
Classification of Malware Families for Portable
Executable Files

Thesis Submitted By:
Talha Azhar

01-247172-021

Supervisor:
Dr.Sumaira Kausar

Co-Supervisor:
Dr.Faisal Bashir

A dissertation submitted to the Department of Computer
Science, Bahria University, Islamabad as a partial fulfillment
of the requirements for the award of the degree of Masters in

Information Security.

Session (2017-2019)

Abstract

Cyber-attacks have been on the rise especially after the explosive widespread of
social networking as it gives cyber criminals a way to break into other’s computers and
manipulate personal and sensitive data. Many different techniques have been used in the
past to minimize the occurrences of cyber-attacks. These techniques focused primarily on
traffic in order to look for malicious activity. This research proposes a methodology that
can classify malware family on the basis of statistical features. To keep original features,
we use Variance, ¾ quartile method to eliminate the un-important features. Forward
selection wrapper method in feature selection is used to find out best features. To validate
our proposed methodology, K Nearest Neighbor and Decision Tree is used as classifier
and very promising results are achieved.

i

Acknowledgments

Up and above everything else, all praise to Almighty Allah alone, the Omnipotent,
the Omnipresent, the Most Merciful and Compassionate, who blessed me with the sense of
inquiry and potential for the successful accomplishment of this pieces of work.
Special praise to the final messenger, Prophet Muhammad (peace and blessings of Allah
be upon him), who is the most perfect man ever lived and a torch of guidance for humanity
forever.
The author expresses his profound and sincere appreciation and gratitude to the supervisor,
Dr. Sumaira Kausar and Co-Supervisor,Prof. Dr. Faisal Bashir for their continuous
guidance, inspiration, and patience throughout the thesis period. I am deeply beholden
to Mr. Rizwan Ahmed, for his constant support and assistance. Without his supervision,
constant help, and mentorship, this dissertation would not have been possible.
I find no words at my command to express my profound admiration to my affectionate
parents, brothers and sisters for their moral support, encouragement and prayers throughout
my academic career. Cordial indebtedness is documented for them, without their motivation
and prayers; my present studies would have been a mere dream.
Moreover, the author is also indebted to NESCOM for funding this thesis under the RAC
program and Computer Science department of Bahria University, Islamabad.

TALHA AZHAR
Bahria University Islamabad, Pakistan

July 2019

ii

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Classes of Malwares . 2
1.3 Malware Analysis . 2

1.3.1 Static Analysis . 2
1.3.2 Dynamic Analysis . 4

1.4 Malware Detection Techniques . 5
1.4.1 Signature Based detection . 5
1.4.2 Heuristic based detection . 6

1.5 Motivation and Problem Description . 6
1.6 Research Contribution . 7
1.7 Thesis Organization . 7

2 Literature Review 8
2.1 Techniques used for Malware Detection 8

2.1.1 Signature Based Techniques . 9
2.1.2 Behavior Based Techniques . 9
2.1.3 Machine Learning Techniques 9

2.2 Selecting Features to Classify Malware 10
2.3 Techniques for Classifying Malware . 10

2.3.1 Artificial Neural Network (ANN) 11
2.3.2 Decision Tree . 11
2.3.3 Support Vector Machine (SVM) 11

2.4 Static Malware Techniques . 11
2.5 Dynamic Malware Techniques . 12
2.6 Hybrid Malware Techniques . 13

3 Methodology 15
3.1 Introduction . 15

iii

CONTENTS iv

3.1.1 PE File Format . 16
3.2 Proposed Methodlogy . 17

3.2.1 Malware Collection . 18
3.2.2 Features Parsing . 18
3.2.3 Labeling . 19
3.2.4 Statistical Feature Engineering 21
3.2.5 Wrapper Method for Feature Engineering 23
3.2.6 Machine Learning Algorithms 23

4 Experiments and Results 24
4.1 Experimental Setup . 24
4.2 Results and Analysis . 24

4.2.1 Accuracy . 25
4.2.2 Confusion Matrix . 25

4.3 Experiments . 26
4.3.1 Experiments with 21 Features 26
4.3.2 Experiments with 9 Features . 33

4.4 Comparison of Results . 37

5 Conclusions & Future Work 38
5.1 Conclusion . 38
5.2 Future Work . 38

List of Figures

2.1 Techniques for Malware Detection . 8

3.1 PE File Structure . 15
3.2 PE File Structure . 16
3.3 Methodology . 17
3.4 Graph After Labeling . 20

4.1 Confusion Matrix Statistics for Virus and Worms 27
4.2 Confusion Matrix Statistics for Virus and Trojans 28
4.3 Confusion Matrix for Worms and Trojans 29
4.4 Accuracy of the Classifier . 31
4.5 Confusion Matrix Statistics for Worms and Virus 34
4.6 Confusion Matrix Statistics for Worm and Trojans 35
4.7 Confusion Matrix Statistics for Trojans and Virus 36
4.8 Comparison Before and After Feature Reduction 37

v

List of Tables

1.1 Malware Classes, Description & Infection Mechanisms 3
1.2 Comparison of Detection Techniques . 6
1.3 Contribution for the Proposed Research Work 7

3.1 No of Files Collected from Sources . 18
3.2 Errors found during Parsing . 19
3.3 Features of PE File . 21
3.4 Deleted Features . 22
3.5 Selected 21 Features . 22

4.1 Confusion Matrix . 25
4.2 Confusion Matrix of Virus and Worms 27
4.3 Confusion Matrix of Virus and Trojans 28
4.4 Confusion Matrix of Worms and Trojans 29
4.5 Confusion Matrix of Worms,Trojans and Virus 30
4.6 Decision Tree Results by increasing max_depth 31
4.7 Features Importance . 32
4.8 Features after Wrapper Method . 33
4.9 Confusion Matrix of Worms and Virus 34
4.10 Confusion Matrix of Worms and Trojans 35
4.11 Confusion Matrix of Virus and Trojans 36
4.12 Confusion Matrix of Trojans,Worms and Virus 37

vi

Acronyms and Abbreviations

PE Portable Executbale
SVM Support Vector Machine
AV Anti-Virus
ANN Artificial Neural Network
DT Decision Tree

vii

Chapter 1

Introduction

1.1 Introduction

The malicious software which are being used by different types of cybercriminals
nation states and hactivists are called "Malwares". These software are being used to steal
professional and personal information by passing through an illegitimate access path.
Moreover, these software are available in several different types which are: executable
codes, scripts, ads, active content and several different types of other alternative software
are also available for this purpose. Different classes of malware possess several different
meanings in order to propagate the malware on the systems and as well as harming the
system. Malware is a risky and a predictable danger for many users around the globe,
malware has produced a large avoidance advancements.

The innovations of assailants keep on advancing the goal of security sellers in this
field; due to which the existing security measures and methods are now restricting the
procedures that are being used to transform the traditional arrangements of security into
standard abilities. Malware also known as malicious software is a set of instructions
that perform a fishy or a malicious activity on the targeted system. The piece of a code
replicates itself and attached itself to the other executable programs in the system. There
are many different types of malware available today; which include: viruses, worms,
Trojans, root kits, backdoors, bots, spyware, adware, scareware and many more. These
all types of malware behaves maliciously on the targeted systems and try to damage the
software in several manners.

In order to protect the systems from these malicious attacks, there has been several
different antivirus programs developed among which Norton, McAfee, Sophos, Kaspersky
and clam antivirus programs are famous. These all types of antiviruses programs are made
up of latest technologies which help the vendors to design the product in a manner to

1

Introduction 2

fight against different types of malware. Signature database is one of the primary tools
being used by different developers in order to detect malware. This mechanism proved
to be of the effective method against existing malware but at the same time for the newly
discovered or not well known malware it may not be able to work properly. However,
obfuscation, code displacement, compression and encryption are some of the techniques
which can be used to dodge detection of malware based on signature. These software or
techniques has made the malware writers to bypass signatures.

Therefore, the antivirus developers are nowadays trying their level best to detect the
variants of several known variants so that they can develop strong antivirus software. There
has been several different techniques which has been proposed and developed to data in
order to design strong antivirus software which include heuristics, integrity, verification
and sandboxing; however, these techniques are not effective while we talk about detection
of new malware on the systems. Thus, it can be concluded that the virtual protection of the
systems will remain there until and unless the signature mechanism will be extracted or
deployed.

