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Abstract:

In this proposed model, we have discussed the generalized Fick’s and Fourier’s laws over MHD
Williamson nanofluid flow with mixed convection past a bidirectional stretched surface.
Influence of variable thermal conductivity and stratification with second-order slip are also
considered. Suitable transformations have betrothed to transform the partial differential
equations into differential equations with high nonlinearity. The solution of the proposed
problem has attained via some suitable analytical or numerical technique. Impacts of
miscellaneous arising parameters have deliberated via graphical structures. Some useful

tabulated values of physical quantities have also discussed.
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Chapter 1

Introduction and Literature review

1.1 Introduction

The role of nanofluid is fundamental for the enhancement of thermal conductivity of conven-
tional fluids. Nanofluids are vital in many engineering applications like in biomedical, engineer-
ing and many chemical processes. Nanofluid is composed of nano-meter sized particles (with
diameter less than 100nm) and some traditional fluid. The nanoparticles are usually made of
oxides, carbon nanotubes, metals or carbides. Ordinary fluids includes water, ethylene glycol
and oil. Nanoparticle improves the thermophysical properties and heat transfer performance in
many biological and industrial applications. Nanofluids are widely used in cooling of electron-
ics, cooling of heat exchanging devices and improve their efficiency, automobile industry, in the
solar collectors, in nuclear reactors and modern drug delivery system. Nanoparticles effect the
heat and mass transfer characteristics. Thermal conductivity and convected heat transfer in
nanofluids are greater when compared with the traditional fluid. Nanofluids have an remarkable

combination of four characteristic properties intended in thermal and fluid systems:

e At low nanoparticle concentrations thermal conductivity is enhanced.
e Strong temperature dependent thermal conductivity.
e Non-linear enhancement in thermal conductivity with nanoparticle concentration.

e Increasing in boiling critical heat flux.



Magneto hydro dynamic (MHD) principle is applied for generating power from coal fired
or reactor power plants. MHD generator plant does not require any turbine any turbine
and does not have any generator shaft. In a MHD generator the thermal energy in plasma
(hot ionized gas) is directly converted to electrical energy (without intermediate conversion
to mechanical shaft energy). When an electric conductor moves across a magnetic field, a
voltage is induced in it which produces an electric current. In MHD generator, the solid
conductors are replaced by a gaseous conductor, an iodized gas. If such a gas is passed at a
high velocity through a powerful magnetic field, a current is generated and can be extracted
by placing electrodes in suitable position in the stream.Fourier’s coined work was considered
to be the most effective model that has been used as a benchmark for decades because of its
wideranging applications. One of the shortcomings of this model was that it often leads to a
parabolic energy equation which specifies that initial disturbance was immediately encountered
by the medium under consideration. Anomaly in the Fourier’s law named as “Paradox in heat
conduction” was addressed by Cattaneo by insertion of relaxation time. It is witnessed that
this modification produces the hyperbolic energy equation and enable the transport of heat
by means of propagation of thermal waves with limited speed. Later on, Christov upgraded
Cattaneo’s model by replacing the Oldroyd upperconvected derivative for time derivative. This
improved version is now-a-days termed as the Cattaneo—Christov heat flux model. Fick’s law
states that the rate of diffusion of a gas into the liquid is:

Directly proportional to:

e the partial pressure of the gas above the liquid
e surface area of avaible for gas exchange

e solubility co-efficient of the gas

Inversely proportional to

e Gram molecular weight of the molecules

e Thickness of the membrane

Sometimes the mechanism of deformable density happened/appeared in the shallow fluid

medium owing to change in the state of concentration, pressure, temperature and dissolved



substances termed as stratification. It is witnessed that in case of stratification, density is the
function of space variable as well as time. By cause of which layer formation occurs. Newton’s
law of viscosity states that shear stress is directly proportional to the velocity gradient but
in a linear manner. Non-Newtonians fluids are those fluids which do not obey Newton’s law
of viscosity. In these fluids shear force and velocity gradient are directly propotional but in
non-linear manner. Here, the viscosity is non-uniform under the shear force. Williamson fluid
symbolizes as a non-Newtonian fluid along with shear thinning property (i.e. viscosity tends
to decrease when shear stress increases). The flows in which the fluid is forcefully directed over
a surface and the effect of buoyancy force are also significant, such flows are named as mixed
convection flows. An example of this would be a fan blowing upward on a heated plate. It is
also define as, combined forced convection and natural convection, or mixed convection, occurs
when natural convection and forced convection mechanisms act together to transfer heat. This

is also defined as situations where both pressure forces and buoyant forces interact.

1.2 Literature Review

Heat transfer phenomenon plays a vital role when the temperature varies between different
bodies or parts of the same body. Heat can be transferred by three methods: convection of flu-
ids, conduction in solids and by radiation. To examine body heat transfer, the principle of heat
transfer can be enforced to the human body. Here, we can quote one example i.e., the metal pan
is used to transfer heat from the stove to food. Some applications of heat transfer are: cooking
food over metal pots, boiling milk in metal pots and thermal treatment of pain by hot water
bag. Straughan [1] considered the Cattaneo-Christov heat flux model for the consideration of
thermal convection over a Newtonian fluid. Khan et al. [2] analyzed numerically by engaging
bvpdc MATLAB based function the flow of Sisko fluid flow accompanied generalized Fick’s and
Fourier’s laws over a nonlinear stretched surface. Hayat et al. [3] examined analytically the
MHD flow of Jeffrey fluid past a variable thick surface with impacts of the chemical reaction
and Cattaneo-Christov heat flux in a stratified medium. Waqas et al. [4] investigated that
on the contrary of conventional Fourier’s law of heat conduction; the energy equations inno-

vated by employing Cattaneo-Christov heat flux model. It was observed that variable thermal



conductivity is in inverse proportionate to a temperature profile. The Soret Dufour effect on
the flow of second-grade fluid between inclined parallel walls was analyzed by Khan et al. [5].
Ghadikolaei et al. [6] discussed the heat transfer characteristics of the incompressible flow of
second-grade fluid generated by a stretching sheet. The dual behavior of viscosity was observed
for both velocity and temperature. The influence of homogenous—heterogeneous reactions on
heat transfer flow due to a stretching sheet was examined by Khan et al. [7]. They noticed
that homogenous—heterogeneous reactions reduce fluid concentration.

In modern engineering processes especially in metallurgical engineering and metal working
practices, the role of magnetohydrodynamics (MHD) is fundamental in the case of electrically
conducting fluids. The function of the magnetic field is crucial in cooling the hot plasma inside a
nuclear reactor vessel. Similarly, the magnetic field employed for the mixing of metals inside an
electrical furnace [8]. Chamkha and Al-Mudhaf [9] demonstrated the effect of magnetic field on
unsteady mixed convection flow past a cone rotating in an ambient fluid with a time-dependent
angular velocity in. Later, free convection flow over a non-isothermal vertical cone with variable
surface temperature was analyzed by Pullepu et al. [10]. Akbar et al. [11] investigated the two
dimensional electrically conducting the flow of hyperbolic tangent fluid over a stretching surface.
They observed that the increase in Hartmann number reduces fluid velocity in the vicinity of
the stretching sheet. Seini and Makinde [12] illustrated the magnetic effects in stagnation
point flow due to stretching surface in the presence of velocity slip. They perceived that the
influence of magnetic field on velocity profile is more significant. On the other hand, the effect of
transverse magnetic field on unsteady mixed convection flow over a porous cone in the presence
of chemical reaction and heat generation/absorption was presented by Ravindran et al. [13].
Boland et al. [14] simulated MHD flow of viscous fluid over a circular cylinder wrapped with
a permeable layer. They adopted the Darcy-Brinkman-Forchheimer model to study the flow
inside the porous medium. Ellahi et al. [15] investigated the impact of Hall current on MHD
Jeffrey fluid flow through a non-uniform duct. Mishra et al. [16] explored the heat mas transfer
flow of viscoelastic fluid in the presence of a magnetic field. They concluded that the effect of
magnetic field on velocity profile is opposite to temperature and concentration profiles. Further,
the physical and computational aspects of the applied magnetic field on non-Newtonian fluid

flow over a stretching surface was studied by Hussain et al. [17].



