + 

µ




¶

¢ exp (¡)  (3.18)

L =  ¡   L =  ¡   L =  ¡  L =  ¡  (3.19)

along with the properties

L (1 + 2 exp() + 3 exp(¡)) = 0

L (4 + 5 exp() + 6 exp(¡)) = 0

L (7 exp() + 8 exp(¡)) = 0

L (9 exp() + 10 exp(¡)) = 0 (3.20)

here  and ( = 1¡ 10) are described as optional constants.

3.3 Convergence analysis

The HAM is utilized to …nd the series solutions and is highly depended on supplementary

parameters }  } } and }. These parameters are essential to regulate and manage the

convergence area. The acceptable ranges of the supplementary parameters are ¡150 · } ·

¡05 ¡150 · } · ¡05 ¡150 · } · ¡05 and ¡150 · } · ¡05 Table 31 is also erected

to see the convergence of series solutions and it is identi…ed that 25 order of approximation

is su¢cient to form the series solutions. We can see that values obtained in the table are

appropriately in sequence to the curves shown in Fig. 31. This also validates both numerical

and graphical representation.
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Table 31: Convergence of Homotopy series solutions for varied order of estimations.

Order of Approximation ¡ 00(0) ¡00(0) ¡0(0) 0 (0)

1 1.11671 0.20159 0.23166 0.07721

5 1.24100 0.20403 0.23076 0.07691

10 1.26950 0.20412 0.23002 0.07667

15 1.27120 0.20410 0.22983 0.07660

20 1.27140 0.20409 0.22977 0.07650

25 1.27150 0.20409 0.22975 0.07658

30 1.27150 0.20409 0.22975 0.07658

3.4 Results and discussions

This section addresses the impacts of distinct parameters on all involved distributions via

numerous graphical illustrations. Figure 32 is sketched to portray the impact of , the porosity

parameter on velocity …eld  0 (). Graph depicts that velocity distribution is an decreasing

function of . This is because, the permeable medium in‡uences the boundary layer, which

prompts increasing velocity of the ‡uid. Because of this reality, the velocity diminishes with the

escalation of a porosity parameter . Figure 33 illustrates that how Williamson parameter
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a¤ects the velocity distribution  0 (). It is noted that for larger values of williamson parameter

the velocity distribution and its associated thermal thickness reduce. This number () is

expressed as the ratio between relaxation to retardation time. By increasing this parameter,

the relaxation time enhances. With this, the liquid viscosity increases and this results in

decrease in velocity pro…le. Impact of Forchheimer number  on velocity distribution  0 ()

is portrayed in …gure 3.4 It is examined that for escalating values of , decreasing behaviour

of the velocity distribution is seen from …gure 3.5. This is because, for the higher values of 

lead to a resistance in a ‡uid ‡ow. It is witnessed that the velocity pro…le 0 () is diminishing

function for higher values of Williamson parameter . By increasing  parameter, the

rise in relaxation time is observed and thus, the liquid viscosity increases and this results in

decrease in velocity pro…le. In …gure 3.6 in‡uence of porosity parameter  on the velocity …eld

0 () is presented. It is examined that augmented values of  lower velocity …eld. Physically

existence of spongy media is to boost the resistance to liquid motion which provides decay

in ‡uid velocity. Forchheimer number  e¤ect is discussed in …gure 3.7which tells that for

higher Forchheimer number  the velocity …eld 0 () is reduced. Reason for this is that, higher

values of  lead to a resistance in a liquid ‡ow. Figure 3.8 is sketch to describe the e¤ect of

Williamson parameter on the temperature distribution  (). Escalating values of causes

increase in temperature distribution because of increase in resistance to the liquid ‡ow. Figure

3.9 is portrayed to depict the e¤ect of porosity parameter  on the temperature distribution

 (). It is observed that temperature pro…le is escalates for larger values of . Naturally the

resistance is observed in ‡uid movement because of the presence of permeable media which

produces a decay in the ‡uid velocity. Hence an enhancemnt is observed in the temperature

…eld. In …gure 3.10 e¤ect of Forchheimer number  is discussed on temperature …eld  ().

It is analyzed that for higher values of  shows increasing behaviour of temperature pro…le.