1.2 Classes of Malwares

The infection mechanism and behavior of the malware divides them into many
different types including viruses, rootkits, worms, trojans, backdoors, spyware, adware and
many more. Various types of malwares has been discussed below in Table 1.1; However,
the table also explains infection mechanisms of these different types of malwares.

All together to recreate viruses regularly require human participation. This section
portrays the most widely recognized strategies utilized by assailants to infect computer
systems.

1.3 Malware Analysis

Here are two different types of technique with the help of which one can analyze the
malicious program or activity. These two technique are categorized as static analysis and
dynamic analysis of program, both of these are explained as below:

1.3.1 Static Analysis

The program can be statically analyzed when the malicious code has not been executed
which means analyzing the program without running it on the system is known as static
analysis of the program.

1.3 Malware Analysis 3

Class Description Infection Mechanisms

Virus

It recreates by joining itself to
different programs running on the
framework. All together to recreate
viruses regularly require human
participation. This section portrays
the most widely recognized strategies
utilized by assailants to infect
computer systems.[1]

• Overwriting Technique
• Appending Technique
• Infecting Boot Sectors
• Infecting Word Documents
• Infecting Images.

Worms

It is a self-replicating computer
program that spreads duplicates of
itself to different computers over
the system.[2]

• Buffer overflow exploits
• Network file sharing exploit
• Zero-day exploits

Backdoor

backdoor is a malicious program
introduced by an attacker on an
objective system to use it for remote .
Cyber goons misuse different
vulnerabilities on target machine
to introduce backdoor.[3]

• Modifying startup files
• Dropping a registry key

Trojans

A program that seems,by
all accounts,to be normal however
performs malicious functions is
called Trojan.[4]

• Changing name of the file
to real program’s name
• Changing the type of file
• Modifying the source code
of a genuine software
utilizing polymorphic code

Table 1.1: Malware Classes, Description & Infection Mechanisms

There are many different detecting patterns being used for static analysis of the
programs which are String Signature, Byte Sequence, Syntactic Library call, N-grams,
Control flow graph(CFG), Operational code(op-code) frequency distribution.

These all above mentioned patterns decrypt the exe files first and then proceed with
the static analysis of the program. Moreover, there are different tools which are being used
for this type of analysis these tools include: IDA Pro, OllyDbg and many more. The two
mentioned tools i.e. IDA Pro [5] and OllyDbg [6] helps in viewing the malware code in
the form of assembly instruction of Intel x86 architecture. The assembly instruction view
of the code helps in identifying the exact patterns or logs of the malware’s action. On the
other hand, LordPE [7] and OllyDump [8] are the tools which help to dump the memory
in order to obtain the protected code located somewhere in the system. This dumping of
memory helps in analyzing the exe packets in a more useful and beneficial manner.

Author in the study [9], stated different drawbacks of the static analysis and proposed

Introduction 4

a scheme which later on proved that static analysis of the system is not only the sufficient
approach; one must need to implement dynamic analysis on the program in order to
obfuscate the conversion of code in the vulnerable environment.

1.3.2 Dynamic Analysis

Interacting with the system and executing the program in order to analyze the behavior
of the malicious program is known as dynamic analysis of the program. This type of
analysis has to be done in a controlled environment which may include virtual machines,
simulators, emulators, sandboxes and many other equipment like these. Following are
some of the monitoring tools which monitors the process and detect changes in the system:

• Process monitor

• Capture BAT

• Process explorer

• Wireshark

• Regshot

Moreover, there are many different techniques that has been introduced and developed
in order to perform dynamic analysis on the systems. These techniques monitor the
process, collect the flow track, trace the instructions, monitor various function calls,
analysis function parameters and do a lot more [10]. However, dynamic analysis has been
proved to be the most effective technique as compared to static analysis as it discloses the
natural behavior of the malware which static analysis can’t do. In addition to this, it is to
mention here that different automated tools has also been developed in order to automate
the process of dynamic analysis of programs; these tools are as follows:

1.4 Malware Detection Techniques 5

• Norman Sandbox

• CWSandbox

• Anubis

• TTAnalyzer

• Ether

• ThreatExpert

All these tools generate a report of analysis which helps in having the deep under-
standing the nature and behavior of the malware; as studying the behavior of malware
can help in mitigating it in a more appropriate manner. Furthermore, several different AI
techniques are also being used in analyzing the programs for malicious acts; among these
techniques machine learning based techniques are the common one. Therefore, several
different machine learning based analyzing techniques has been studied and reviewed for
this research work.

1.4 Malware Detection Techniques

Malware detecting techniques identify and detect the malware on the systems and help
the user to take proper countermeasures against these malware in order to keep the system
and data secure in case of any malicious activity [11]. There are three broad categories of
malware detection techniques which are as follows:

• Signature based detection

• Heuristic based detection

1.4.1 Signature Based detection

In Signature Based Detection, a signature is embedded in the malware in order to
identify the family of malware from where it belongs. Nowadays, most of the antivirus
programs are using signature based techniques [12]. String or pattern scanning is another
name of signature based detection technique for malware. Moreover, this technique can be
dynamic, static or can also be a hybrid detection of malware.

Introduction 6

1.4.2 Heuristic based detection

As the name indicates that a heuristic approach detects the malware by analyzing
both normal and abnormal behavior of the systems. In this type of detection the known
and unknown both malware attacks can be detected; which can help the user to perform
counter measures in order to mitigate malware from the system. Following are the two
steps involved in heuristic based detection:

• Observing normal & abnormal behavior of the system both

• Watch the difference of normal and abnormal behavior to detect the family of
malware

It is an efficient method of detecting malware but at the same time it is limited
to several constraints and resources which results in high false positive rate. Proactive
technique is another name for heuristic based detection.

Table 1.2 illustrated the advantages and disadvantages of malware detection tech-
niques:

Advantages Disadvantages

Signature
based

-Known malwares can be
detected easily
-Used less resources as
compared to other techniques

-Unknown malwares cannot be detected.

Heuristic
based

-Known and unknown new
malware can be detected

-Data need to be updated regarding new
and unknown malwares.
-Need more resources in terms of time
and space
-level of false positive is high.

Table 1.2: Comparison of Detection Techniques

1.5 Motivation and Problem Description

There has been much work done on the classification of Benign and Malware Files
but there is nothing to be seen for the classification of further malware families.

1.6 Research Contribution 7

1.6 Research Contribution

This research work primarily focuses on classification of malware families. There are
certain limitations and a defined scope for this research work. The scope defines that this
research work only focuses on three classes of malware i.e. worms, viruses and Trojans.
Table 1.3 below highlighted key features of this research work:

• The toughest part of this research work was to collect data as the data
at most of the malware archives has special terms and conditions which made
it difficult for authors to collect the required data.
• The dataset has been created from the scratch level as the data sets
used earlier for this type of research work were discontinued. Moreover, the
parser was used in order to parse the PE file headers and to store information.
• 75 different AVs labels from Virustital has been collected, it has been
also a tough task because there was a certain limit of 4 requests per minute
on Virustotal which required a lot of time.
• Classifying different malwares based on their features in different families.
As early work was performed to distinguish between malware and benign files,
we have just addressed the malware files and categorized them in respective families.

Table 1.3: Contribution for the Proposed Research Work

1.7 Thesis Organization

The rest of the thesis is structured as follows:

• In Chapter 2, the past techniques and other related work that is relevant to our area
and scope of research is reviewed.

• In Chapter 3, the proposed methodology is explained briefly. The implementation
details along with the system specifications and design requirements are outlined.

• In Chapter 4, the results of the testing phase and the subsequent analysis of the
overall approach is presented.

• In Chapter 5, an overview of the research work along with the discussion regarding
the limitations is done and the discussion regarding future research directions is
carried out.

Chapter 2

Literature Review

2.1 Techniques used for Malware Detection

Malwares are overall scourge and malware detection techniques fill in as first line
of barrier against them. The viability of a tool used for malware detection depends on
the strategies/ techniques it uses. Malware detection techniques can be divided into three
classes shown in Figure 2.1.

Figure 2.1: Techniques for Malware Detection

8

2.1 Techniques used for Malware Detection 9

2.1.1 Signature Based Techniques

This techniques is generally used to identify known malware. In spite of the fact that
it is exceptionally powerful, yet turned out to be ineffective if there is even a little change
in the code, which thus changes its signature. Besides, this technique requires regular
update of the signature database in order to detect the new malware.