The role of nanofluid is fundamental for the enhancement of thermal conductivity of con-
ventional fluids. Nanofluids are vital in many engineering applications like in biomedical, engi-
neering and many chemical processes. Nanofluid is composed of nano-meter sized particles with
diameter less than 100nm and some traditional fluid. The basic aim of using nanofluids in the
traditional fluid is to enhance the thermal conductivity and improving heat transfer capability
S0 as to attain better cooling. Khan and Pop [18] analyzed nanofluid flow over a stretching
sheet. Makinde and Aziz [19] extended the work of Khan and Pop [18] and investigated the
nanofluid flow in the presence of convective boundary condition. Nadeem et al. [20] studied
the non-orthogonal stagnation point flow of a second-grade nanofluid towards the stretching
surface. The influence of variable magnetic field on the nanofluid flow between two disks was
explored by Hatami et al. [21]. They found the analytical solution via Homotopy perturbation
method and noticed that the temperature boundary layer thickness reduces with the increase
of Brownian motion parameter and thermophoretic parameter. The flow of a nanofluid in a
permeable medium over a convectively heated permeable shrinking sheet is examined by Hayat
et al. [22]. Sheikholeslami et al. [23] and Sheikholeslami and Rokhni [24] deliberated the in-
fluence of magnetic field on forced and free convection flow of nanofluids respectively by using
the two-phase model. Hassan et al. [25] elaborated convective transport of heat transfer in
a nanofluid through a porous medium. They concluded that convection heat transfer is im-
proved by nanoparticles concentration. magnetic field effects on second order slip flow. Nayak
et al. [26] focused on the numerical solution of the 3D nanofluid flow with nonlinear thermal
radiation with slip and convective conditions. Hosseini et al. [27] studied the MHD flow of
a nanofluid in a micro-channel heat sink via KKL model. They noticed that the interaction
between nanoparticles and solid phase enhanced the Nusselt number. In recent years, several
scientists have used nanofluid heat transfer in their studies [28-34] and many therein.

The aforementioned literature review discloses that three-dimensional MHD flow of Williamson
nanofluid over a bi-directional stretched surface in the presence of second-order slip and double
stratification is still scarce. The governing equations are transformed using similarity trans-
formations and the solved analytically via Homotopy analysis method (HAM). The effects of

pertinent parameters are displayed graphically and discussed.



Chapter 2

Basic preliminaries and laws

This chapter includes some important essential definitions, concepts and laws that are favorable

in realizing the concepts in the second and third chapters.

2.1 Fluid

Fluid is a material which changes continuously when shear force is employed. For example,

liquids and gases.

2.1.1 Liquid

Fluid having specific volume but no specific shape is known as liquid. Blood, water and milk

etc, are the examples of liquid.

2.1.2 Gas

It is the type of fluid that has no specific volume and specific shape. For example, oxygen,
hydrogen and nitrogen etc.
2.2 Fluid mechanics

The branch of physical sciences which deal with the fluid’s behavior at rest or in motion. It

has following two subclasses:



2.2.1 Fluid statics

It associates fluid’s properties that are at rest.

2.2.2 Fluid dynamics

This represents the properties of fluids that are in motion.

2.3 Stress

Stress is the surface force applying upon the unit area along with the deformable body. It’s

unit in SI system is Nms—2 or Ek;% and dimension is M/LT?. Tt is classified into two types.

2.3.1 Shear stress

When force is applied parallel to the unit area of the surface then the stress is termed as shear

stress.

2.3.2 Normal stress

Stress is known as normal stress when force is applied normal to the surface of unit area.

2.4 Strain

When a force is applied on an object,the substance used to compute its deformation termed as

strain.

2.5 Flow

Flow is expressed as a substance that deforms smoothly and continuously under the impacts of
various type of forces. It has following two catagories:
2.5.1 Laminar flow

When fluid flows in such a way that various fluid’s layers do not cross each other and at every

point velocity is taken constant is termed as laminar flow.

10



2.5.2 Turbulent flow

When fluid flows in such a way that various fluid’s layers cross each other and velocity varies

at every point with both direction and magnitude named as turbulent flow.

2.6 Viscosity

It is the essential fluid property which computes the resistance of fluid contrary to any gradual
deformation when various forces are acting on it. Following are two ways that expresses the

viscosity:

2.6.1 Dynamic viscosity

The characteristic of fluid that measures the fluid resistance against any deformation when a

force acts on it. Numerically, it can be defined as:
viscosity (u) = shear stress/gradient of velocity. (2.1)
ST units of viscosity are N's/m? and it’s dimension is [M/LT).

2.6.2 Kinematic viscosity

It expresses the ratio of the dynamic viscosity (u) to the fluid’s density (p) . Numerically, it is
given by:
L
-. (2.2)
p

Its SI unit is %2 and its dimension is [L2 / T] .

2.7 Newton’s law of viscosity

It states that shear stress is directly proportional to the velocity gradient but in a linear manner.

Numerically, it is represented as:

Tyz < du/dy, (2.3)

11



or

Tye = iy (du/dy), (2.4)

where 7., describes the shear force acting on the fluid’s element and p; stands for the propor-

tionality constant.

2.7.1 Newtonian fluids

Fluids which obey the Newton’s law of viscosity are known as Newtonian fluids and the viscosity
is uniform under the shear force. Here shear force and velocity gradient are linearly and directly

propotional. For example air, water, glycerine, milk, mineral, and kerosene oil.

2.7.2 non-Newtonian fluids

Non-Newtonians fluids are those fluids which do not obey Newton’s law of viscosity. In these
fluids shear force and velocity gradient are directly propotional but in non-linear manner. Here,

the viscosity is non-uniform under the shear force. Numerically, it is given by:
Tya o (du/dy)", n # 1, (2.5)

or

Tye = 11 (du/dy) =k (du/dy)" ", (2.6)

in which 7n;, n and k describes the apparent viscosity, flow behavior’s index and consistency
index respectively. For n = 1, Eq. (2.6) deforms to Newton’s law of viscosity. Honey, paints

and ketchup represents the non-Newtonian fluid behavior.

2.8 Second grade fluid

Abundant variety of fluids exists in nature.Thus some models of non-Newtonian fluids are
discussed. The viscoelastic impacts of non-Newtonian fluids are generally characterized in three
classes named as (i7)differential, (i¢)rate and (ii7)integral types fluid.One important subclass of
differential type fluid is second grade fluid. Second grade fluid describes the normal stress

influences in between the neighbouring layers of fluid. Stress tensor discussed by Cauchy for
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the viscous and second order fluids are defined as under:
T=-—pl+pA;, and 7= —pl+ pA;+a1As +azA?, (2.7)

where a7 and as represents the material constants respectively and A and As stands for the

first and second Rivlin-Ericksen tensors. i.e.
A; = (gradV) + (gradV)T (2.8)

Ay = dA,/dt + A, (gradV) + (grad V)T A, (2.9)

The material moduli must satisfythe relations in the second order fluid case as:
a1 <0, £>0, a; +az #0. (2.10)
The material moduli must fulfill the given relations for second grade fluid model as follows:
a1 >0, n>0, ag+as =0. (2.11)

Using Cartesian coordinates we have

Uy Uy Uy Ur Vp Wy
T
gradV = Vg Uy Vy s (gradV) = Uy Vy Wy . (212)
Wy Wy Wy Uy Vy Wy

2.8.1 Relaxation Time

When stress acts, a system deforms from equilibrium position to perturb position. After released
stress, time is required for a perturb system back to equilibrium position is named as relaxation

time.
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2.9 Density

It is stated as the ratio of a mass of a substance to unit volume. This quantity is used to
compute that how much stuff of a substance is present in the unit volume

Numerically it is expressed as:

p=p/v. (2.13)

Its SI unit is %.

2.10 Pressure

Pressure is expressed as a magnitude of force applied perpendicular to the surface per unit area.

Numerically, it is represented by :

P = F/A. (2.14)

Its SI unit is %

2.11 Thermal conductivity

Thermal conductivity signifies energy transport through a body in the form of temperatue
gradient. According to the second law of thermodynamics, heat flows in the direction of lower
temperature.

Mathematically, it is expressed as:

heat flow x distance
surface area x temperature difference *

Thermal conductivity =
Mathematically,
r = QL/A(AT), (2.15)

where @ stands for quantity of heat, A stands for surface area and AT represents the change

in temperature along distance L.
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2.12 Convective boundary condition

Convective boundary condition generally states that heat flow over a surface through conduction
is equal to the heat flow by convection and is termed as Robin boundary condition. Most general

relation between the temperature of surface and surrounding is given through expression:

k(0T /0my),, = h(Ty(@i, t) — Tu(wi, 1)) (2.16)

This equation shows that condition is equal to convection. In which h indentifies the heat
transfer coefficient , z; represents the coordinate at the boundary, Ty stands for the fluid’s

temperature and T, stands for the wall temperature.

2.13 Nanofluid

The role of nanofluid is fundamental for the enhancement of thermal conductivity of conven-
tional fluids. Nanofluids are vital in many engineering applications like in biomedical, engineer-
ing and many chemical processes. Nanofluid is composed of nano-meter sized particles (with
diameter less than 100nm) and some traditional fluid. The nanoparticles are usually made of
oxides, carbon nanotubes, metals or carbides. Ordinary fluids includes water, ethylene glycol
and oil. Nanoparticle improves the thermophysical properties and heat transfer performance in
many biological and industrial applications. Nanofluids are widely used in cooling of electron-
ics, cooling of heat exchanging devices and improve their efficiency, automobile industry, in the
solar collectors, in nuclear reactors and modern drug delivery system. Nanoparticles effect the
heat and mass transfer characteristics. Thermal conductivity and convected heat transfer in

nanofluids are greater when compared with the traditional fluid.