Figure 3.11 shows that for greater values of Biot number  an enhancement in the temperature

 () is witnessed. This is due to fact that, when the Biot number increases, higher convection

takesplace which results in an increment in the temperature pro…le  (). Figure 3.12 indicates

the impact of thermophoresis parameter  on temperature  (). It is observed that for larger

values of  increase in the temperature …eld and its related thermal layer thickness is seen.

Smaller particles are pushed apart from hot area to cold area in the process of thermophoresis.
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Consequently it boost the ‡uid temperature. In …gure 3.13 e¤ect of Williamson parameter 

on concentration …eld  () is presented. Williamson parameter increases the ‡uid viscosity, as

a result, when  values are raised, concentration distribution of ‡uid gets enhnaced. Figure

3.14 is portrayed to depict the e¤ect of porosity parameter  on concentration distribution

 (). An increase in concentration …eld is observed against gradual escalation in . Figure

3.15 demonstrates the impact of Forchheimer number  on concentration …eld. An increase

in  causes upsurge in the concentration pro…le. Figure 3.16 is drawn to show impact of the

Schmidt number  on concentration …eld. It is deduced that concentration pro…le is being

reduced for larger values of . Schmidt number is the ratio of momentum to mass di¤usivities.

With the increase of schmidt number  the mass di¤usivities decreases and results in the

depletion of concentration  (). Figure 3.17 shows that how the Brownian motion  e¤ect

the concentration pro…le  (). For higher value of  the concentration pro…le is reduced. It

is perceived that with increase in  random motion of macroscopic ‡uid particles and collision

among themselves increase which ultimately reduces the concentration of the ‡uid. Figure 3.18

is portrayed to depict the e¤ect of thermophoresis parameter  on concentration distribution

 (). An increase in concentration …eld is viewed against gradual escalation in . In the

phenomenon of thermophoresis, the tiny particles are pushed far from warm area towards the

cold area. The reason behind this is that increasing the estimation of thermophoresis parameter,

augmentation in the concentration pro…le  () is observed. Figure 3.19 is drawn to show the

impact of Forchheimer number  and Williamson parameter  on Skin friction coe¢cientµ

 Re
1
2


¶

. It is observed that for greater values of  Skin friction decreases. Figure 3.20

express the e¤ect of  and  on

µ

 Re
1
2


¶

 It is concluded that for large values of 

Skin friction diminishes. Figure 3.21 illustrate the e¤ect of thermophoresis parameter  and

Brownian motion  on Nusselt number. It is analyzed that nusselt number decreases for

escalating values of .
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Fig. 3.3 In‡uence of  on  0 () 

31



Fr = 0.0, 0.3, 0.6, 0.9

 n = 1.2,  = 0.2,  = 0.1, We = 0.2, Sc = 1.0,

 Nt = 0.1, Nb = 0.3, Pr = 1.0,  = 0.3

1 2 3 4


0.2

0.4

0.6

0.8

1.0

f '

Fig. 3.4 In‡uence of  on  0 () 

We = 0.1, 0.4, 0.7, 1.0

 n = 1.2,  = 0.2,  = 0.1, Fr = 0.1, Sc = 1.0,

 Nt = 0.1, Nb = 0.3, Pr = 1.0,  = 0.3

0 1 2 3 4 5 6


0.05

0.10

0.15

0.20
g '

Fig. 3.5 In‡uence of  on 0 () 
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Fig. 3.7 In‡uence of  on 0 () 
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Fig. 3.9 In‡uence of  on  () 
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Fig. 3.11 In‡uence of  on  () 
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Fig. 3.13 In‡uence of  on  () 
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Fig. 3.14 In‡uence of  on  () 
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Fig. 3.15 In‡uence of  on  () 
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Fig. 3.17 In‡uence of  on  () 
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Fig. 3.18 In‡uence of  on  () 

Fr = 0.1, 0.2, 0.3, 0.4

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.1

0.0

0.1

0.2

W

C
fR

e x
1 2

Fig. 3.19 Impact of  and  on Skin friction coe…cient
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Chapter 4

Radiative 3D Powell Eyring Nano

‡uid Flow with Darcy-Forchheimer

E¤ect past a nonlinear stretched

surface

4.1 Mathematical modelling

In this chapter, we consider a 3D Powell Eyring nano‡uid ‡ow past a nonlinear stretched surface

under the in‡uence of nonlinear thermal radiation in a Darcy-Forchheimer porous media. The

stretching is in the ¡ and ¡ directions with respective velocities  ( ) =  (+ ) and