2.1.2 Behavior Based Techniques

The behavior based technique continuously check the behavior of the program to
decide if it is unsafe or not. In this way, this technique is used to recognize the obscure
malware. Besides this, the adequacy of this technique isn’t yet demonstrated. According
to the experiments that are conducted on this technique shows that it consist of high false
positive ratio. Also this technique take additional time in the process of detection. Heuristic
Techniques utilize most part of data mining and machine learning methods to recognize the
running program behavior. The significant techniques that have utilized so far incorporate
(NB) naive bayes, (NN) neural network and (HM) hidden markov model.

2.1.3 Machine Learning Techniques

Clustering mainly depends on classification methods which is used to categorize the
observations and the data elements. It is one of the well-known data analysis and data
mining technique in which the main goal is to learn something from the given data. By
utilizing different algorithms clustering analysis can be done. These algorithms vary in
the techniques which determine that what basically belongs to the particular cluster and
how efficiently it find the related cluster. (i.e few algorithms are used in order to check the
performance of clustering which is based on calculating the distance between the cluster
members, where some uses Statistical distribution of cluster for determining the clusters).
Grouping is the main part in cluster analysis, the classification measurements is based on:
1. Goodness-of-fit to a postulated model. 2. Through analysis clustering (natural grouping)
is revealed. As expected, the elements which belongs to a valid cluster are more likely
to relate with each other, then the elements belongs to different clusters. Many different
techniques are used to perform clustering in different ways.[13]

• Intrinsic Approach It is an unsupervised learning. Raw data is used in this approach,
the data in which the labels of the classes are missing and we do not have information
regarding the data.

Literature Review 10

• Extrinsic approach It is a supervised learning approach. In this approach raw data
is used, the data in which every class has a label. Clustering can be of two types,
divisive or agglomerate. An agglomerate approach is the approach, in which at the
start we have many clusters and then we converge it to the less large clusters. So,
it can be said that it is a bottom up approach. A divisive approach is basically the
inverse of agglomerate approach. This approach starts with the less no of large
clusters and it then divide them to the more clusters. So, it can be used said that it is
a top down approach.

2.2 Selecting Features to Classify Malware

In existing literature, many researchers tried to answer this question with their ap-
proaches , experiments and solutions that which features should be select, how to distin-
guish useful and useless features.

The features are divided into three main categories:

1. Relevant

2. Irrelevant

3. Redundant

Relevant features are the key features, which have influence on overall decision where as
irrelevant features are those features which are either leading to wrong decision or they
don’t have any good/bad influence on dataset. The values which are static throughout the
dataset are usually irrelevant features. If one feature’s behavior is very similar to any other
feature, then this is called redundant features. Redundant features can lead to negative
decision. Therefore this is essential to pick most important features which have higher
impact and are unbiased for final decision. Feature selection is important phase of this
research as well. The some key benefits of using feature selection algorithm are they make
good categorization, lead to right decision, lower the complexity of system.[14]

2.3 Techniques for Classifying Malware

There are various well known machine learning techniques such as SVM, decision
tree, Naïve Bayes and various other clustering techniques for malware detection and classi-
fication. In this section we are going to review the existing approaches and experiments
for malware classification.

2.4 Static Malware Techniques 11

2.3.1 Artificial Neural Network (ANN)

This technique is used to predict the correct class. It learns the behavior of learns
to predict the behavior attributes of users and daemons in the system. ANN is quite well
known, reputable and expandable classifier. It consist of interconnected nodes and an
output layer. ANN have potential to learn lot of features whether they are in form of text
or image, It outstand the previous techniques in many cases. It has ability to learn from
features and make predictions. It automatically adjust the weights and coefficients though
optimizers play key role. So that ANN can work fine in both unsupervised and supervised
learning problems [15].

2.3.2 Decision Tree

DTs are powerful straightforward, powerful and understandable classifier. It is graph
like tree which has sequence of information. It has nodes which are labeled with feature
value and leaf has class label. It works fine in supervised and reinforcement learning.[15]

2.3.3 Support Vector Machine (SVM)

SVM is a great supervised classifier, which is commonly used in machine learning
problems, It also works great with CNNs. There are two main reasons of using SVM. 1) it
handles very high dimensional space. 2) It works with small dataset. Like other classifier,
it also has two phases training and testing, in training phase it finds the optimal hyperplane.
In testing phase, it evaluates the performance of classifier. SVM has shown quite good
results in other fields such as Digital Image Processing (DIP), Pattern Recognition (PR),
Natural Language Processing (NLP) and etc. SVM have recently been applied to identify
and counter network DoS attacks showing very high accuracy [16].

2.4 Static Malware Techniques

In [17], authors used data mining approaches for malware determination using three
static features. It used bytes sequence extracted from PE files. The dataset has of 4266
files. Which has 3265 malicious and 1001 benign programs. Another approach used
in [18], was applied to recognize patterns in DLL data, the authors [18], used Naïve
Bayes learning algorithm for bytes sequences recognition. It gave the great accuracy 97%.
According to researchers the data mining technique works better than signature based
technique. In [19], authors used n-gram and data mining approach to detect malicious
executables. Their experiment was couple of classifiers such as SVM, decision trees, and

Literature Review 12

their advanced versions. In [20], authors used image processing techniques to visualize and
classify malwares. They used gray scale image to visualize malware binaries and K-nearest
neighbor for malware classification but later on researchers find some limitations, hackers
can easily beat this system. In [21], authors presented the comparison between binary
texture based techniques and dynamic approaches. They concluded that static methods got
higher accuracy than dynamic methods. But it also limitation that one who has knowledge
of static features can manipulate their code to tackle texture analysis.

In [22], authors presented an automated malware classifier which is based on structural
information, the clustering is done by distance matrix. In [23], authors used number of
bytes for determination of Trojans. They observed that adding few more features can
improve classification accuracy.

In [24], authors used algorithms of WEKA repository for determination of virus.
In [25], Santos et al. concluded that supervised learning require good , unbiased and
large dataset which has both malicious and benign classes , they also stated that semi
supervised learning techniques can be used for unknown malware determination such
as LLGC (Learning with Local and Global Consistency). LLGC is a semi supervised
approach which consider both labeled and unlabeled data smoothly. It is found in literature
[19], and [26], that supervised learning techniques outperformed the semi supervised
approach. Supervised learning approaches for malware detection and determination led to
above 90% accuracy. Moreover, in [27], authors made a great contribution and formalized
a collective learning framework for unknown malware detection. They also presented
optimization approach for unlabeled data. Collective learning frameworks use labeled and
unlabeled instances. This approach is helpful when we have small size of labeled dataset.
In [28], authors used non-uniform sequence of instruction length. They applied decision
tree and random forest for classification.

2.5 Dynamic Malware Techniques

In [29], authors proposed a technique for malware behavior analysis. For the collection
phase authors used Amun and HoneyClients tool. They analyzed the behavior on CWSand
box [30], and Anubis [31], on VM platform. For now it is almost impossible to have
manual analysis. In [32], authors proposed an automated mechanism for malware behavior
evaluation and then they used clustering. In [33], authors used Ether framework [34].
In [33], malware detection, 2-gram and markov chain algorithm were applied. Markov
chain is similar to graph, this approach was found computationally expensive. In [35],
automatic execution traces based on Anubis was applied. And later, LH algorithm is

2.6 Hybrid Malware Techniques 13

used for clustering. In [35], authors formalized a better approach. In it they used sub
linear approach to knn problem. The authors demonstrated that it is quite scale-able and
computationally less expensive. In [36], authors used framework for API calls extraction
and their pattern on virtual machine. They used 1368 malwares and 456 cleanwares in
their work and used classification algorithms given in WEKA library. They claimed 97%
accuracy. In [37], authors did research on similar features presented in antivirus and virus
files. And then they presented a classification algorithm which stores malware behavior
and system state changes. For this research they used half firewalled virtual environment.
They analyzed performance of their system over 3700 malwares gathered in six months.
In [38], authors proposed malware classification algorithm which is based on maximal
component subgraph detection. They used sandboxed environment for dynamic features
extraction. It is seen that this approach has some major drawbacks such as some malwares
do not make system calls and ruin the analysis method.They [39], did similar investigation
over various classifiers for example kNN, Naive Bayes, J48 Decision Tree, SVM and
Multilayer Perceptron Neural Network (MLP) is done on a little data set of 220 malicious
samples and 250 benign samples with and without feature selection. The got outcomes
delineated that general best exhibition is accomplished by J48 decision tree with a recall
of 95.9%, a false positive rate of 2.4%, a precision of 97.3%, and an accuracy of 96.8%.

