

FINAL YEAR PROJECT REPORT

IOT BASED VOICE CONTROLLED HUMANOID ROBOT

In fulfillment of the requirement For degree of BS (Information Technology)

By

ANOSHA MUZAMMIL HAFIZA MARIA IRUM HIRA RAFIQUE 45896 BSIT 45900 BSIT 43441 BSIT

SUPERVISED

BY

DR SAFDAR ALI RIZVI

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2016-2020

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature:

Name: Anosha Muzammil
Rcg No.: 45896

Signature: Hafiza Maria Irum
Reg No.: 45900

Signature: Hira Rafique
Reg No.: 43441

Date

24-June-2020

APPROVAL FOR SUBMISSION

I/We certify that this project report entitled "IOT BASED VOICE CONTROLLED HUMANOID ROBOT" was prepared by Anosha Muzammil, Hafiza Maria Irum, Hira Rafique has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Computer Science (Honours) at Bahria University.

Approved by,

Signature:

Supervisor: Dr Syed Safdar Ali Rizvi

Date : 24-June-2020

The copyright of this report belongs to Bahria University according to the Intellectual Property Policy of Bahria University BUORIC-P15 amended on April 2019. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2019 Bahria University. All right reserved.

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Dr Syed Safdar Ali Rizvi for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parents and friends who had helped and given us encouragement.

IOT BASED VOICE CONTROLLED HUMANOID ROBOT

ABSTRACT

Now-a-days robots are playing a very important role in the industry level and also out of the industry. Dependency on robots is increasing for their fast and reliable working speed and accuracy. Humanoid Robot is a robot, shaped in the form of a human. A Humanoid robot is used in many different fields such as education for young children, on field marketing for companies, research and development tool, entertainment and for tasks that are unsafe to be done with real people. So, humanoid robots are a tool for human luxury and safety. This project was conducted focusing on the necessity of robots in our daily life. Internet of Things is nowadays finding profound use in each and every sector, plays a key role in our project too.

IoT is the concept which creates a relationship between user and system remotely. It also creates interconnection between devices. There are three C's on IoT: Communication, Control and Automation and Cost Savings. We have tried to implement IoT so that user can control, communicate with the robot within a low budget. This report proposes a system where a robot can be controlled in different ways like voice and wireless. Here we are using a Humanoid Robot which is capable of moving left, right, forward, backward and picking different objects and can be controlled through voice. The Movement of the humanoid robot is done based on Arduino Uno and we make mobile robot whose motions can be controlled by the user by giving specific voice commands on Google Assistant. When a command for the robot is recognized, then voice module sends a command message to the robot's controller. For controlling the mechanism of the robot and object we write the program in Arduino. The design included various units mainly: sensing unit, processing unit, power unit, display unit, communication unit. This work will apply the techniques of electrical engineering.

TABLE OF CONTENTS

DECLA	RATIO	ON			ii
APPRO	VAL F	OR SU	BMISSION		iii
ACKNO	WLEI	OGEMI	ENTS		v
ABSTR	ЛСТ			*	vi
TABLE	OF CO	ONTEN	TS		vii
LIST O	F TAB	LES			xi
LIST O	F FIGU	JRES			xii
LIST O	F SYM	BOLS	ABBREVIATIONS		xvi
LIST O	F APPI	ENDIC	ES		xviii
СНАРТ	ER				
1	INT	RODU	CTION		1
	1.1	Backg	round	4	1
	1.2	Proble	em Statements		1
	1.3	Aims	and Objectives		2
	1.4	Scope	of Project		2
2	LIT	ERATU	URE REVIEW		3
	2.1	Intern	et of Things (IOT)		3
		2.1.1	How IOT Works?		4
		2.1.2	Why IOT is important?		6
		2.1.3	Advantages of IOT		6
		2.1.4	Disadvantages of IOT		7
	2.2	Voice	Recognition	12.35	7
		2.2.1	How Voice Recognition Works?		8

			V111	
		2.2.2 Classification of Voice Recognition	9	
		2.2.3 Top Arduino Voice Control Modules	10	
	2.3	Robots		
		2.3.1 History Of Robots	13	
		2.3.2 Types Of Robots	14	
	2.4	Top Applications Related To Our Project	17	
		2.4.1 Arduino based photovore robot	17	
		2.4.2 Voice controlled home automation	17	
		2.4.3 Arduino based voice controlled robot	18	
		2.4.4 Voice controlled wheelchair	18	
		2.4.5 Arduino controlled robotic arm	19	
		2.4.6 Voice controlled quadcopter	19	
		2.4.7 IOT based voice controlled home appliances	20	
		2.4.8 Voice-controlled autonomous vehicle using IOT	20	
3	DES	SIGN AND METHODOLOGY	21	
	3.1	Workflow Diagram	21	
	3.2	Hardware Assembling	22	
		3.2.1 Model Based Design (V-Model Design)	22	
		3.2.2 V-Model – Advantages & Disadvantages	23	
		3.2.3 SolidWorks Simulation	23	
	3.3	Software Development	27	
		3.3.1 Verification Phase	27	
		3.3.2 Validation Phases	28	
4	IMP	PLMENTATION	30	
	4.1	Block Diagram	30	
	4.2	Circuit Diagram	31	
	4.3	Step No 01: Hardware Assembling	32	
		4.3.1 L298N Dual Channel H-bridge	32	
		4.3.2 PCA9685 Servo Motor Driver 16-Channel	33	
		4.3.3 2 Channel Relay Module	33	
		4.3.4 Jumper Wires	3/1	

				ix
		4.3.5	Arduino Uno	35
		4.3.6	Grippy Wheels	35
		4.3.7	NodeMCU (Esp8266 Wi-Fi Module)	36
		4.3.8	Acrylic Sheet	36
		4.3.9	RDS3115 Servo Motor	37
		4.3.10	Servo Brackets	37
		4.3.11	LM2596 DC-DC Buck Converter	38
		4.3.12	Dry Battery	38
		4.3.13	LED	38
		4.3.14	Laptop	39
		4.3.15	Micro USB Cable	39
	4.4	Step N	lo 02: Ardunio IDE Downloading	40
	4.5	Step N	lo 03: Installation	40
	4.6	Step N	No 04: Create Applets In IFTTT	47
	4.7	API'S	, Libraries, Commands	51
		4.7.1	API's	51
		4.7.2	Libraries	52
		4.7.3	Commands	53
5	RES	SULTS	AND DISCUSSIONS	54
	5.1	Mobil	e Application	54
	5.2	Syster	n Output Demonstration	57
	5.3	Challe	enges Faced	59
		5.3.1	Servo Motor Sclection	59
		5.3.2	Servo Motor Controlling	59
		5.3.3	Integrating IOT With Arduino	59
	5.4	Discu	ssion	59
		5.4.1	Why we use Arduino instead of raspberry pi?	59
		5.4.2	Why we use 16 channel servo motor driver pca9685?	60
		5.4.3	Why we select IOT voice instead of Bluetooth?	60
		5.4.4	Why we use Esp8266 Wi-Fi module?	61
		5.4.5	What is the purpose of IFTTT?	61

		Х
6	CONCLUSION AND RECOMMENDATIONS	62
	6.1 Conclusion	62
	6.2 Future Work	63
RE	FERENCES	64
AP	PENDICES	67