 ( ) =  (+ ) whereas ¡ in the normal direction, with     0. At the boundary,

convective heat and zero mass ‡ux conditions are taken. The governing system representing

the given scenario is given as:

 +  + = 0 (4.1)

 +  + =

µ

 +
1

1

¶

 ¡
1

231
()

2  ¡


¤
¡ 2 (4.2)
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 +  + =

µ

 +
1

1

¶

 ¡
1

231
()

2  ¡


¤
 ¡ 2 (4.3)

 +  + = ¤ () +
()
()

µ

 () +


1
()

2

¶

¡
1


()  (4.4)

 +  + =  () +


1
()¡  ( ¡1)  (4.5)

supported by the boundary conditions

 =   =   = 0 ¡  =  ( ¡  ) 

 +


1
 = 0 at z = 0,

! 0 ! 0  ! 1 ,  ! 1 as  !1 (4.6)

Dimensionless form of above mathematical model is obtained by utilizing following transforma-

tions:

 =

sµ
 (+ 1)

2

¶

(+ )
(¡1)
2   () =

 ¡1
1



 =  (+ )  0 ()   =  (+ ) 0 ()   () =
 ¡ 1
 ¡ 1



 = ¡

sµ
 (+ 1)

2

¶

(+ )
¡1
2

µ

( + ) +

µ
¡ 1

+ 1

¶


¡
 0 + 0

¢
¶

 (4.7)

Here, satisfaction of Eq. (41) is inevitable. However, Eqs. (42¡ 46) take the form:

(1 + )  000 + ( + )  00 ¡

µ
+ 1

2

¶

 00
2
¶
000

¡

µ
2 ¢ 

+ 1

¶
¡
 0 + 0

¢
 0 (4.8)

¡

µ
2

+ 1

¶³
 0 + 

¡
 0
¢2
´
= 0

(1 + ) 000 + ( + ) 00 ¡

µ
+ 1

2

¶

00
2
000 ¡

µ
2 ¢ 

+ 1

¶
¡
 0 + 0

¢
0 (4.9)
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¡

µ
2

+ 1

¶³
0 + 

¡
0
¢2
´
= 0

µ

1 +
4

3
 (1 + ( ¡ 1) )3

¶

00 +Pr
¡
( + ) 0 +00 +02

¢
(4.10)

+
³
4 (1 + ( ¡ 1) )2 ( ¡ 1)

´
02 = 0

00 +  ( + )0 +



00 ¡

2

+ 1
1 = 0 (4.11)

(0) = 0  (0) = 0  0(0) = 1 0 (0) =  0 (0) = ¡ (1¡  (0))  0 (0) +0 (0) = 0

 0(1)! 0 0 (1)! 0  (1)! 0 (1)! 0 (4.12)

with

 =
1

1
  =

3 (+ )

221

3¡1

  =


¤
(+ )1¡   =

4¤1
¤

3

 =
() ( ¡ 1)

() 1


 =



  =


1
  =





r



  =



¤
12
 1 =



(+ )1¡ Pr =



¤


 =



  =

()1

() 
 =

() ( ¡ 1)

() 1
 (4.13)

The Nusselt number in dimensional form is given by:

 =
(+ ) 
 ( ¡ 1)

 (4.14)

Dimensionless forms of the local Nusselt number is appended as follows:

Re
¡1
2

 = ¡

µ
+ 1

2

¶ 1
2 ³

1 + [1 + ( ¡ 1)  (0)]3
´
0 (0)  (4.15)

In the existence of zero mass ‡ux condition, the Sherwood number for zero mass ‡ux condition

is vanished and Re = 
 (+ ) expresses the local Reynolds number.
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4.2 Homotopic solutions

The initial approximations (0 0 0 0) and linear operators (L LLL) are selected as

follows:

0 () = 1¡ exp (¡)  0 () =  ¢ (1¡ exp (¡)) 

0 () =

µ


 + 1

¶

¢ (exp (¡)  0 () = ¡


 + 1

µ




¶

¢ exp (¡)  (4.16)

L =  ¡   L =  ¡   L =  ¡  L =  ¡  (4.17)

with the properties

L [1 + 2 exp() + 3 exp(¡)] = 0

L [4 + 5 exp() + 6 exp(¡)] = 0

L [7 exp() + 8 exp(¡)] = 0

L [9 exp() + 10 exp(¡)] = 0 (4.18)

where  and [ = 1¡ 10] are described as optional constants.