2.6 Hybrid Malware Techniques

It is observed that sometimes static or dynamic is not sufficient for classification, and
we then need to use hybrid approach. Hybrid techniques use combination of static and
dynamic features simultaneously for higher accuracy. It is proposed in [40], that a malware
detector (OPEM) use both static and dynamic analysis. And then used different classifiers
like Decision tree, K-nearest neighbor, Bayesian network and support vector machine. It is
found that hybrid approach improved the overall performance.

In [41], authors have also adopted hybrid approach for classification, they used length
frequency, string information, API function names and API parameters. This experiment
was done using 2939 exe files. They retrieved results using SVM, IB1, DT and RF. They
also tested these approaches on static and dynamic features. And found hybrid techniques
are better and stated that RF gave the best performance among all other classifiers. In
[42], authors used multiple resources static binary, disassembled binary file, flow graph,
dynamic instruction trace and system call. They also used file information feature vector.
They used SVM for classification and used more than 700 malware and benign classes

Literature Review 14

and got 98% accuracy. Data mining and ML techniques have played vital role in malware
classification.

Chapter 3

Methodology

3.1 Introduction

Malwares are found attached in different files like Word, HTML document, APK files,
EXE files and many more.We are interested only in the PE files.So for analyzing the PE
file, first we have to understand about the structure of PE file. Fig 3.1 tells the overview of
PE file structure.

Figure 3.1: PE File Structure

15

Methodology 16

3.1.1 PE File Format

The overview of PE format is showing as the following figure 3.1.

Figure 3.2: PE File Structure

The portable executable file header consists of the following parts:

• Portable Executable signature

• Microsoft-DOS stub

• Optional header

The PE file contains items in a specific sequence. The first item in the file is always
the MS-DOS stub followed by a four-byte PE signature at offset 0x3c whose purpose is
the identification of file as a Portable executable image file. There are other items in the
list as well like COFF file header and optional file header whose function is to provide
required data to the loader. The optional header is called optional because it may or may
not be present in files, but in case of image files, this header is mandatory. The optional
header is further subdivided into three parts which are:

1. Data Directory

2. Specific field

3. Standard field

The last item in the PE executable file is the section table. By default, every tuple of
the section file is considered as the section header.

3.2 Proposed Methodlogy 17

Based on the knowledge acquired from the literature and previous work, features
from optional header and section header are extracted and utilized in the research.

3.2 Proposed Methodlogy

The proposed project carries out a multi-step approach. Figure 3.3 shows the method-
ology of the entire system.

Malware

Collection
Features Parsing Labeling

Statistical Feature

Engineering

Wrapper Method for

Feature Engineering

Data

Development

Data Set
Engineering

Best Features

Machine Learning

Algorithm

Figure 3.3: Methodology

1. Malware Collection

2. Features Parsing

3. Labeling

4. Statistical Feature Engineering

5. Wrapper Method for Feature Engineering

6. Best Features

Methodology 18

3.2.1 Malware Collection

To create a solution for any problem, data is always required. In the proposed scheme,
data collection is the first and most important step. Any kind of simple data is publicaly
available but the data for Malwares like Viruses, Trojans etc is not easily available. Benign
files can easily be found in the computer but the PE Malware files are difficult to find.
Recent malware samples are not available over the internet easily as their occurrence is
very low. Some security sector corporations keep brief malware repository, however they
donot share their database with any other for the purpose of research.

[43] used the dataset from Malfease dataset (http://malfease.oarci.org). They used
three antivirus softwares named as ClamAV, F-Prot and AVG to verify either these files are
malicious or benign.

Malicia Project used to provide the dataset for the malware. Many researchers have
used the Malicia-Project dataset but now it is discontinued.

Virusshare has been an important repository for the malware collection. They provide
all kinds of malwares including HTML links, Executables, Word files and many more.

We have used different repositories for the malware collection including Nothink-
malware repository,VirusTotal,VirusShare,VXHeaven. Table 3.1 shows the statistics of all
the files we collected from different sources.

Source No. of Files
VirusShare 1395
VirusTotal 1205
VXHeaven 950
Nothink 2093

Total = 5643

Table 3.1: No of Files Collected from Sources

3.2.2 Features Parsing

Built-in data set already contains many features including headers of executable files.
As we didn’t have any malware dataset containing categories for Trojans,Viruses and
Worms. A parser was made to parse the features from PE files. Code was written in python
language and parsed different header values and write it to CSV file. PE file contains
different headers i.e, DOS Header, Optional Header, File Header. Every header contains
different features and every feature has its own value. Firstly, the parser imports pefile and

3.2 Proposed Methodlogy 19

parse all the files from the directory.Then the parser extracts features from DOS header,file
header and optional header.

1. DOS Header: The DOS header contains 19 features: e_magic, e_cblp,e_lfanew etc.
There are many features which contains same values for all of the files.

2. File Header: This header consists of the following features: Machine , NumberOf-
Sections, TimeDateStamp, PointerToSymbolTable, NumberOfSymbols, SizeOfOp-
tionalHeader, Characteristics

Unfortunately, there is no such variant between malicious and legitimate files in each
features.

3. Optional Header: Standard fields,windows specific fields and data directories are
included in the Optional header.Windows specific fields have 21 features whereas
standard field have 8 features.

During parsing of these files, headers of some files were missing.That files were not
able to be parsed.Table 3.2 shows the errors we found during the parsing of PE files.

Total Number of Files 5643
’Invalid e_lfanew value, probably not a PE file’ 15

’Invalid NT Headers signature.’ 38
’Invalid NT Headers signature. Probably a NE file’ 95

DOS Header Magic Not Found 250
Files Parsed with Header 5246

Table 3.2: Errors found during Parsing

3.2.3 Labeling

As there are more than 5000 files and they are still un-categorized.There is no
information about these files that from which family do they belong.Some of them might be
virus,some might be trojans and so on.So we took labels of these files from Virustotal.[44]
Virustotal is an engine which provides us multiple functionalities. Virustotal provides the
labels of 75 different Anti-Viruses(AVs) including AVG, Avast, Kaspersky, ESET NOD
32 and many others. Any file or file Hash (MD5 or SHA) can be uploaded on virustotal
and it will provide all the details about that particular file including the labels,metadata of
file,imports,exports and many others.

Virus Total is a free service that allows you to analyze files or URL addresses online.
Many antivirus application engines and website scanners are used for analysis. Files

Methodology 20

considered to be harmful are analyzed individually in antivirus application engines. Each
antivirus application engine creates an analysis report for the suspicious file [45]. The
same analysis case is valid for URLs to be analyzed. The VirusTotal service includes a
very large set of analyzes. In this way, a new scan can be performed, as well as previous
analysis information can be obtained. Virus Total offers a service interface (VirusTotal
Public API v2.0) to provide results without using a browser, as well as through a web
browser. With this interface, files / URL addresses can be analyzed automatically. Virus
Total Public API provides the results of the analysis as a JSON object. The results of each
antivirus application engine and web browser analysis are obtained separately.

Uploading the file one by one on virustotal and copying labels of 75 different AVs
and writing it to CSV file takes a lot of time.Virustotal provide APIs for different purposes
like scanning,fetching reports,downloading and others.VT provides two versions of API.

• Public API

• Private API

For automation of that manual task,we computed the MD5 hash of all these files and write
them in CSV file.Then we wrote a python script which uploaded the file hash from CSV
file to virustotal,scanned the file hash and copied the labels of all AVs to the CSV file
again.It took a lot of time to get and write the JSON reports of these files.

After getting complete labels for all the files, we named a file based on Majority
Voting.This give us the following results.

