

FINAL YEAR PROJECT REPORT

IMPLEMENTATION OF MULTIPATH ROUTING IN AD HOC NETWORK FOR DISASTER RECOVERY

In fulfillment of the requirement

For degree of

BS (COMPUTER SCIENCES)

By

ZEESHAN KHAN MUHAMMAD RAFAY KHAN 32818 BSCS 32869 BSCS

SUPERVISED BY

SYED MUHAMMAD ASIM ALI RIZVI

BAHRIA UNIVERSITY (KARACHI CAMPUS)

SPRING, 2017

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express gratitude to our project supervisor, Mr Syed Muhammad Asim Ali Rizvi for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition, we would also like to express thanks to our loving parent and friends who had helped & financed us.

IMPLEMENTATION OF MULTIPATH ROUTING IN AD HOC NETWORK FOR DISASTER RECOVERY

ABSTRACT

"A mobile ad hoc network (MANET) is a self-configuring infrastructure less network of mobile devices connected by wireless. Ad hoc is Latin and means for this purpose".

Multipath routing is one of the most versatile technique in routing among a mobile network. It is believed that VANET abbreviated Vehicular Ad Hoc Networks is most promising emerging edge technology of this era. After 2001, this technology immensely expands the way of communication systems by integrating ad hoc network to achieve intelligent inter-vehicle communications. Thus this improves road traffic safety and transportation system either a short route under metropolitan or on highways. VANETs are notable from rest of other kinds of Ad Hoc networks only by their hybrid nature, distributed architecture, mobility characteristics while handling all new types of application scenarios under different conditions. Therefore, this new entity may pose many unique challenges for researchers and the engineers to design an efficient protocol for routing in VANETs.

In Ad Hoc networks, it is observed fiddly that there may be no restriction on node to move this they are free to move independently in any direction which result their change in communication links to other devices so frequently. If a message needs to be sent to a farthest node, only hopping will be the right solution. Multipath routing in Ad Hoc network gives an added advantage in specifically disaster conditions. Project helps the social masses to adopt multipath routing in Ad Hoc network. This project comprise with analysing the need of multipath routing in Ad Hoc network and considerably under specific circumstances, its implementation of robotic cars for firefighting efforts.

iii

TABLE OF CONTENTS

DECLARATION

APPROVA	L FOF	R SUBMI	SSION	is
ACKNOW	vi			
PLAGIARI	vi			
ABSTRACT	Γ			ix
TABLE OF	ix			
LIST OF TA	ABLE	S		xiv
LIST OF FI	GURE	ES		xv
CHAPTER				
1	INT	1		
	1.1	Backgr	ound	1
	1.2	Probler	n Statement	3
	1.3	Aims a	nd Objectives	4
	1.4	Scope of	of Project	4
LITER	ATUR	E REVIE	Z W	6
	2.1	Introdu	ction	6
	2.2	Need or	f Mobile Ad Hoc Network	6
	2.3	Charact	teristics of MANET	7
		2.3.1	Dynamic Network Topology	7
		2.3.2	Power Constraint	7
		2.3.3	Bandwidth Constraints	7
		2.3.4	Security	7
		2.3.5	High Mobility	7

				xi
		2.3.6	End to End Communication	7
	2.4	Applica	tions of MANET	8
	2.5	Compar	ison of Military Vs Commercial MANET	8
		2.5.1	Military battlefield	8
		2.5.2	Commercial sector	9
	2.6	Mechan	isms for Developing MANET	9
	2.7	Archited	cture	10
	2.8	Ad Hoc	Network Components	10
		2.8.1	Hardware	10
		2.8.2	Software	11
		2.8.3	Way Path / Locality	11
	2.9	Ad Hoc	Network Operating Principle	13
	2.10	Challeng	ges in Ad Hoc Mobile Networks	13
3	DESI	GN AND	METHODOLOGY	14
	3.1	Concept	ion & Analysis Phase	14
	3.2	Commu	nication Issues	14
	3.3	Routing	Issues	14
		3.3.1	Problems with pro-active routing protocols	15
		3.3.2	Advantages of Re-Active Routing Protocols	15
	3.4	Designir	ng & Developmental Phase	15
	3.5	Assembling Phase		
	3.6	Hardwar	e Requirement	17
		3.6.1	Arduino Board with ATMEGA	17
		3.6.2	Robotic Cars Chassis	19
		3.6.3	Bluetooth HC-05	19
		3.6.4	XBEE	21
		3.6.5	Fire Detection Sensor	22
		3.6.6	Fire Extinguisher unit	23
		3.6.7	Alarm Buzzer	24
			24	
		3.6.8	GMS Module for Arduino	25
	3.7	Routing	Algorithm	27

			xii
		3.7.1 Cluster based Routing	27
	3.8	Algorithm Assuming	28
	3.9	Algorithm Description	28
	3.10	Algorithm at Node to Process Packet	29
	3.11	Routing Protocol	29
	3.12	Reactive Protocol	29
	3.13	Route discovery	30
	3.14	Route Maintenance	31
	3.15	FLOWCHART	33
4	IMPI	LEMENTATION & TESTING	34
	4.1	Implementation	34
	4.2	Network Interconnection Diagram	35
		4.2.1 CASE I:	35
		4.2.2 CASE II	35
		4.2.3 CASE III	35
	4.3	Route Request Diagram	36
	4.4	Testing	37
5	RESU	JLTS & CONCLUSION	38
	5.1	Key Findings	38
	5.2	Outcomes	39
	5.3	Conclusion	39
REF.	ERENCES	S	40
APP	ENDIX-I		41
APP	ENDIX-II		45
APPI	ENDIX-III		50