4.3 Convergence analysis

The parameters } } } and } have a vital role to decide the convergence of the homotopic

solutions. The } curves are designed in …g 41. The allowable ranges of these parameters are

are ¡13 · } · ¡04¡14 · } · ¡03¡15 · } · ¡05¡14 · } · ¡04 Table 41

is erected to see that 30th approximation is appropriate for these distributions. An excellent

concurrence between the graphical and numerical results is witnessed.
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Table 4.1: Convergence of HAM solutions for di¤erent order of approximations

Order of approximations ¡ 00(0) ¡00(0) ¡0(0) 0 (0)

1 0.74256 0.14195 0.21402 0.07134

10 0.73190 0.13813 0.20821 0.06940

15 0.73358 0.13800 0.20564 0.06854

20 0.73593 0.13839 0.20445 0.06814

25 0.73590 0.13840 0.20447 0.06815

30 0.73590 0.13840 0.20447 0.06815

4.4 Results and discussions

This section is devoted to visualizing the impact of di¤erent physical parameters, on the ve-

locities  0 () and 0 (), temperature  () and concentration …elds  (). Figures 4.2 and 4.3

are sketched to see the in‡uence of ‡uid parameters  and  on the velocity pro…le  0 (). It is

witnessed that the velocity pro…le is an escalating and diminishing function of  and  respec-

tively. Since  = 1
1

 so by increasing  liquid’s viscosity reduces, which ultimately enhanced

the velocity. Also liquid become less viscous for greater values of . Whereas, by increasing ,

velocity reduces, this is due to the fact that viscosity of the liquid enhances by escalating values

of . The impact of Forchheimer number on the velocity is displayed in …gure 4.4. It is observed
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that velocity  0 () is lessening function of . This is because, for the higher values of  lead

to a resistance in a ‡uid ‡ow. Figure 4.5 is drawn to show the trend of porosity number  on

the velocity distribution  0 (). It is experimented that the velocity of the ‡uid has dwindled

for larger values of porosity parameter. Physically, the movement of the ‡uid is hindered due

to the presence of porous media and this results in the fallo¤ in the ‡uid’s velocity. Figure

4.6 displays variation of Powell eyring parameter  on the velocity …eld 0 (). Enhancement of

velocity pro…le is observed for larger values of . Parameter  is inversely proportional to the

dynamic viscosity of the non newtonian liquid. So as  increased, viscosity will reduced and

velocity will enhanced. Figure 4.7 presents the e¤ects of Powell eyring parameter  on velocity

…eld 0 (). An increment in  viscosity of the liquid enhanced that leads to lower velocity …eld.

Figure 4.8 shows that greater Forchheimer number  results to lower velocity distribution

0 (). This is because, for the greater values of  lead to a resistance in a liquid ‡ow. Figure

4.9 illustrates that the velocity distribution 0 () is reduced for larger values of local porosity

parameter . This is because, the movement of the liquid is hindered due to the presence of

porous media, which produces resistance in the ‡ow path and reduces the ‡ow motion. To see

the impact of Radiation parameter  on the temperature distribution  () is portrayed in

…gure 4.10. It is visualized that the temperature of the ‡uid augments for larger values of radi-

ation parameter. Higher estimates of  obviously increase the temperature of the nano‡uid as

it is in direct proportionate to the nano‡uid temperature at in…nity. It can be seen from …gure

4.11 that Prandtl number Pr clearly a¤ects the process of heat transfer. Actually, is in inverse

proportionate relation with the thermal di¤usivity. Higher estimates of means a drop in thermal

di¤usivity of the nano‡uid and as a decay in the ‡uid temperature is perceived. Figures 4.12

and 4.13 are portrayed to depict the in‡uence of thermophoretic parameter  on the temper-

ature  () and concentration  () …elds. Actually, the smaller particles are pushed away from

the hot surface towards the colder one. As a result, temperature and concentration of the ‡uid

augments. To comprehend the relationship between the porosity number , the temperature

ratio parameter  and the temperature pro…le  ()  …gures 4.14 and 4.15 are modeled. It is

perceived that presence of permeable media o¤ers hindrance to the movement of the ‡uid and

ultimately increased temperature of the nano‡uid is realized. Similar annotations are in case

of  . Figures 4.16 and 4.17 are portrayed to exhibit the e¤ect of chemical reaction parameter
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1, for destructive case 1  0, and generative case 1  0, on concentration …eld  (). An

opposing trend in both cases is witnessed versus concentration pro…le. A slight decrement in

the boundary layer thickness is observed in case of 1  0 for gradually mounting values of 1.