Figure 3.4: Graph After Labeling

3.2 Proposed Methodlogy 21

3.2.4 Statistical Feature Engineering

Initially the dataset consists of 55 Features.Table 3.3 shows the features extracted
from the file headers.

e_magic e_cs
PointerToSymbol
Table BaseOfCode SizeOfImage

e_cblp e_lfarlc NumberOfSymbols BaseOfData SizeOfHeaders

e_cp e_ovno
SizeOfOptional
Header ImageBase CheckSum

e_crlc e_res Characteristics SectionAlignment Subsystem
e_cparhdr e_oemid Magic FileAlignment DllCharacteristics

e_minalloc e_oeminfo
MajorLinker
Version

MajorOperating
SystemVersion

SizeOfStack
Reserve

e_maxalloc e_res2
MinorLinker
Version

MinorOperating
SystemVersion

SizeOfStack
Commit

e_ss e_lfanew SizeOfCode
MajorImage
Version

SizeOfHeap
Reserve

e_sp Machine
SizeOfInitialized
Data

MinorImage
Version

SizeOfHeap
Commit

e_csum
NumberOf
Sections

SizeOfUninitialized
Data

MajorSubsystem
Version LoaderFlags

e_ip CreationYear
AddressOfEntry
Point

MinorSubsystem
Version

NumberOf
RvaAndSizes

Table 3.3: Features of PE File

Now we have to eliminate the unimportant features from our dataset. There are
many different methods used for data pre-processing but we have used the following two
methods.

• Variance Method

Some values are not changed throughout the data. These values are fixed for those
features. The absence or presence of these values have no impact on the dataset
because they are same overall. These features can be removed directly. In our data
set, there were 4 features whose values remain same throughout the dataset.

– e_magic

– e_res

– e_res2

– Magic

Methodology 22

• 3/4 Quartile Method This is the second method which is used to remove the
unnecessary features from the remaining dataset. If the occurrence of one value for
one feature, exceeds more than 75% that feature should be dropped as it is an outlier
and it will bias the single feature. In our dataset, there were many features which
have same value occurring more than 75%. We eliminated about 30 features on this
criteria. The features which were removed from this method are listed in the table
3.4.

e_crlc e_cparhdr
e_maxalloc e_css
e_sp e_csum
e_ip e_cs
e_lfarlc e_oemid
e_oeminfo Machine
PointerToSymbolTable NoOfSymbols
SizeOfOptionalHeader SectionAlignment
FileAlignment MinorOperatingSystemVersion
MinorImageVersion MajorSubsystemVersion
MinorSubsystemVersion Checksum
SubSystem DllCharacteristics
SizeOfStackReverse SizeOfHeapReverse
SizeOfHeapCommit LoaderFlag
NumberofRVAandSizes CreationYear

Table 3.4: Deleted Features

After applying the two methods of data cleaning, we are left only with 21 features which
are listed in table 3.5.

e_cblp e_cp e_minalloc e_ovno
e_lfanew NumberOfSections Characteristics MajorLinkerVersion

MinorLinkerVersion SizeOfCode
SizeOfInitialized
Data

SizeOfUninitialized
Data

AddressOfEntryPoint BaseOfCode BaseOfData ImageBase
MajorOperatingSystem
Version

MajorImage
Version SizeOfImage SizeOfHeaders

SizeOfStackCommit

Table 3.5: Selected 21 Features

3.2 Proposed Methodlogy 23

3.2.5 Wrapper Method for Feature Engineering

Feature selection [46, 47, 48] is considered an important method in classification of
any problem. There are two main reasons for this:

• Computational complexity is reduced.

• It improves the generalization capability of a classifier.

This reason is obvious because if there is any data with large vector space or many
features,it will require heavy resources and a very high cost of computation. On the other
side a low-dimensional representation reduces the risk of overfitting . Features selection
methods help us to reduce the dimensionality of the data and gives us a very helpful and
a good subset from the available original features which helps us in building a powerful
classifier to solve the problems[47].

Applying wrapper method will give us the best combination of features with maximum
accuracy on the given dataset. Those features will be further used for the machine learning
algorithms.

3.2.6 Machine Learning Algorithms

There are basically two different approaches.

1. Supervised Learning: which has label assigned to it.

2. Unsupervised Learning: which doesn’t have any label with the data.

Both of the methods have their own algorithms. As our data is labeled, so we will be
looking only to the supervised learning techniques. In this proposed solution, we will be
implementing two different classifiers on our dataset and performing different experiments.
Following are the two algorithms which will be used further.

• Decision Tree

• KNearest Neighbor (KNN)

Chapter 4

Experiments and Results

4.1 Experimental Setup

We carried out our experiments on system with following specifications.

• Intel Core i5 8th Generation

• 12 GB of RAM

• No Firewall

• 500GB of Harddrive

We will be using PyCharm and Anaconda framework.For coding, we will carry out
our experiments in Jupyter Notebook Python 3.6 including many different libraries like
Scikit-learn, pandas, Numpy and others.

On the system,we had to turn off the Firewall and disable the antivirus as we had to
play with the viruses. If the firewall remained turned on,the system detect the file as virus
and remove the file. As we had limited data,so we had to save maximum number of files
for parsing.

After parsing and data cleaning,we were left with 21 features. Now we had to perform
different experiments and start getting the results.

We applied two algorithms i.e Decision Tree and K-Nearest Neighbor(KNN).Varying
the parameters, we obtained different different results and plotted them on a graph.

4.2 Results and Analysis

During the implementation phase, one of the most crucial steps is the choice of
machine learning technique for each family. The choice is made based on the performance

24

4.2 Results and Analysis 25

measures of the algorithms. The two performance measures that are being incorporated in
the decision making process is Accuracy and Confusion Matrix, and explained as follow:

4.2.1 Accuracy

Accuracy is the ratio of number of correctly classified instances and total examined
instances in the dataset. To select an algorithm for each attack category, each of the three
algorithms’ accuracy is compared against the dataset. The measure of accuracy is further
broken down into three different types: training accuracy, test accuracy and cross validation
accuracy.

• Training Accuracy: Training accuracy is the measure of how well an algorithm is
classifying when being applied to the data instances that were a part of the training
dataset. In this research, the training accuracy is taken as an average of multiple
runs of the algorithm on the training data in order to get a more reliable value for the
training accuracy.

• Testing Accuracy: Test accuracy is the measure of accuracy in case of the algorithm’
s application to the data instances that are previously unseen by the algorithm. In
other words, it is the extent to which the algorithm correctly classifies the new data
instances. Similar to the training accuracy, an average value of accuracy is taken
based on multiple measurements.

4.2.2 Confusion Matrix

In addition to the use of accuracy as a performance measure, there is another simple
yet powerful measure to describe the performance of a classification algorithm known as
Confusion Matrix. It is an extension of accuracy measure in the sense that it also keeps
track of how many data instances are classified incorrectly in addition to the correct ones.
A confusion matrix has two rows and two columns of the form:

Predicted Values
Predicted : 0 Predicted : 1

Actual
Values

Actual : 0 True
Positive

False
Negative

Actual : 1 False
Positive

True
Negative

Table 4.1: Confusion Matrix

Experiments and Results 26

In the context of our attack prediction scenario, the four possible values based on the
classification statistics of the algorithm after it is run on the test data instances are:

• True Positive:The data instance actually belongs to one class and the algorithm
correctly classifies it as the same class.

• False Negative:The algorithm predicted the data instance is not from 1st class
whereas it actually belongs to 1st class.

• False Positive:The data instance doesnot actually belong to 1st class but the algo-
rithm incorrectly classified it in 1st class.

• True Negative:The algorithm predicted the data instance doesnot belong to 1st class
and it actually belongs to the other class.

First of all we performed the experiments with the complete dataset including 21
features. Now starting with the experiments,there are many different experiments and their
results are discussed at the end.70% of the dataset was used as training and the testing was
performed on remaining 30

4.3 Experiments

We divided our experiments in two main categories.

1. Experiments with 21 Features

2. Experiments with 9 Features

4.3.1 Experiments with 21 Features

We created 4 different CSV files according to following statistics.

1. File containing instances of only Virus and Worms.

2. File containing instances of only Trojans and Worms.

3. File containing instances of only Virus and Trojans.

4. File containing instances of Trojans, Virus and Worms.

4.3 Experiments 27

4.3.1.1 File containing instances of only Virus and Worms

In this file there were a total of 4218 instances consisting of 2101 viruses and 2116
worms. We applied decision tree algorithm on 70% of the training data. A total of 2951
different instances were trained including 1461 virus instances and 1490 instances of
worms. As the classifier was trained, we performed our test on remaining 30% of the data.