2.14 Williamsons Fluid

Williamson fluid symbolizes as a non-Newtonian fluid along with shear thinning property (i.e.
viscosity tends to decrease when shear stress increases). An incompressible uni-directional flow
of Williamson fluid along with pressure dependent viscosity in an inclined channel containing

height h, is taken into account. We are assuming Cartesian coordinates system such that
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(u(y),0,0) is velocity vector where u represents velocity’s z-component and y is perpendicular
to z-axis. The equations which influence an incompressible fluid flow past a porous medium

are given by:

div V =0, (2.17)
awv .
P = div S, (2.18)

in which p represents the density, S denotes the Cauchy stress tensor and d/dt be a sign of
material time derivative.

The Cauchy stress tensor S for Williamson fluid is expressed as:

S = —pl+7, (2.19)
_ Ho = Hoo
= (uoo +E ) A, (2.20)

in which 7 stands for extra stress tensor, py and p., denote the limiting viscosity at zero and

infinite shear rate, I' > 0, shows time constant, A; signifies the first Rivilin Erickson tensor

. 1
v =14/ 51_[, IT = trace(A?), (2.21)

and -y is expressed as:

So,

5= ()’ + % (uy +v2)% + (12, (2.22)

where II denotes the second invariant strain tensor, The case u., = 0, taken into account and

'y < 1, therefore with the help of given equation Eq.2.20, becomes

Ho
= A
! [1_F’7] b

with the help of Binomial expansion,we get
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7 = o[l + T4]A . (2.23)

First Rivilin-Erickson tensor is expressed as

A=

Cauchy stress tensor in component form is given by:

Sxz

2y Uy + Vg (2.24)
Uy + Vg 2vy
—p + 2401 4+ I'Y]uz, (2.25)

= + 2p9[1 + Ty]uy,
Syz = =P + o[l + I'Y](uy + ug),

Szx = Szy = Syz = Szz = 0.

2.15 Magnetohydrodynamics

In modern engineering processes especially in metallurgical engineering and metal working

practices, the role of magnetohydrodynamics (MHD) is fundamental in case of electrically con-

ducting fluids. It is essentially derived from magneto (meaning magnetic field), hydro (meaning

liquid) and dynamic(meaning movement of body by cause of forces). The function of magnetic

field is crucial in cooling the hot plasma inside a nuclear reactor vessel. Similarly, magnetic

field employed for the mixing of metals inside an electrical furnace. It can also be named as

magnetofluiddynamics and hydromagnetics.

2.16 Mixed Convection

The flows in which the fluid is forcefully directed over a surface and the effect of buoyancy force

are also significant, such flows are named as mixed convection flows. An example of this would

be a fan blowing upward on a heated plate.
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2.17 Modes of heat transfer

Heat transfer phenomenon plays a vital role when temperature takes different flows among the
bodies. Basically, heat transports in three ways: convection, conduction and radiation. To
examine body transfer heat, the principle of heat transfer can be enforced to the human body.
Here, we can quote one example of metal pan that is used to transfer heat from the stove to
food. Some applications of heat transfer are: cooking food over metal pots, boiling milk in

metal pots and thermal treatment of pain by hot water bag.

2.17.1 Conduction

It is a technique in which heat transfer occurs from the more heated particles of a substance
to the adjacent less heated particle as a result of contact between the material particles. Con-
duction is feasible in all three stages of matter. In state of solid, conduction arises by cause of
vibration of particles and the energy transferred by free electrons. While in state of liquid and

gases, it is realized by collision and diffusion of the random particles.

2.17.2 Convection

The second mechanism of heat flow is termed as convection which deals with the energy transfer
because of particles’s movement. This technique includes both the fluid particles’s motion and
conduction.There is direct relationship between fluid particles’s motion and convective heat
transfer. Furthermore, convection is named as forced convection if th external source or medium
is responsible for the fluid flow. External medium involves wind(air), pump, fan or may be due
to stretching surface. Against to forced convection, free convection (or natural convection)
arises as result of buoyancy forces. These forces are generated by density variations in fluid
flow because of temperature and absence of external sources i.e, stretching and magnetic force.
Type of convection which involves the combine effects of forced and natural convection is called

mixed convection.
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2.17.3 Radiation

The mechanism in which energy transport takes place from any substance through emission
(or absorption) of electromagnetic waves is termed as radiation. Particularly, radiation is
significant throughout the process of combustion where temperature rises and it also occurs at
room temperature. Radiative heat process does not depend upon any medium to propagate as

in case of convection and conduction.

2.18 Stratification

Sometimes the mechanism of deformable density happened/appeared in the shallow fluid medium
owing to change in the state of concentration, pressure, temperature and dissolved substances
termed as stratification. It is witnessed that in case of stratification, density is the function of
space variable as well as time. By cause of which layer formation occurs. Following are the two

subclasses of stratification.

2.18.1 Thermal stratification

It happens as result of temperature imbalance, which provide rise to density imbalance in the
fluid medium. Commomly, the reasons are thermal energy from heated bodies e.g, sun. When
sunlight falls on lake’s surface it assess change in temperature. The change in temperature
depends on the lake’s depth and degree that is able to influence by wind and any source of
heated bodies. When lake is stratified, three layers arise inside the lake, the upper warm layer
associated to as epilimnion, and the deeper cold layer referred to as hypolimnion. The boundary
layer between the two layers where temperature changes more rapidly reffered to as thermocline.
It is also noticed that temperature imbalance may changes from layer to layer and these flows

have wider applications in agriculture and oceanography.

2.18.2 Concentration stratification

This type of stratification has application in many mechanism like transportation in the sea
where stratification occurs due to salinity imbalance. As a result of existence of various fluids,

a stable standpoint arises when the lighter fluids stands over the denser one.
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2.19 Dimensionless numbers

2.19.1 Reynolds number

A dimensionless number used to identify flow pattern for different fluid flow occurrences like
turbulant and laminar flow. It computes the ratio of inertial to viscous forces and relative
significance of the two forces for given flow conditions. It is represented by Re termed after
Osborne Reynolds,and is given as:

__ inertial force

= — 2.2
Re viscous force (2.26)

2
_p/L vl (2.27)

Re — —
¢ wo/L? v

Here, v represents the velocity of fluid, L denotes the characteristic length and v describes
kinematic viscosity. For low Reynolds number, flow is generally categorized as laminar flow. In
laminar flow, fluid is moving with constant velocity and viscous forces are more dominant than
inertial forces. Similarly, in case of higher Reynolds number, inertial forces are more significant

than viscous forces, hence turbulant flow arises.

2.19.2 Hartmann number

A dimensionless parameter used to determine relative importance of drag force resulting from
magnetic and viscous forces.Also, Hartmann number describes the connection between vis-
cosity and frictional force generated by magnetism. It plays essential role in the magneto-

hydrodynamics. Hartman number is the ratio of magnetic to the viscous force i.e.

B2
M= %, (2.28)

where By describes the magnetic induction, L stands for characateristics length, o stands for

resistivity and pudenotes viscosity.
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2.19.3 Skin friction coefficient

When fluid is passed across a surface then certain amount of drag forces become apparant.These
drag forces are termed as Skin friction. It happens between the fluid and the solid’s surface

which leads to slow down the fluid motion. The Skin friction coefficient can be expressed as:

_ 27w

C,= 2w
= vz

(2.29)

where 7, (shear stress at the wall), p (fluid density) and U,, (velocity at wall) are the parameters
on which Skin friction depends. Rise in Skin friction describes that how much drag obtains from
the viscous stresses at the boundary. Laminar flow have less drag as compared to turbulant

flow. To minimize Skin friction, it is mandatory to turn turbulant flow to laminar flow.

2.19.4 Lewis number

It describes the thermal diffusivity to Brownian diffusivity ratio. Mathematically, it is given

by:

_ Thermal diffusitivity o

Le (2.30)

" Brownian diffusivity  Dg’
where « depicts thermal diffusivity and Dp describes Brownian diffusivity. Molecular diffusivity

decreases when Lewis number increases.

2.19.5 Thermophoresis parameter

Thermophoresis parameter is positive and negative for cold and hot surface repectively. For hot
surface, thermophoresis moves the nanoparticle concentration boundary layer away from the
wall. As a result, a particle-free layer is formed at the boundary and therefore the nanoparticle

distribution is obtained just outside. Mathematically, it can be expressed as:

_ 7Dp(Ty, — Tao)

N,
t VTOO )

(2.31)

in which T;, and T, represents the wall temperature and temperature outside the plate, Dr

describes thermophoretic diffusion coefficient and v shows kinematic viscosity.
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2.19.6 Brownian motion parameter

Irregular movement of suspended nanoparticles in a base fluid is named as Brownian motion.
Brownian motion of nanoparticles is due to their random motion in base fluid produces from
collision of nanoparticles with the base fluid. Such motion is because of size of the nanoparticles
varying the heat transfer properties.
Mathematically,
TDp(Cy — Cx)

N, = 2.32
b 3 3 ( )

where 7 is the ratio of effective heat and heat capacity of the nanoparticles and fluid respectively,
v stands for Kinematic viscosity. C,, describes the walls concentration, C,, denotes ambient

concentration and and Dp represents the Brownian diffusion coefficient.

