

Bahria University Discovering Knowledge

FINAL YEAR PROJECT REPORT

MODELLING OF TREES USING PARAMETRIC L-SYSTEM FROM HAND FREE SKETCHING

In fulfillment of the requirement For degree of BS (COMPUTER SCIENCES)

By

MUHAMMAD SHAKIR ARFEEN JAWERIAH MASOOD KHAN RAMNA AQEEL RIZWAN AFZAL

35672 BSCS 35645 BSCS 35683 BSCS 32776 BSCS

SUPERVISED BY

DR HUMERA FAROOQ

BAHRIA UNIVERSITY (KARACHI CAMPUS)

SPRING, 2017

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We want to express our gratitude to our research supervisor, Dr Humera Farooq for her invaluable advice, guidance and her enormous patience throughout the development of the research.

In addition, we would also like to express our gratitude to our loving parents and friends who had helped and given us the encouragement.

3D MODELING OF TREES USING PARAMETRIC L-SYSTEM FROM HAND FREE SKETCHING

v

ABSTRACT

The beauty of the patterns observed in nature has attracted the attention of researchers for many years. Computer simulation and computer graphics in particular, can play an important role in the understanding of the formation and structure of these patterns. The research presented in this project focuses on the modelling and visualization of plants. Procedural modelling is an efficient way to create models in a fast and scalable way.

The objective of this project is to present an interface for quickly and easily model 2D trees from hand free sketch. The system generates a 2D iterated model of the tree from 2D sketch on the basis of our observation that trees spread their branches uniformly. The main advantage of using this technique is that users can draw creative tree structures.

Firstly, a hand free sketching interface will be designed through which user will draw the model of a tree. In the processing phase of the inverse Parametric L-system, grammar behind the tree will be identified and parsed. The geometry of the designs tree will be retrieved by inverse Parametric L-System (a recursive function). It will be followed by iterations performed on the tree according to the user's requirement.

TABLE OF CONTENTS

1.

DECLARATION	
APPROVAL FOR SUBMISSION	ii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF EQUATIONS	xii
LIST OF SYMBOLS	xiii
LIST OF APPENDICES	xiv

CHAPTER

1

2

INTRODUCTION			
1.1	Background	1	
1.2	Incentive for Tree Modelling	2	
1.3	Problem Description	3	
1.4	Aims and Objectives	3	
1.5	Scope of Project	4	
1.6	Report Structure	4	
LITERATURE REVIEW			
2.1	L-System	5	
2.2	L-System Topology	6	
2.3	Variations of the L-Systems	7	
	2.3.1 Parametric L-Systems	7	
	2.3.2 Stochastic L-system	9	
2.4	Turtle Interpretation	10	

	2.4.1	Commands for Adjustment of Orientation	10
	2.4.2	Commands for Modelling of Branches	12
2.5	2.5 Extant Literature on Procedural Modelling		
	2.5.1	Inverse Procedural Modelling by Automat	ic
	Generation of L-Systems 13		
	2.5.2	Interactive Procedural Modeling of Trees on	a
	Tablet	13	
	2.5.3	Parametric L-Systems and Their Application to Th	ne
	Modelling And Visualization Of Plants		
	2.5.4	Sketch-based Parameterization of L-systems Usir	ıg
	Illustration-Inspired Construction Lines		4

DESIC	SN AND	METHODOLOGY	15
3.1	NetBea	15	
3.2	Requirements		16
	3.2.1	Functional Requirements	16
	3.2.2	Non- Functional Requirements	16
3.3	Use-Case Diagram Initial User Interface		18
3.4			19
3.5	Concep	t Overview	20

4 IMPLEMENTATION

3

4.1	First Pl	hase	21
	4.1.1	Hand-Free Sketch Block	21
	4.1.2	Tree Sketch	22
	4.1.3	Obtained Grammar	22
	4.1.4	Select Number of Iterations	23
4.2	Second Phase		
	4.2.1	Iterated Grammar	23
	4.2.2	2D Tree Model	24
4.3	Project Components		
	4.3.1	Turtle Library Methods	25
	4.3.2	Line drawing	26

21

		4.3.3	Iterating grammar	26
		4.3.4	Determining the direction of branches	27
5	REST	ULTS AN	ID DISCUSSIONS	28
	5.1		are Testing	28
	5.2	Test C		28
	5.3	Result	S	34
6	CON	CLUSIO	N AND RECOMMENDATIONS	36
	6.1	Conclu		36
	6.2	Future	Work	36
REFE	RENCE	S		38
ADDE	NDICE	ac Inuspro		

APPENDICES		

40

viii