The model predicted 605 instances out of 640 correctly as Virus and 591 instances
out 626 correctly as Worms giving us the accuracy of 94.4%.

Then we applied the KNN classifier on the same number of instances and observed
the results. The KNN classifier after testing the data gave the accuracy of 94.5%.

The confusion matrix of this experiment is given below in Table 4.2.

Models Predicted Labels

Actual Labels

N(1266) Virus Worms Accuracy
Decision

Tree
Virus 605 35

94.4%
Worms 35 591

K-Nearest
Neighbor

Virus 615 25
94.6%

Worms 44 582

Table 4.2: Confusion Matrix of Virus and Worms

The comparative results of the above table are shown graphically in Figure4.1.

Figure 4.1: Confusion Matrix Statistics for Virus and Worms

Experiments and Results 28

4.3.1.2 File containing instances of only Virus and Trojans

In this file there were a total of 3130 instances consisting of 2101 viruses and 1028
trojans. We applied decision tree algorithm on 70% of the training data. A total of 2197
different instances were trained including 1487 virus instances and 703 instances of trojans.
As the classifier was trained, we performed our test on remaining 30% of the data.

The model predicted 527 instances out of 614 correctly as Virus and 211 instances
out 325 correctly as trojans giving us the accuracy of 78.6%.

Then we applied the KNN classifier on the same number of instances and observed
the results. The KNN classifier after testing the data gave the accuracy of 76.01%.

The confusion matrix of this experiment is given below in Table 4.3.

Models Predicted Labels

Actual Labels

N(939) Trojans Virus Accuracy
Decision

Tree
Trojan 211 114

78.6%%
Virus 87 527

K-Nearest
Neighbor

Trojan 192 133
76.01%

Virus 93 521

Table 4.3: Confusion Matrix of Virus and Trojans

The comparative results of the above table are shown graphically in Figure4.2.

Figure 4.2: Confusion Matrix Statistics for Virus and Trojans

4.3 Experiments 29

4.3.1.3 File containing instances of only Worms and Trojans

In this file there were a total of 3145 instances consisting of 2117 worms and 1028
trojans. We applied decision tree algorithm on 70% of the training data. A total of 2201
different instances were trained including 1471 worms instances and 731 instances of
trojans. As the classifier was trained, we performed our test on remaining 30% of the data.

The model predicted 573 instances out of 647 correctly as worms and 286 instances
out 297 correctly as trojans giving us the accuracy of 90.99%.

Then we applied the KNN classifier on the same number of instances and observed
the results. The KNN classifier after testing the data gave the accuracy of 90.46%.

The confusion matrix of this experiment is given below in Table 4.4.

Models Predicted Labels

Actual Labels

N(944) Trojans Worms Accuracy
Decision

Tree
Trojan 286 11

90.99%
Worms 74 573

K-Nearest
Neighbor

Trojan 273 24
90.46%

Worms 66 581

Table 4.4: Confusion Matrix of Worms and Trojans

The comparative results of the above table are shown graphically in Figure4.2.

Figure 4.3: Confusion Matrix for Worms and Trojans

Experiments and Results 30

4.3.1.4 File containing instances of Virus, Worms and Trojans

Our first dataset comprises of 21 features as discussed in Table 3.5. We applied the
decision tree algorithm by using default parameters and obtained the results. But that was
just the one experiment and we had to train our dataset so that it gives us the best results.
There was no depth control and no criteria defined in the first experiment.

There are total 5246 instances consisting of 1028 trojans instances, 2101 instances
of virus and 2116 instances of worms. A total of 3672 instances were trained in which
1470 were viruses, 737 were trojans and 1464 were worms which concludes a total of
70%.As it is a multi-class problem,so there will be a confusion matrix of 3x3. After
training upon these instances, we will test the data over the training model.30% of the data
include 1574 files of different categories. 197 instances out of 291 were correctly labeled
as Trojans,516 instances out of 631 were correctly identifies as Viruses and 584 out of 652
were identified correctly as Worms giving us the accuracy rate of 82.4% on decision tree
with max_depth=9.

We are not done here with our result. We have just applied decision tree on this
dataset. Lets apply KNN on the same dataset and observe the difference of results.The
KNN provided the accuracy rate of 80.87%.

The confusion matrix of these two classifiers is given below in Table 4.5.

Models Predicted Labels

Actual Labels

N(1574) Trojans Virus Worms Accuracy

Decision
Tree

Trojan 197 78 16
82.4%Virus 100 516 15

Worms 46 22 584

K-Nearest
Neighbor

Trojan 179 107 5
80.87%Virus 111 516 4

Worms 44 30 578

Table 4.5: Confusion Matrix of Worms,Trojans and Virus

If we perform the classifier without any criteria, it gives us the accuracy of 78.97%.
The depth of the tree improves its accuracy and if we calculate the entropy of each node.
As we start from minimum, selecting the max_depth=3 and going on higher,lets compute
accuracy level by level.The increment of depth and change of accuracy can be seen in the
Table 4.6.

4.3 Experiments 31

Depth Level Accuracy
3 0.7668
4 0.7782
5 0.7795
6 0.805
7 0.809
8 0.817
9 0.824
10 0.815
11 0.813
12 0.802

No Depth 0.7897

Table 4.6: Decision Tree Results by increasing max_depth

The graphical representation of varying the max_depth by increasing or decreasing is
shown in the Figure 4.4.

Figure 4.4: Accuracy of the Classifier

In the graph,we observed that as the depth level increases, the accuracy increases
but at certain limit. As the depth level reaches 9, it reaches its peak. After this point,the
accuracy started to decrease. This happens because the presence of some features are
reducing the accuracy. So we have to remove those unimportant features. As we cannot
delete any feature randomly, as it will affect its accuracy. So we have to compute the
features importance based on their labels.

We computed the importance of each feature corresponding its label using decision
tree classifier.Table 4.7 shows the importance of these features.

Experiments and Results 32

S.No Features Importance
1 e_ovno 0.000825
2 e_minalloc 0.001115
3 MinorLinkerVersion 0.00212
4 e_cp 0.002739
5 e_cblp 0.003723
6 SizeOfUninitializedData 0.004106
7 SizeOfStackCommit 0.005187
8 BaseOfCode 0.00607
9 Characteristics 0.011478

10 SizeOfHeaders 0.016447
11 MajorLinkerVersion 0.01656
12 MajorImageVersion 0.021837
13 NumberOfSections 0.027855
14 BaseOfData 0.030372
15 SizeOfCode 0.047802
16 SizeOfInitializedData 0.049985
17 SizeOfImage 0.052247
18 e_lfanew 0.061553
19 MajorOperatingSystemVersion 0.070637
20 AddressOfEntryPoint 0.088897
21 ImageBase 0.481629

Table 4.7: Features Importance

As we can see clearly, the feature 1,2,3,4 have quite low value. We set the threshold at
0.0035 and neglected the others having value lower than the selected threshold. By doing
this , our 4 features were removed including e_ovno , e_minalloc , MinorLinkerVersion
and e_cp.

Now at 17 features, we can apply the Wrapper method. We used the forward wrapper
method. Forward Wrapper method is an iterative method which has no feature in start
and then it adds feature one by one which best improves the model. Although the dataset
contains 17 features, so number of combinations can be calculated by the following
formula.

No.o f combinations = 2n−1

where ’n’ is the number of features in the dataset.
The wrapper method took about 3-4 days for computing 1,31,072 different combi-

nations providing different accuracy with different features. After complete execution of
wrapper method, it provided us with following 9 features shown in Table 4.8.

4.3 Experiments 33

S.No Features
1 SizeOfUninitializedData
2 BaseOfCode
3 Characteristics
4 MajorLinkerVersion
5 MajorImageVersion
6 NumberOfSections
7 e_lfanew
8 MajorOperatingSystemVersion
9 ImageBase

Table 4.8: Features after Wrapper Method

We removed the remaining features from the data set and selected the top 9 fea-
tures.Now we have a dataset with reduced features.We will try new experiments with these
new features and test the data again.

4.3.2 Experiments with 9 Features

Just like we created different files in previous experiments,we will create the same
files but now with 9 features. All the other features will be removed from the file and then
we will start our experiments.