2.19.7 Grashof number

It describes the buoyancy forces to viscous forces ratio. Mathematically,

B 3
Gr, = Pl =T (2.33)

1%

where g denotes gravitational constant, 8, stands for the coefficient of thermal expansion, v is
the kinematic velocity. T,, and Ty, are the lower and upper temperatures at the channel walls.
2.19.8 Williamsons parameter

It studies the viscoelastic flows. It provides the relation of stress relaxation time and specific

process time. It is abbreviated as We, and is mathematocally defines as:

We— Uwr,/%c. (2.34)

2.19.9 Biot number

Biot number is a dimensionless quantity which finds connection between the resistance of in-

ternal substance to the resistance at the surface of the substance. Mathematically,
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Resistance of internal substance

Biot number =
Resistance of surface of substance’

s _ I |V

2.35
e (2:35)

v

where k stands for thermal conductivity, hs denotes heat transfer coefficient and v is kinematic

viscosity.

2.19.10 Prandtl number

Prandtl number is used to compute the ratio of momentum diffusivity (kinematic viscosity v)
to thermal diffusivity («). It is also stated as the product of dynamic viscosity (u) and the

specific heat capacity (c,) at constant pressure to the thermal conductivity (k). Mathematically,

Momentum diffusion rate

Pr= Thermal diffusion rate
v ucy
Pr=—=—> 2.36
=t (236)

where p stands for dynamic viscosity, ¢, describes the specific heat and k represents thermal
conductivity. For the case when Pr < 1,thermal diffusion rate dominates while momentum
diffusion rate dominates for Pr > 1. i.e in heat transfer, Prandtl number is used to control the

thicknesses of momentum and thermal boundary layers.

2.20 Fundamental Conservation laws

The basic equations which are used for describing flow in the upcoming chapters are given below

2.20.1 Continuity Equation

This equation is derived from law of conservation of mass. Mathmatically, it is expressed as

p+V.(pV) = 0, (2.37)
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where p denotes density,V = (u, v, w) is the velocity field and ¢ stands for time. For an incom-

pressible fluid above equation turns to:

V.V =o0. (2.38)

This form of continuity specify the source’s absence in control volume.

2.20.2 Momentum Equation

Law of conservation of momentum plays a vital role in fluid mechanics and can be obtained
with the help of Newton’s second law of motion for an arbitrary control volume. Differential

expression of momentum equation in vector form is given by:

av

The cauchy stress Tensor is given by:

T=-—-pl+5, (2.40)

where p represents pressure, I stands for identity tensor, S describes the extra stress tensor, b
denotes body force and d/dt is material time derivative. For the three dimensional flow, the

cauchy stress tensor and the velocity of the field can be expressed as:

Oxx Txy Tzz

T= | Tyz Oyy Tyz (2.41)
Tz Tzy Ozz
V = [u(,y, 2),v(z,y, 2), w(z, y, 2)], (2.42)

where 045, 0y and o, describes the normal stresses, all 7’s represent the stear stresses and

u, v, w are the velocity components along x,y and z—direction respectively.
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2.20.3 Energy Equation

Energy equation may be obtained by applying the first law of thermodynamics to a control
volume. It describes that changes in energy, heat transferred and work done by a system are
in balance. Law of conservation of energy is also known as energy equation and is defined as
total energy is conserved at the whole system. For a fluid with constant thermal conductivity,

the basic energy equation for steady flow in the form of vector is given by:

de

= T.L —V.q+prp, (2.43)

where e =c¢,T" describes specific internal energy, ¢, is the specific heat, T" is the temperature,
L = V'V the velocity gradiant, q;= —kVT stands for heat flux, k is thermal conductivity and

rp, denotes radiative heating. Energy equation in the absence of thermal radiation is given by:
ar
pep—y = T.VV+EV2T. (2.44)

2.20.4 Diffusion Equation

Mass transfer takes place whenever fluid flows ¢.e, some mass is transferred from one place to
another place. According to Fick’s law
dC

—= D.V2C +k,C,, (2.45)

in which C represents concentration, D, stands for the coefficient of mass diffusivity and k,, is

the reaction rate of diffusivity species.

2.21 Solution Methodology

In fluid mechanics physical problem are always non-linear. FExact solutions for such problems
are not easy to find. Hence, some researchers turn to a numerical and approximate solutions.
Amongst the various techniques there is one called homotopy analysis method. There is the

development of series solution in this technique.
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2.22 Homotopy

Homotopy is an essential concept of topology. Two functions are known as homotopic if one
function can be deformed continuously into the other function. Two continuous maps (fiand
f2) from the topological space A into the topological space B are called homotopic if there

exists a continuous map F

F:Ax][0,1] — B, (2.46)

such that for each a € A
F(a,0) = fi(a), (2.47)
F(a,1) = fa(a). (2.48)

The map F' is known as homotopy between f; and fs.

2.23 Homotopic solutions

Homotopy Analysis Method (HAM) is used to obtain the series solutions of highly nonlinear
problems. It gives us convergent series solutions for highly nonlinear systems. For the basic

concept of homotopy analysis method, we take into account a differential equation
Nf (@) =0, (2.49)

in which N denotes non-linear operator, f (z) stands for unknown function while x describes

the independent variable. Zeroth-order problem is given as follows:
(1=P) £ [F (@:P) — fo (@)] = PAN [ (w5P)] (2.50)

where fy (z) denotes initial approximation, £ stands for the characteristic linear operator, b
€ [0,1] shows an embedding parameter, /i stands for non-zero auxiliary parameter and f (z;P)

is the unknown function of z and P.
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Letting P =0 and P = 1, we have

f(@;0)=fo(x) and f(z;1)=f(z). (2.51)

The solution f (z;P) transforms from initial approximation fo () to the desired final solution

f (z) when P goes from 0 to 1. Using Taylor series expansion, we have

@)= fo@) + Y S @), fnla) = TR (2.52)
m=1 ’ P=0
For P =1, we get .
f@)=fo@) + > fm(@). (2.53)
m=1

Differentiating m times the zeroth deformation w.r.t to P then divided by n! and finally putting

P = 0, we have the mth order equation

L[ fm () = Xom fm—1 ()] = hRm () , (2.54)

1 OmN [f (z; P)]

m - ’ 2.
Ron () =1 o™ (2.55)
b=0
where
0, m<l1
Xon = . (2.56)
1, m>1
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Chapter 3

Impact of generalized Fourier’s and
Fick’s laws on MHD 3D second
grade nanofluid flow with variable
thermal conductivity and convective

heat and mass conditions

3.1 Mathematical formulation

In this chapter second grade nanoliquid flow over a bidirectional extended sheet with velocities
and in the z—and y—directions is taken up for consideration, with corresponding velocities
u = azr and v = by, while a and b are constants.. Flow analysis is carried out in the existence of
Brownian motion and thermophoresis impacts with variable thermal conductivity and convec-
tive heat and mass boundary conditions. Flow of fluid is electrically conducting as a result of
constant applied magnetic field of strength By in a direction normal to the surface along with
z—axis.We consider smaller Reynolds number to neglect induced magnetic field. Morover, we
also discussed thermal diffusion with heat flux’s relaxation and concentration diffusions with

relaxation of mass fluxes. The surrounding values C and T, are taken from the contant
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values of concentartion and temperature at stretched surfaceas z — oo. Keeping all above

considerations in mind, the boundary layer equations of the considered model is expressed as:

Uy + vy +w, =0, (3.1)
0 UB%

Uy + VUy + WUy = VUyy + ? [uuzzx + Wz — Uglzy — UpWyy — 2UyUsy — 2wzuzz] - U,

(3.2)
0 UB%

UV + VUy + WU, = VU, + ; (VU2 + WUz — VyUsz — VyWay — 20,0y, — 2W,0,,] — TU, (3.3)
a+ g (@ +V.Vq—qVV + (V.V)q) = —kVT, (3.4)
J+ e (J:+V.VI-IVV + (V.V)J)=-DpVC, (3.5)

where q and J describes the normal heat and mass fluxes respectively. k, Dp, Ag and A¢ are the
fluid’s thermal conductivity of the fluid, Brownian diffusion coefficient, heat flux’s relaxation
time and mass flux’s relaxation respectively. When \g = Ac = 0, Egs.(3.4) and (3.5) describes
the classical Fourier and Fick laws respectively. Letting V.V = 0 and the steady laminar flow

with q; = J; = 0, Egs.(3.4) and (3.5) becomes

q+ g (V.Vq—q.VV) = -V (aT), (3.6)