Enhancing values of 1 will repress the concentration of the liquid. Greater values of 1 would

result in decrease of chemical molecular di¤usivity, thus leading into reduction in di¤usion. In

…gure 4.18, the image of Brownian motion parameter  against concentration …eld is depicted.

For increasing estimates of  concentration is on decline. Actually, higher values of  trigger

the random motion of tiny particles that results in high temperature and lower concentration.

To visualize the result of Biot number  versus concentration pro…le, …gure 4.19 is drawn. As

is linked with the heat transfer at the surface. Thus, an upsurge in , augments the thermal

boundary layer and ultimately enhanced temperature is perceived. Figure 4.20 is formed to

learn the behavior of Schmidt number  against the temperature …eld. For higher estimates

of  feeble concentration is observed. In fact, Schmidt number is in inverse proportionate

to Brownian di¤usivity. Larger values of  results in lower Brownian di¤usivity. This feeble

Brownian di¤usivity will lower the concentration pro…le. The characteristics of  and  on

Nusselt number Re
¡1
2

 are displayed in …gure 4.21. Interestingly Re
¡1
2

 increases for

increasing values of  and . Figure 4.22 illustrate the e¤ect of  and 1 Nusselt number

Re
¡1
2

 . It is clear that Re
¡1
2

 , reduces for larger values of  and 1
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Fig. 4.10 Variation of  on  () 
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Fig. 4.11 Variation of Pr on  () 
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Fig. 4.12 Variation of  on  () 
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Fig. 4.14 Variation of  on  () 
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Fig. 4.15 Variation of  on  () 
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Fig. 4.16 Variation of 1  0 on  () 
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Fig. 4.17 Variation of 1  0 on  () 
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Chapter 5

Conclusions and future work

In this thesis two problems have been analysed where …rst problem is about review paper and

second problem is the extension work for it. Conclusion of both the problems are as following:

5.1 Chapter 3

In this section, we have studied the Darcy-Fochheimer 3D Williamson nano‡uid ‡ow over a

convectively heated nonlinear strectching surface. Analytical solution of the problem is ex-

tracted by making use of renowned Homotopy Analysis method. The signi…cant features of the

problem are:

² The Thermophoresis parameter  enhances for both temperature and concentration

distributions.

² Temperature pro…le increases for larger values of Forchheimer number .

² For higher estimates of Biot number  boosts in the temperature is observed.

² Concentration reduces for the escalating values of Brownian motion parameter .

² Concentration decreases for higher values of Schmidt number.
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5.2 Chapter 4

The present consideration is to analyze the steady 3D Eyring Powell nano‡uid ‡ow over a

nonlinear stretchable surface with Darcy-Forchheimer spongy structure. Additional a¤ects of

chemical reaction with zero mass ‡ux condition are also considered. The novelty of the presented

model is enhanced by including the in‡uence of nonlinear thermal radiation with convective

boundary condition. Solution (analytical) of the problem is attained via HAM. The signi…cant

observations of the problem are appended as follows:

² The velocity pro…le is lessening function of Darcy-Forchheimer number .

² For higher estimates of Schmidt number  feeble concentration is observed.

² The temperature of the ‡uid augments for escalating values of Radiation parameter .

² For increasing estimates of Brownian motion parameter concentration is on the decline.

² The velocity of the ‡uid has dwindled for larger values of porosity parameter .

² The Biot numbers  increasing values augment the temperature of the ‡uid.

5.3 Future work

In this work, the e¤ects of chemical reaction and nonlinear thermal radiaton on 3D Powell-

Eyring nano‡uid have been analyzed. However, there remains a need to further build on the

current work so as to bring improvement about the concerned discourse. Few interesting possible

extensions that could be researched in future are as follows:

² Any other non-Newtonian ‡uid along with appropriate boundary conditions.

² Bio-convective nano‡uid with microorganisms.

² Boundary conditions also be changed to melting heat or second order slip.

² Flow over a curve surface with activation energy.
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