We created 4 different CSV files according to following statistics.

1. File containing instances of only Virus and Worms.

2. File containing instances of only Trojans and Worms.

3. File containing instances of only Virus and Trojans.

4. File containing instances of Trojans, Virus and Worms.

4.3.2.1 File containing instances of only Virus and Worms.

Just like previously, we separated the file containing the instances of only Virus
and worms. There were a total of 4218 instances containing 2102 viruses and 2116
worms.Again, we repeated the same procedure but this time our model is being trained on
9 features instead of 21 features. Training was done on 70% of the data which makes a
total of 2951 instances containing 1456 virus instances and 1496 instances of worms.

Experiments and Results 34

30% of the data will be used for testing. Our model predicted 640 instances out of
646 correctly as viruses and 555 instances out of 620 correctly as worms.The accuracy
achieved by this model was 94.4%.

Then we applied KNN on the same dataset.The KNN classifier gave the accuracy of
93.44%. The confusion matrix of this experiment is shown in the Table 4.9

Models Predicted Labels

Actual Labels

N(1266) Virus Worms Accuracy
Decision

Tree
Virus 640 6

94.39%
Worms 65 555

K-Nearest
Neighbor

Virus 614 32
93.44%

Worms 51 569

Table 4.9: Confusion Matrix of Worms and Virus

The above results are also shown in graphical form in the Figure 4.5.

Figure 4.5: Confusion Matrix Statistics for Worms and Virus

4.3.2.2 File containing instances of only Trojans and Worms.

In this file there were a total of 3145 instances consisting of 2117 worms and 1028
trojans. We applied decision tree algorithm on 70% of the training data. A total of 2291
different instances were trained including 1474 worm instances and 727 instances of
trojans. As the classifier was trained, we performed our test on remaining 30% of the data.

4.3 Experiments 35

The model predicted 295 instances out of 301 correctly as Trojans and 567 instances
out 643 correctly as Worms giving us the accuracy of 91.31%.

Then we applied the KNN classifier on the same number of instances and observed
the results. The KNN classifier after testing the data gave the accuracy of 89.83%.

The confusion matrix of this experiment is given below in Table 4.10.

Models Predicted Labels

Actual Labels

N(944) Trojan Worms Accuracy
Decision

Tree
Trojan 295 6

91.31%
Worms 76 567

K-Nearest
Neighbor

Trojan 276 25
89.83%

Worms 71 572

Table 4.10: Confusion Matrix of Worms and Trojans

The above results are also shown in graphical form in the Figure 4.6.

Figure 4.6: Confusion Matrix Statistics for Worm and Trojans

4.3.2.3 File containing instances of only Virus and Trojans

In this file there were a total of 3130 instances consisting of 2101 viruses and 1028
trojans. We applied decision tree algorithm on 70% of the training data. A total of 2197
different instances were trained including 1482 virus instances and 708 instances of trojans.
As the classifier was trained, we performed our test on remaining 30% of the data.

Experiments and Results 36

The model predicted 241 instances out of 320 correctly as Trojans and 499 instances
out 619 correctly as trojans giving us the accuracy of 78.9%.

Then we applied the KNN classifier on the same number of instances and observed
the results. The KNN classifier after testing the data gave the accuracy of 77.10%.

The confusion matrix of this experiment is given below in Table 4.11.

Models Predicted Labels

Actual Labels

N(939) Trojan Virus Accuracy
Decision

Tree
Trojan 241 79

78.8%
Virus 120 499

K-Nearest
Neighbor

Trojan 178 142
77.10%

Virus 73 546

Table 4.11: Confusion Matrix of Virus and Trojans

The above results are also shown in graphical form in the Figure 4.5.

Figure 4.7: Confusion Matrix Statistics for Trojans and Virus

4.3.2.4 File containing instances of Trojans, Virus and Worms.

This file contains all the instances of 3 lables. Now we have to test out classifier with
9 features on our test data. The confusion matrix of 3x3 is shown in the Table 4.12.

4.4 Comparison of Results 37

Models Predicted Labels

Actual Labels

N(1574) Trojans Virus Worms Accuracy

Decision
Tree

Trojan 191 98 1
83.45%Virus 76 540 0

Worms 49 37 582

K-Nearest
Neighbor

Trojan 194 98 2
80.87%Virus 99 523 8

Worms 58 25 567

Table 4.12: Confusion Matrix of Trojans,Worms and Virus

4.4 Comparison of Results

In the start, we were training our module on 21 features. Then we did the depth
control and recorded the results. After the wrapper method, our features were reduced to 9
and then we performed all the experiments again with two different algorithms and showed
their table and graphs.Figure 4.8, shows the difference of results when we were controlling
our depth with 21 features comparing with the result of 9 features.

Figure 4.8: Comparison Before and After Feature Reduction

Chapter 5

Conclusions & Future Work

5.1 Conclusion

Cyber-attacks can cause a lot of damage to Information Systems and data in the form
of proliferation, theft or total destruction of data. Cyber security has thus been a very
vital area in the field of Information Technology. With the increased use of internet and
connected devices like those in case of Internet of Things poses a serious challenge to the
security of these systems. Moreover, with the increase in sophistication of technology, the
dynamics of cyber attacks have become difficult to cater as well. Cyber criminals try to
figure out new ways to bypass security measures and evade the detection systems. In the
light of this problem and in order to ensure the protection of Information Technology assets,
a lot of research and practical work has been done in this area to detect the occurrences of
cyber-attacks.

5.2 Future Work

As we have now addressed the problem of 3 major classes of Malwares - Virus, Worms
and Trojans. There are many other families of malware which can also be addressed in the
future.A good and efficient mechanism can be developed which will predict the family of
malware just by looking at the header.We have just worked on the header features of the
Portable Executable file.There are many things which can be addressed in the future like
looking at the Strings values, System calls imports,exports and many others.That will be
a good contribution in this area of research field.There is still room for improvement in
the detection system in terms of addition of new attack categories alongside the already
existing attack categories.The inclusion of more categories will enable the engine to be
even better in prediction of vast majority of attacks on the system where it is deployed.

38

5.2 Future Work 39

Furthermore, there can also be another direction. Just like we have addressed three
major categories of malwares, one can study about a single family and predict about the
sub-families. As there are subfamilies of trojans, each of them may have different structure
or mechanism of execution. They may impact differently depending upon their families.
So that would be a very good future perspective if someone carries out that work.

Bibliography

[1] R. R. Ravula, Classification of Malware using Reverse Engineering and Data Mining

Techniques. PhD thesis, University of Akron, 2011. Cited on p. 3.

[2] J. Li and S. Stafford, “Detecting smart, self-propagating internet worms,” in 2014

IEEE Conference on Communications and Network Security, pp. 193–201, IEEE,
2014. Cited on p. 3.

[3] H. R. Zeidanloo, F. Tabatabaei, P. V. Amoli, and A. Tajpour, “All about malwares
(malicious codes).,” in Security and Management, pp. 342–348, 2010. Cited on

p. 3.

[4] N. Idika and A. P. Mathur, “A survey of malware detection techniques,” Purdue

University, vol. 48, 2007. Cited on p. 3.

[5] “Idapro..” Cited on p. 3.

[6] “Ollydbg.” Cited on p. 3.

[7] “Lordpe.” Cited on p. 3.

[8] “Ollydump.” Cited on p. 3.

[9] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,”
in Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007),
pp. 421–430, IEEE, 2007. Cited on p. 3.

[10] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic
malware-analysis techniques and tools,” ACM computing surveys (CSUR), vol. 44,
no. 2, p. 6, 2012. Cited on p. 4.

[11] R. Tahir, “A study on malware and malware detection techniques,” International

Journal of Education and Management Engineering, vol. 8, no. 2, p. 20, 2018. Cited
on p. 5.

40

BIBLIOGRAPHY 41

[12] J. Landage and M. Wankhade, “Malware and malware detection techniques: A survey,”
International Journal of Engineering Research and Technology (IJERT), vol. 2, no.
12, pp. 2278–0181, 2013. Cited on p. 5.

[13] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification: A survey,”
Journal of Information Security, vol. 5, no. 02, p. 56, 2014. Cited on p. 9.

[14] H. Liu and L. Yu, “Toward integrating feature selection algorithms for classification
and clustering,” IEEE Transactions on Knowledge & Data Engineering, no. 4, pp.
491–502, 2005. Cited on p. 10.