J+ X (V.VI —J.VV) = —DgVC. (3.7)

Holding all above considerations and the impacts of Brownian motion and thermophoresis in

mind, Eqs.(3.6) and (3.7) take the form

1 0 Dy 2
Dy
uCy +vCy + wC, + Ac¢. = DpC., + T—Tzz, (3.9)

where
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¢ = U Ty + v Ty + Ty + 2uvTyy + 2uwTy, + 20wT),
+ (uugy + vuy + wu,) Ty + (wvg + vy, + woy) Ty + (vw, + vwy + ww,) T, (3.10)

and

+ (uuy + vuy + wu,) Cp + (uvy + vuy + wo,) Cy + (vwy + vwy + ww;,) Cs, (3.11)

with v, T, ¢p, p, Dp and Dr describes the kinematic viscosity, temperature, specific heat,
fluid density, Brownian diffusion and thermo diffusion coefficients respectively. The subjected

boundary conditions are:
u=Uy, v=Vy, w=0, —kT,=h (T —-T), — DpC,=h.(C,—C), at z=0,

u—0,v—0 T—Ty, C— Cyx asz— oo. (3.12)

where h; and h. stands for the heat and mass transfer coefficients. For the solution of Egs.
(3.1) to (3.3) and Egs. (3.8) and (3.9) with boundary conditions (3.12), we employ the following

similarity transformations:

u=azf' (n), v=ayg (n), w=—vav(f(n)+gm), (3.13)
00 = 7 o) = e = 2 (312

here " 7”7 shows the derivative w.r.t "n”. Considering thermal conductivity k& = k(1 + af (n))
with a = (k — kq)/kq as reffered in [1] Eq. (3.1) is identically satisfied while Egs. (3.2) to (3.5)

are transformed to :

f/// _ f/2 + (f+g)f” 4 [2 (f/ +g/) f/// _ (f +g)f//// _ (f// _ g//) f”] _ Mf/ =0, (3.15)
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g/// _ 9/2 + (f +g)g// + )\* [2 (f/ +g/) g//l _ (f +g)g//l/ + (f/l _g//) g/l] _ Mg/ — 07 (316)

(1+€0)0" + €0 + PrNbo' ¢/ + PrNt0* + Pr(f +g) ¢’
—0; Pr ((f +9°0"+(f+9) (f'+9) 0’) =0, (3.17)

¢//_|_%9//+PrL€(f+g)gb/_PrLedc ((f+g)2¢”+(f—l—g) (f/—l-g/)d)/) ~0, (3.18)

and the boundary conditions take the form

f'(0) — 0, ¢’ (00) — 0, 8(c0) — 0, ¢p(c0) — 0 as z — oo. (3.19)

Here, M, e, \*, Pr, Nb, Nt, Le, d., d;, 5, and 'y*l, 'y*2, describe the Hartmann number, ther-
mal conductivity parameter, second grade dimensionless parameter, Prandtl number, Brownian
motion parameter, thermophoresis parameter, Lewis number, concentration relaxation parame-
ter, thermal relaxation parameter, stretching ratio parameter and heat and mass transfer Biot

numbers respectively. These parameters are given by:

_ _ 2
pr=to Ny TPrTw = To) DB (Cw=C) ,_ oBg
« * hy v b« he v
Le = —— c = ) = T\ > = = ) = . 2
e Dy’ 1) Aca, vy L \/; B a Yo DB\/; 0t = A\ga (3 O)

Description of Skin friction coefficients Cy, and Cf, in the z- and y—directions are given by:
T T
Cr =2 ¢ =2, 3.21

with 7, and 7, are expressed as:

Twel,—g = Pz + ko [Uley + Vg, + Wz + U Uy + V20 — We2], g, (3.22)
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Tuwyl,—g = MUz + ko [W0zz + 00y + W02 + Uzuy + V20 — W], - (3.23)

Dimensionless forms of Skin friction coefficients are defined by:

szR€1/2 _ [f”—i—K(Qf/f” . (f+g) f///+ (f’—l—g/) f”)]nzo 7 (3.24)
nyR€1/2 _ [g// + K (29/9// . (f +g) g/// + (f/ +g/) g//)]n:07 (3.25)

where Re, = #&=.

3.2 Homotopic solutions

Homotopy Analysis method (HAM) was suggested by Liao [35] in 1992 for the solution of highly
nonlinear differential equations. This technique has an edge over rest of the contemporary
techniques on account of ensuing characteristics:

i) It is free from selection of small or large parameters.

i1) Guaranteed the convergence of series solution.

i71) Provides sufficient choice for choosing initial guess estimates and operators.

For the problem under consideration, initial guess estimates ( fo, go, 0o, ¢y) are taken as:

fo(n) =1 —exp(-n)), go(n) =B (1 —exp(-n)),

0o () = —— exp (—n), ¢y (1) = —2— exp (—), (3.26)
1+")/1 1+")/2

which are supported by the following linear operators:

Bf o df By dg
Ly (U):d—ng,—%, g(n):d_773_d_77’ (3.27)
420 2
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with the following characteristics

Ly [Cr + Caexp(n) + Czexp(—n)] =0, (3.29)
Ly [Ca+ Cs exp(n) + Cs exp(—n)] = 0, (3.30)
Ly [Crexp(n) + Csexp(—n)] =0, (3.31)
Ly [Coexp(n) + Croexp(—n)] =0, (3.32)

in which C; (i = 1 — 10) are the arbitrary constants. The values of these constants through the

boundary conditions are

a *
Cy =05 =07 =Cy =0, Cs—fg—(n) , Cr=—=C3 = f,(0),
n n=0
. Ay, (1)
Cy=-C6—9,,(0), Cg = ——=|
Cs=—-07,(0), Cio=—¢),(0). (3.33)

3.3 Convergence analysis

It is important to find convergence regions of all the involved distributions for convergent series
solutions. These convergent regions depend upon the calculations of the auxiliary parameter .
Figure 3.1 represents the Ai—curves behavior for all distributions. The desirable ranges of these
parameters fiy, iy and hy are —1.5 < hy < —-0.4, =14 < hy < 04, —14 < hy < —0.4 and
—1.6 < hy < —0.5. Table 3.1 displays the convergence of the considered method mathematically.
It can be verified that both presented Fig. 3.1 and Table 3.1 values are in total alignment.
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£(0).2'(0), 6'(0).4'(0).

hphghghs

Fig. 3.1 A—curves for f,g,0,¢
Table 3.1. Convergence of series solutions for different order of approximations when
N =01, M=03,7, =7, =0.1, Nt =08, N, =0.2, Le=1.0, 6; = 6. = 0.2, Pr=1.0, ¢ =
8=0.1

Order of approximations | —f”(0) | —g”(0) | —6'(0) | —¢'(0)

1 1.06300 | 0.07450 | 0.08761 | 0.07130
5) 1.09234 | 0.07821 | 0.08382 | 0.05675
10 1.09342 | 0.07809 | 0.08235 | 0.04913
15 1.09343 [ 0.07809 | 0.08187 | 0.04549
20 1.09343 | 0.07809 | 0.08169 | 0.04370
25 1.09343 | 0.07809 | 0.08161 | 0.04281
30 1.09343 | 0.07809 | 0.08159 | 0.04256
35 1.09343 | 0.07809 | 0.08159 | 0.04256

3.4 Results and Discussion

This section is concerned to study the influence of appearing parameters on respective dis-
tributions through figures 3.2 — 3.19. Figures 3.2 and 3.3 describes s (stretching rate ratio)
behavior on velocity profiles. It is observed that both velocities show conflicting behavior in

x— and y—directions for an increasing rate of 5. As 8 = b/a, a is smaller for higher values
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of 8 that specifies decreasing rate in velocity along x—axis or higher values of b that indicates
increasing rate along y—axis. Figure 3.4 has drawn to depict the impact of second grade pa-
rameter \* on velocity field. It is indicated that moderate increment in \* give support to
velocity profile. This is the result of the fact that enhanced flow of fluid has dependency on
higher values of A*. It is also noticed that the current problem may be deformed into viscous
fluid case by setting \* = 0. In figure 3.5 the effect of Prandtl number Pr on temperature profile
is presented. It is to be noted that for higher values of Pr, diffusion of heat from the heated
surface is very slow in comparison to smaller values of Pr. Therefore, decrease in temperature
is preceived against associated values of Pr. Figures 3.6 and 3.7 are drawn to understand the
influences of thermal and concentration relaxations parameters §; and . on concentration and
temperature distributions are shown respectively. It is observed that both concentration tem-
perature fields with associated boundary layer thicknesses are decreasing functions of §; and
0. respectively. Furthermore, for §; = 0 and §. = 0, current model will transform to classical
laws of Fourier’s and Fick’s respectively. Figure 3.8 describes the effect of thermal conductiv-
ity parameter € on temperature profile. Higher values of € causes increment for the thermal
boundary layer. Due to which an increase in temperature distribution is detected. Figure 3.9
exhibits the influence of Lewis number Le on concentration field. Lesser values of mass diffusiv-
ity than thermal diffusivity results in stronger Lewis number. As a result, a weaker Brownian
motion coefficient is witnessed that lowers the nanoparticle concentration profile. Figures 3.10
and 3.11 are drawn to illustrate the effect of Hartmann number M on both velocities profiles
alomg x— and y—directions. Retardation in the fluid’s motion is observed because of resistance
offered by strong Lorentz force. This act finally points out as decreament in both velocity
distributions. Figures 3.12 and 3.13 are drawn to represent the influence of heat and mass
Biot numbers ’}71 and ’y*z on temperature and concentration profiles respectively. It indicates
that both temperature distribution and concentration distributions are increasing functions of
’}71 and ’y*Q. High dependency of ’}71 and ’;2 on respective heat and mass coefficients augment
the associated temperature and concentration distributions for ascending values of respective
Biot numbers. Figure 3.14 is drawn to reflect the effect of thermophoresis parameter Nt on
temperature field. As we increase the value of Nt, movement of nanoparticles from hot to

the cold ambient fluid is observed and results in higher values of temperature in the region
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of the boundary layer. Eventually, augmented thermal boundary layer thickness is preceived.
Figure 3.15 describes the effect of the thermophoresis parameter Nt on concentration field.
Higher values of thermophoresis parameter Nt are in direct proportionate with temperature
gradient which in turn boosts the concentration profile and its allied concentration boundary
layer thickness. Figures 3.16 and 3.17 illustrates the impact of Brownian motion parameter Nb
on temperature and concentration profiles. Higher values of Nb increase the temperature of
the fluid in the boundary layer and instantaneously reduce particles’s deposition far off from
the fluid on the stretched surface. That’s why temperature accelerates and concentration de-
celerates. Figure 3.18 is drawn for understanding the effects of second grade dimensionless
parameter A* and stretching ratio parameter $ on Skin friction coefficient along y—direction.
It is preceived that Skin friction coefficient shows increasing behavior against both A* and .
Similar trend is seen in case of second grade dimensionless parameter \* and Hartmann num-
ber M versus Skin friction coefficient along x— direction. This impact is presented in figure

3.19.

v g'0)
H0 0.5
t A*=02, M=04, e=03, Pr=0.7, Nt =02, “‘ A* =02, M=04, e=0.3, Pr=0.7, Nt =0.2,
08 Nb =08, Le =10, 8, =6 = 0.2, 04 \ I:Ib = *0.8, Le =10, 6. =6, =02,
: y1=72=0.1 Y y1i=y2=01

0.6 -
04 -

02 -

Fig 3.2. Impact of S on f’ Fig 3.3 Impact of 8 on ¢’
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0 Nb = 0.8, Le =10, 6, =6, =02,
0.6

04 A= 0.0, 0.3, 0.6, 1.0

0.2

p=02, M=04, e=03, Pr=0.7, Nt = 0.2,

Fig 3.4. Impact of \* on f’

0.5 =02, M=04, =03, Pr=07, Nt =0.2,
[ Nb =08,1e =10, 6, =6, =02,

y1=7=01

=02, M=04, €=03, Pr=0.7, Nt =0.2,
Nb=08,Le =10, 6, =6, =02,

0(m)

Fig 3.5. Impact of Pr on 0

=02, M=04, e=03, Pr=0.7, Nt =0.2,
Nb =08, Le=1.0, 6. =6, =02,

y1=72=01

Fig 3.6. Impact of é. on ¢

A*=02, M=04, =03, Pr=0.7, Nt = 0.2, 015
v Nb =08, Le =1.0, 6. =6: =02,

A=02, M=04, e=03, Pr=0.7, Nt =02,
Nb =08, Le =10, 6. =6; =02,

Fig 3.8. Impact of € on 8 Fig 3.9. Impact of Le on ¢
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1.0 020
* — — — — —
V' =02, M=04, e=03, Pr =07, Nt =02, =02, M=04, €=03, Pr=07, Nt =02,
08 No =08, Le = 1.0, 6. =6: =02, Nb =08, Le =10, 6, = 6 = 02,
015 | .
71=72=01
0.10 »
005 +
B 7
Fig 3.10. Impact of M on f '
o o)
0.5 *
N =02, M=04, =02, =03, Pr =07, o [y X =02, M=04, =02, =03, Pr=07,
. — - —_— —_— —
W Ne=02, Nb =08, Te =10, N Ne=02, No =08, Le=10, 5, =6 =02
3 7 n
Fig 3.12. Impact ofy; on ¢ Fig 3.13. Impact of v, on ¢
¢ @ 0ay)
PR =02, M=04, €=03, Pr=07, Ne=02, L AT=02, M=04, €=03, Pr=07, Nt =02,
W, Nb =08, Le =10, 6, =4, =02, 015 :::\ Nb =08, Le =1.0, 6, =6, =02,
6 7 K 5 6
Fig 3.14. Impact of Nt on ¢ Fig 3.15. Impact of Nt on 6
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A =02, M=04, e=03, Pr =07, Nt =02 =02, M=04, =03, Pr=07, N\t =02,
Nb =08, Le=1.0, 6, =6, =02, : Nb =08, Le =10, 6, =6 = 0.2,

):1 = ;z =01

Nb =01, 2.0, 35, 50

0.10

005

A* =020, 025, 030, 035 [RARTIN

S F M =04, € =03, Pr=07,Nb = 08 "0 5[ B=02,€e=03Pr=07N =08

N=0% Le=10, 020208 y =01, Ne =02, Le =10, 828, =02 =y2=01
0l 02 03 04 ! 04 06 08 10
Fig 3.18. Impact of 3 and A" on Cy, (Re)'/2 Fig 3.19.Impact of \* and M on C}, (Re)'/?

To validate results of the present exploration, Table 3.2 displays comparision with frame
work of Ahmad and Nazar [36] for skin friction in absence of nanofluid, variable thermal con-
ductivity, cattaneo-Christov thermal and concentration diffusion fluxes and convective heat and
mass boundary conditions. An excellent correlation is exhibited between both results.

Table 3.2: Comparison of varied values of 3 with Ahmed and Nazar [36].
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B=0 B=0.5 B=1
M| A [36] Present [36] Present [36] Present
—f =" —f" —9" —f" -9" -9" —9"
0 0 | 1.0042 | 1.0046 | 1.0932 | 0.4653 [ 1.0935 | 0.4656 | 1.1748 1.1750
0.2 | 09225 | 0.9228 | 0.9291 | 0.4066 [ 0.9294 | 0.4068 | 0.9444 | 0.9445
1.0 | 0.7504 | 0.7506 | 0.6513 | 0.2943 | 0.6514 | 0.2945 | 0.6461 0.6464
10 | 0 | 3.3165 | 3.3170 | 3.3420 | 1.6459 | 3.3423 | 1.6461 | 3.3667 | 3.3669
0.2 | 3.0276 | 3.0278 | 2.8048 | 1.3840 | 2.8050 | 1.3843 | 2.6317 | 2.6320
1.0 | 2.3452 | 2.3455 | 1.9175 | 0.9482 | 1.9176 | 0.9484 | 1.6667 1.6669
100 [ O | 10.0498 | 10.050 | 10.0582 | 5.0208 | 10.0585 | 5.0210 | 10.0663 | 10.0666
0.2 | 9.1742 | 9.1745 | 8.4315 | 4.2096 | 8.4318 | 4.2097 | 7.8471 7.8472
1.0 | 7.1063 | 7.1066 | 5.7552 | 2.8741 | 5.7554 | 2.8744 | 4.9551 4.9553
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Chapter 4

Upshot of generalized Fourier’s and
Fick’s laws on MHD Williamson

nanofluid flow past a bi-directional
stretched surface with second order

slip and double stratification

4.1 Mathematical formulation

Here, the steady 3D williamson nanoliquid flow over a bidirectional extended sheet with veloci-
ties u = ax and v = by and in the z— and y—directions is taken up for consideration. Thermal
and concentration buoyancy forces are applied to the fluid with double stratified phenomena to

study heat and mass transfers.
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vZV)v—i—stz'p

Figure 4.1. Schematic Diagram

By applying boundary layer approximations, the governing equations are expressed as fol-

lows:

Up + vy +w, =0, (4.1)

B2 a1(T — Two) + an(T — Tno)?|+
uuz—i-vuy—i-wuz=z/uzz+\/§ufuzuzz—a—pou+ g lea =) 2( )] , (4.2)

g [a3(C — Cuo) + a4 (C — Cso)?]