[15] G. Kumar, K. Kumar, and M. Sachdeva, “The use of artificial intelligence based
techniques for intrusion detection: a review,” Artificial Intelligence Review, vol. 34,
no. 4, pp. 369–387, 2010. Cited on p. 11.

[16] A. Este, F. Gringoli, and L. Salgarelli, “Support vector machines for tcp traffic
classification,” Computer Networks, vol. 53, no. 14, pp. 2476–2490, 2009. Cited
on p. 11.

[17] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining methods for
detection of new malicious executables,” in Proceedings 2001 IEEE Symposium on

Security and Privacy. S&P 2001, pp. 38–49, IEEE, 2000. Cited on p. 11.

[18] W. W. Cohen, “Fast effective rule induction,” in Machine Learning Proceedings 1995,
pp. 115–123, Elsevier, 1995. Cited on p. 11.

[19] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables in the wild,”
in Proceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 470–478, ACM, 2004. Cited on pp. 11 and

12.

[20] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath, “Malware images: visualiza-
tion and automatic classification,” in Proceedings of the 8th international symposium

on visualization for cyber security, p. 4, ACM, 2011. Cited on p. 12.

[21] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A comparative assessment
of malware classification using binary texture analysis and dynamic analysis,” in
Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, pp.
21–30, ACM, 2011. Cited on p. 12.

BIBLIOGRAPHY 42

[22] D. Kong and G. Yan, “Discriminant malware distance learning on structural informa-
tion for automated malware classification,” in Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining, pp. 1357–1365,
ACM, 2013. Cited on p. 12.

[23] R. Tian, L. M. Batten, and S. Versteeg, “Function length as a tool for malware
classification,” in 2008 3rd International Conference on Malicious and Unwanted

Software (MALWARE), pp. 69–76, IEEE, 2008. Cited on p. 12.

[24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
weka data mining software: an update,” ACM SIGKDD explorations newsletter, vol.
11, no. 1, pp. 10–18, 2009. Cited on p. 12.

[25] I. Santos, J. Nieves, and P. G. Bringas, “Semi-supervised learning for unknown
malware detection,” in International Symposium on Distributed Computing and

Artificial Intelligence, pp. 415–422, Springer, 2011. Cited on p. 12.

[26] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, and Y. Elovici, “Unknown malcode
detection via text categorization and the imbalance problem,” in 2008 IEEE Inter-

national Conference on Intelligence and Security Informatics, pp. 156–161, IEEE,
2008. Cited on p. 12.

[27] I. Santos, C. Laorden, and P. G. Bringas, “Collective classification for unknown
malware detection,” in Proceedings of the International Conference on Security and

Cryptography, pp. 251–256, IEEE, 2011. Cited on p. 12.

[28] M. Siddiqui, M. C. Wang, and J. Lee, “Detecting internet worms using data mining
techniques,” Journal of Systemics, Cybernetics and Informatics, vol. 6, no. 6, pp.
48–53, 2009. Cited on p. 12.

[29] M. F. Zolkipli and A. Jantan, “An approach for malware behavior identification and
classification,” in 2011 3rd International Conference on Computer Research and

Development, vol. 1, pp. 191–194, IEEE, 2011. Cited on p. 12.

[30] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware analysis
using cwsandbox,” IEEE Security & Privacy, vol. 5, no. 2, pp. 32–39, 2007. Cited
on p. 12.

[31] “Anubis.” Cited on p. 12.

BIBLIOGRAPHY 43

[32] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware
behavior using machine learning,” Journal of Computer Security, vol. 19, no. 4, pp.
639–668, 2011. Cited on p. 12.

[33] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based malware
detection using dynamic analysis,” Journal in computer Virology, vol. 7, no. 4, pp.
247–258, 2011. Cited on p. 12.

[34] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis via hardware
virtualization extensions,” in Proceedings of the 15th ACM conference on Computer

and communications security, pp. 51–62, ACM, 2008. Cited on p. 12.

[35] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scalable,
behavior-based malware clustering.,” in NDSS, vol. 9, pp. 8–11, Citeseer, 2009.
Cited on pp. 12 and 13.

[36] R. Tian, R. Islam, L. Batten, and S. Versteeg, “Differentiating malware from cleanware
using behavioural analysis,” in 2010 5th international conference on malicious and

unwanted software, pp. 23–30, IEEE, 2010. Cited on p. 13.

[37] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario, “Auto-
mated classification and analysis of internet malware,” in International Workshop on

Recent Advances in Intrusion Detection, pp. 178–197, Springer, 2007. Cited on

p. 13.

[38] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel, “Fast malware classification by
automated behavioral graph matching,” in Proceedings of the Sixth Annual Workshop

on Cyber Security and Information Intelligence Research, p. 45, ACM, 2010. Cited
on p. 13.

[39] I. Firdausi, A. Erwin, A. S. Nugroho, et al., “Analysis of machine learning techniques
used in behavior-based malware detection,” in 2010 second international conference

on advances in computing, control, and telecommunication technologies, pp. 201–
203, IEEE, 2010. Cited on p. 13.

[40] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas, “Opem: A static-dynamic
approach for machine-learning-based malware detection,” in International Joint

Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions, pp. 271–280, Springer,
2013. Cited on p. 13.

[41] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of malware based on
integrated static and dynamic features,” Journal of Network and Computer Applica-

tions, vol. 36, no. 2, pp. 646–656, 2013. Cited on p. 13.

[42] B. Anderson, C. Storlie, and T. Lane, “Improving malware classification: bridging
the static/dynamic gap,” in Proceedings of the 5th ACM workshop on Security and

artificial intelligence, pp. 3–14, ACM, 2012. Cited on p. 13.

[43] R. Perdisci, A. Lanzi, and W. Lee, “Mcboost: Boosting scalability in malware
collection and analysis using statistical classification of executables,” in 2008 Annual

Computer Security Applications Conference (ACSAC), pp. 301–310, IEEE, 2008.
Cited on p. 18.

[44] VirusTotal, “Virustotal.” Cited on p. 19.

[45] R. Masri and M. Aldwairi, “Automated malicious advertisement detection using
virustotal, urlvoid, and trendmicro,” in 2017 8th International Conference on Infor-

mation and Communication Systems (ICICS), pp. 336–341, IEEE, 2017. Cited on

p. 20.

[46] A. L. Blum and P. Langley, “Selection of relevant features and examples in machine
learning,” Artificial intelligence, vol. 97, no. 1-2, pp. 245–271, 1997. Cited on p.

23.

[47] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal

of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003. Cited on p.

23.

[48] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature extraction: foundations

and applications, vol. 207. Springer, 2008. Cited on p. 23.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Classes of Malwares
	1.3 Malware Analysis
	1.3.1 Static Analysis
	1.3.2 Dynamic Analysis

	1.4 Malware Detection Techniques
	1.4.1 Signature Based detection
	1.4.2 Heuristic based detection

	1.5 Motivation and Problem Description
	1.6 Research Contribution
	1.7 Thesis Organization

	2 Literature Review
	2.1 Techniques used for Malware Detection
	2.1.1 Signature Based Techniques
	2.1.2 Behavior Based Techniques
	2.1.3 Machine Learning Techniques

	2.2 Selecting Features to Classify Malware
	2.3 Techniques for Classifying Malware
	2.3.1 Artificial Neural Network (ANN)
	2.3.2 Decision Tree
	2.3.3 Support Vector Machine (SVM)

	2.4 Static Malware Techniques
	2.5 Dynamic Malware Techniques
	2.6 Hybrid Malware Techniques

	3 Methodology
	3.1 Introduction
	3.1.1 PE File Format

	3.2 Proposed Methodlogy
	3.2.1 Malware Collection
	3.2.2 Features Parsing
	3.2.3 Labeling
	3.2.4 Statistical Feature Engineering
	3.2.5 Wrapper Method for Feature Engineering
	3.2.6 Machine Learning Algorithms

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Results and Analysis
	4.2.1 Accuracy
	4.2.2 Confusion Matrix

	4.3 Experiments
	4.3.1 Experiments with 21 Features
	4.3.2 Experiments with 9 Features

	4.4 Comparison of Results

	5 Conclusions & Future Work
	5.1 Conclusion
	5.2 Future Work