UBS
uvy + vvy + wu, = v, + VouTw,v,, — —, (4.3)
g+ e(q +V.Vq—q.VV + (V.V)q) = -V (kT), (4.4)
J+ (St + V.V — JVV +(V.V)J)=-DpVC, (4.5)

where Ao, Ag,J,0,p and v are the mass flux’s relaxation time, heat flux’s relaxation time
, mass flux,electrical conductivity, density of fluid and kinematic viscosity respectively. For
Ar = Ao = 0, above equations represent the classical laws of Fick and Fourier, respectively.
Assuming V.V = 0 and the time independent laminar flow with q; = J; = 0,then the above

equation becomes
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g+ Ap(V.Vqg—q.VV)=-V(kT), (4.6)

J+Xe(V.VJ = JVV) = —DgVC, (4.7)

keep it in mind the above cosiderations and the impact of Brownian motion and the ther-

mophoresis, Eqs (4.6) and (4.7) are given by

1 0 Dy 2
T T, T, + \g®p = —— (KT, DpC, T, + — (T,)", 4.
uly + 0T, +wT, + A\gPg pcpaz( )+ 7[DpC +TOO( ) (4.8)
Dr
qu + ’UCy + wCZ + )\C’(I)C - DBCZZ + T_Tzz, (49)

with

bp=u’T,, + U2Tyy +w?T,, + 2uvTyy + 2uwTy, + 2vwTy, + (vug + vu, + wuz)Tz+

(uvg + vuy + w, )Ty + (vw, + vwy + ww,) Ty, (4.10)

and

bo = u?Chy + U2C’yy +w?C,, + 2uvCyy + 2uwCy, + 20wWCy, + (Ut + vuy + wu,)Cort

(uvg + vy + wo,)Cy + (vwy + vwy + ww,)C, (4.11)

subjected to the boundary conditions

u="U, + Uslipa v="Vy+ ‘/slipa w = Oa (412)

43



T=T,=Ty+dix, C=Cy=Cy+dox at z=0, (4.13)

u—0, v—=0, T —>Tew=Tyg+e1x, C - Csx =Co+exx atz— o0, (4.14)
where
Ustip — 230 31-F Ly 2 0 pyae, (4.15)
b= 37y T3, TV TR ‘
= Auz+Buz27
vaiip = 23700 318y Yy 2 ey (4.16)
= 3\ Ty T oK, T Y TR2 ez '
= Cuv, + Dv,,,

with [ = min[ﬁ7 1], & is momentum accommodation coefficient with 1 > « > 0, A is molecular
mean free path and K, knudsen number defined as mean free path A divided by a characteristic
length for the flow. Based on the definition of [, it is seen that for any given values of K,, we
have 1 > [ > 0. The molecular mean free path is always positive. Thus we know that B , D
< 0, and C and A are positive numbers.

To solve above equations we introduce similarity transformations:

u=azxf'(n), v =ayg'(n), w = —vav(f(n) +g(n)),

T—-Ty

0n) =7—7— o)=7—+"

a
= =4/- 4.1
— (417)

Incompressibility condition is satisfied automatically and Equations (4.2) to (4.5) reduce to

7= fPH(f+of "+ Wef"f" + X1+ By0)0 + ANT(1 + B30)p — Mf' =0, (4.18)
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9" 9>+ (f+9)d" + Weg"g" — Mg =0, (4.19)

(1+¢0)0" + €0 +PrNbo'¢) + PrNto? — Pr f'(Sy + 0) + Pr(f + g) 0 —

2911 o pip) 2 fn
5, Pr (f+9)20" =270 (f+9)+ (/2= "(f+9) (St + )+ _q, (4.20)

(f+9)(f +d)0

Nt

¢ + 570" —PrLef'(Sa+0) +PrLe(f +9)¢'~

PrLed. (f+9)°¢" = 2f' (f + 9)¢' + (f? = f"(f +9)(S2+ )+ (f + 9)(f '+ 9')¢)) =0,

(4.21)
with boundary conditions
f0)=0, f'(0)=1+4.f"(0)+~2f "(0), g(0)=0,
g'(0) = B +7sf "(0) +v4f "(0), 0(0) =1~ 51, ¢(0) =1 - S,
f(00) =0, g'(00) =0  0(c0) =0, ¢(00)=0, asz— oo, (4.22)

where v, and v,(< 0) are the the second order slip velocity paramerter and 75 and «y; are the
first order slip parameter. 3 is the stretching ratio parameter, M is the Hartmann number,
Nb and Nt are the brownian motion and thernophoresis parameters, d; and J. are the thermal
relaxation and concentration relaxation parameters, Le is the Lewis number, Pr is the prandtl
number, We is the williamsons parameter , N7 is the ratio of the concentration to thermal
buoyancy forces, A is the mixed convection parameter , Gr, is the Grashof number for
temperature , 35, B3 are the the non-linear temperature’s convection parameter and non-linear

concentration’s convection parameter. Re, is the local Reynold number. S; is the thermal
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stratification parameter and Ss is the solutal stratification parameter.

_ 3 _
A= Gry Gr, = 4 (Tw — Too) . Re, = M, Nr — a3(Cy — Co)

Re? ’ Z v - (T —To)’

a a a a o%) €1
— A, /%, 4, =B —0,/% =D% 8=, -T), S =2,
71 V’ Y2 I/, 73 \/:a Y4 I/, 62 ol ( w U)a 1 dl

oy 2c HCp o B3 s
(G Co), We— Uy 2, pro ey 9B o
53 a3 (C CO) We U U r k‘ pa € DB
Drd Dgd b
Nt:u, Nb:ﬂ, 0c = Aea, 0y = Aga, [ =—. (423)
TV Toov a

Skin friction coefficients Cy, and Cy, in z— and y— direction are are represented as follows:

T T
Cy, = —= Cp, = —=% 4.24
where
I 2
Twz |z=0= Uy + %(uz) s (425)
and
r 2
Twy ‘220: (P %(vz) s (426)

Skin friction coefficients in dimensionless forms are:

We
Cr, Ret? =[f" + 7( F"?=0 (4.27)
w
Oy, Re'” = [g" + ==(g"lyo (4.28)

where Re, = Uyx/v.
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4.2 Homotopic solutions

For the considered problem the linear operators and the initial guesses ( fo, go,00, ¢g) and (L¢, Ly,

Ly, Ly) are expressed in the form:

fo(n) = T?_% (L—exp(-n)), go(n)= #2—74 (I —exp(-m)),

0o (n) = (L —=S)exp(-n),  ¢y(n)=(1-52)exp(-n), (4.29)
=L L g -Le_ (4.30)

PV a7 7 Cdnp3 dy’ :

2 2
£o(0) =G5 =0 Lol0) =5 0, (4:31)
with

Ly [Cy + Caexp(n) + Cs exp(—n)] = 0, (4.32)
£, [C1 + Cs exp(n) + Cg exp(—1)] = 0, (4.33)
Ly [C7exp(n) + Csexp(—n)] =0, (4.34)
Ly [Cgexp(n) + Croexp(—n)] = 0, (4.35)

where C; (i =1 — 10) are the arbitrary constants. Following are the values of this constants :

_ temp’ — yltemp” — y2temp”’

02205207209:0a CIZ_C?;_temp’ 03 1+,71_72

. (4.36)

temp’ — ~y3temp” — ~vdtemp”
143 -4

Cy = —Cg — temp, Cg = , Cg—temp/', Cip= —temp'. (4.37)
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4.3 Convergence analysis

Homotopy analysis technique is applied to obtain the series solutions of highly nonlinear prob-
lems which was suggested by Liao [35]. It provides a great freedom to adjust and control
the convergence region of the series solutions.. Figure 4.2. represents the A—curves behavior
of all distributions The permissible ranges of the characteristic parameters fis, hiy, hg and hy
are —1.6 < hy < —0.4,-2.15 < iy < —0.2,-2.75 < hp < —0.8 and —2.6 < hiy < —0.6 when
v=02,Nt =02, Nb=0.3, Le =1.0, Pr =1.0,e =0.3, A = 0.002, 5, = 83 = 0.2, 3 = 0.1 and
M = 0.2, Table 4.1 represents the convergence of considered method mathematically. It can be

verified that both presented Fig. 4.2 and Table 4.1 values are in total allignment.

1 “\ ’!!
~ *
) N §
N ~e
"S': (1] 3 “'-.._ _______________ -.--_../
6 - ~ / .‘..
~ g . E—— e — .
Qbﬁ -1 / . :..- - \\‘
S yd AN
o) -2 l/’ - 10 MY
—~ / F - '0 \\
S . "0
= / H0) '
G - .
| S SO

) -1
hy g g
Fig.4.2. h—curves for f,g,0,¢
Table 4.1. Convergence of series solutions for different order of approximations when
A=0.002, M =02, v, =7, =02 Nt =02, N, =03, Le = 1.0, 6 = 6, = 0.2, Pr =
1.0,e=5=0.1
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Order of Approximations | —f”(0) | —g¢”(0) | —6'(0) | —¢'(0)
1 1.13509 | 0.07226 | 0.31147 | 0.53000
5 1.27039 | 0.07329 | 0.35690 | 0.46424
10 1.33592 | 0.07344 | 0.36006 | 0.44888
20 1.37389 | 0.07360 | 0.36099 | 0.44350
25 1.38731 | 0.07368 | 0.36158 | 0.44215
30 1.38731 | 0.07368 | 0.36158 | 0.44215

4.4 Results and Discussion

This section is concerned to studied the influences of appearing parameters on respective dis-
tributions through figures 4.3 — 4.34. Figures 4.3 and 4.4 describes 3's (stretching rate ratio)
behavior of velocity profiles. It is noticed that both velocities show conflicting behavior against
x— and y—directions for an increasing rate of 8. As, § = b/a, a is smaller for higher values of (3
that indicates decreasing rate in velocity along x—axis or higher values of b specifies increasing
rate along y—axis. Figures 4.5 and 4.6 illustrate the impacts of concentration and thermal
relaxations parameters d. and J; on concentration and temperature distributions. It is noted
that, both concentration and temperature fields with associated boundary layer thicknesses are
decreasing functions of §. and d; respectively. Furthermore, for §; = 0 and d,. = 0, current model
will transform to classical laws of Fourier’s and Fick’s respectively. Figure. 4.7 describes the
effect of thermal conductivity parameter € on temperature profile. Higher values of € provides
increasing rate for the thermal boundary layer, which results in an increment in temperature
distribution. Figure 4.8 exhibits the influence of Lewis number Le on concentration field. Lesser
values of mass diffusivity than thermal diffusivity relative to stronger Lewis number. In result,
exhausted Brownian motion coefficient bear witness to let down the nanoparticle concentration
profile Figure 4.9 has drawn to depicts the impact of mixed convective parameter A on velocity
field. Higher values of A produces stronger buoyancy force, which indicates increasing rate in the
velocity field. In Figure 4.10 the effect of Prandt]l number Pr on temperature profile is presented.
It is to be noted that for higher values of Pr, heat diffusion from the heated surface is very

slow than smaller values of Pr. Therefore, decreasing rate in temperature is preceived against
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associated values of Pr. Figures 4.11 and 4.12 are drawn to illustrate the effect of Hartmann
number M on both velocities profiles along x— and y—directions. Retardation in the motion
fluid is investigated due to resistance proposed by strong Lorentz force. This act finally point
out decreasing rate in both velocity distributions. Figures 4.13 and 4.14 illustrates the impact
of Brownian motion parameter Nb on concentration and temperature profiles. Higher values
of Nb increase the temperature of the fluid in the boundary layer and instantaneously reduce
particles’deposition far off from the fluid on the stretched surface. That’s why temperature
increases and concentration decreases. Figure 4.15 describes the effect of the thermophoresis
parameter Nt on concentration field. Higher values of thermophoresis parameter Nt are in
direct proportionate with temperature gradient which in turn boosts the concentration profile
and its associated concentration boundary layer thickness. Figure 4.16 is drawn to depicts the
effect of thermophoresis parameter Nt on temperature field. As we increase the value of Nt,
movement of nanoparticles from hot to the cold ambient fluid is observed and results in higher
values of temperature in the region of boundary layer. Finally, augmented thermal boundary
layer thickness is identified. In Figure 4.17 the impacts of mix convective parameter A and
stretching ratio parameter S on Skin friction coefficient along x—direction has displayed. It is
indicated that Skin friction coefficient shows increasing behaviour versus both A and . Similar
trend can be observed in case of second grade dimensionless parameter A\ and Hartmann number
M against Skin friction coefficient along x— direction. This impact is presented in Figure 4.18.
In Figures 4.19 and 4.20, the impact of non-linear temperature’s convection 3, and non linear
concentration’s convection (33 on velocity profile is displayed along x— and y—direction. Higher
values of 39 and 5 are in direct propotionate to velocity profile. It is to be noted that, higher
values of 35 and (3 gives support to velocity profile, which in turn increases velocity profile.
Figures 4.21 and 4.22 are drawn to display the influences of williamsons fluid parameter We on
both the velocities profiles. Gradual increment in the values of We causes decrement in the val-
ues of both velocities profile. By increasing Williamsons parameter, relaxation time enhances.
It causes acceleration in liquid viscosity, which results deceleration in velocity profile.Figure 4.23
illustrates the influence of Nr (ratio of concentration to thermal buoyancy forces) on velocity
profile. It indicates that Nr is directly proportional to velocity profile.Therefore, acceleration

in velocity profile is preceived against associated values of Nr.Figures (4.24 - 4.30) depicts
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that larger values of first order slip velocity parameters (1, 75) and magnitude of second order
slip velocity parameters(y,,y,) corresponds to lower velocity. With an increasing rate in slip
velocity parameters, stretching velocity is partially transferred to the fluid so velocity profiles
decreases. Figure 4.31 disclose the influence of thermal stratification S; on 6(n). This figure
indicates that temperature distribution is dominant for small values of Sy. It is due to potential
falls between ambient temperature and surface condition. Figure 4.32 is drawn to signifies the
impacts of solutal stratification Sy on ¢(n). Concentration identicates decaying nature with
intensity of solutal stratification. In fact, reduction in concentration difference between ambi-
ent fluid and the sheet is detected, which finally declines the concentration field. Figure 4.33
is drawn to understand the impact of We (Williamsons parameter) and (3(non-linear concen-
tration’s convection) on the skin friction coefficient along z—direction. It in indicated that skin
friction displays increasing behaviour versus both We and 5. Analysis of the influence of A
and Nr on skin friction is discribed in Fig. 4.34. It is to be noted that thinner boundary layer
is associated with larger A\,which result in higher velocity gradient near the wall. That’s why

skin friction reduces against .
') 3'(m)

10 1=0.002, M=02, €=03, d 1=0.002, M=02, €=03,
Pr=1, Nt=02, Nb=03, Le=1, “IN Pr=1, Nt=02, Nb=03, Le=1,
0.8 (N Y
B=01, 5¢=02, y1=y2=02 Y =01, 8e=02, y1=y2=02

0.6

w B=0.2,03,04,05

02

Fig 4.3. Impact of 8 on f’ Fig 4.4. Impact of 5 on ¢’
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Chapter 5

Concluding Remarks and Future

work

In this thesis, two problems have been analysed where first problem is about review paper and

second problem is the extension work for it. Conclusion of both problems are as following:

5.1 Chapter 3 (conclusion)

In this study, we have investigated the flow of second grade nanofluid flow past a bidirectional
stretched surface in the presence of magneto hydrodynamic, generalized Fourier’s and Fick’s
laws, and variable thermal conductivity. Analysis is performed under the influence of convective
heat and mass boundary conditions. Analytic results in the form of series solutions are found

via Homotopy Analysis method (HAM). Significant findings of the investigation are as follows:

Velocities along x— and y—directions exhibit conflicting trend against stretching ratio

parameter.

Thermal and concentration relaxations parameters show decreasing behavior on temper-

ature and concentration distributions respectively.

Higher values of thermal conductivity parameter lead to increased temperature.

e Brownian motion and thermophoresis parameters have contrary behavior on concentration
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field.

e Skin friction coefficient along y—direction is enhanced for increasing values of second grade

parameter and Hartman number.

5.2 Chapter 4 (conclusion)

In this study, we have investigated the low Williamsons nanofluid past a bidirectional stretched
surface in the presence of magneto hydrodynamic and generalized Fourier’s and Fick’s laws,.
Analysis is performed under the influence of second order slip and double stratification. Ana-
lytic results in the form of series solutions are found via Homotopy Analysis method (HAM).

Significant findings of the investigation are as follows:

e Velocities along x— and y—directions exhibit conflicting trend against Williamsons fluid

parameter.

e Thermal and concentration stratification parameters show decreasing behavior on tem-

perature and concentration distributions respectively.

e Higher values of mixed convection parameter lead to increased velocity profile along

z—direction.

e Higher values of non-linear temperature convection and non-linear concentration convec-

tion parameter lead to increased velocity profile along z—direction

e Brownian motion and thermophoresis parameters have contrary behavior on concentration

field.

e Skin friction coefficient along x—direction shows decreasing behaviour for increasing values

of Williamsons fluid parameter and non-linear concentration convection parameter.

5.3 Future work

Few interesting possible problems that could be researched in future are as follows:

e The proposed model may be extended to some other non-Newtonian fluid.
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The impact of buoyancy effect and Darcy-Forchheimer may be added to the momentum

equation.

The energy equation may be enhanced by adding the impact of Joule heating and viscous

dissipation.
The model presented here may be extended for homogeneous-heterogeneous reactions.

The concentration equation can be inforced by chemical reaction and Arrhenis activation

energy.
The boundary conditions may be replaced by convective heat and mass and melting heat.

The geometry of the problem may be changed to a cylinder, rotating disk or fluid may be

taken in a channel.
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