

FINAL YEAR PROJECT REPORT E_FOOD DETECTOR: AN INTELLIGENT DEVICE THAT DETECTS THE QUALITY OF FOOD USING RASPBERRY PI 3

In fulfillment of the requirement For degree of BS (Information Technology)

By

MUHAMMAD TAHA KHAN ERAJ ABBAS ZERAFSHAN ASLAM 45940 BSIT 45898 BSIT 45934 BSIT

SUPERVISED

BY

SHAISTA ASHRAF FAROOQI

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2016-2020

DECLARATION

We, at this moment, declare that this project report based on original work except for citations and quotations, which have duly acknowledged. We also claim that it has not been previously and concurrently submitted for any other degree or award at Bahira University or other institutions.

Signature	:	late
Name	:	M.Taha Khan
Reg No.	:	45940
Signature	:	(a)bbas
Name	:	Syed Eraj Hadi
Reg No.	:	45898
Signature	:	Thomas
Name	:	Zerafshan Aslam
Reg No.	:	45934
Date	:	14-06-2020

APPROVAL FOR SUBMISSION

We certify that this project report entitled "AN INTELLIGENT DEVICE THAT DETECTS THE QUALITY OF FOOD" was prepared by Taha Khan, Zerafshan Aslam and Eraj Abbas has met the required standard for submission in part fulfillment of the requirements for the award of Bachelor of Computer Science (Honors') at Bahira University.

Approved by,

Signature

avan

Supervisor: Shaista Ashraf Farooqi

Dated : 14/06/2020

The copyright of this report belongs to Bahria University according to the Intellectual Property Policy of Bahria University BUORIC-P15 amended on April 2019. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2019 Bahria University. All right reserved.

ACKNOWLEDGEMENTS

v

We would like to thanked everyone who had contributed to the successful completion of this project. We would like to show gratitude to our research supervisor, Shaista Ashraf, for her invaluable advice, guidance, and her enormous patience throughout the development of the research.

Also, we would like to express my gratitude to our loving parents and friends who had helped and encouraged us.

ABSTRACT

Many people in this world get infected with some serious disease and many die because of eating unhealthy food. Such kind of food cause diseases like food poisoning, heart issue, high blood pressure, gastroenteritis, diarrhea caused by Campylobacter, pneumonia, trachoma, skin infections, nausea, vomiting, stomach pains and so on. Nowadays, unhealthy food problems have become so common and all of us facing these issues and blaming the environment but forget about what we are eating or what kind of food we are using. Is it fresh? Is it Edible? It is very crucial to check the food quality before consuming the food.

There are several technologies like raspberry pi, sensors (PH, Moisture, and Gas) through which we became capable and developed a hardware which contain more than one sensor. It senses the quality of food at environment box which contains constant temperature and helps user to detect the food freshness, guide them that this food is in edible condition or not. We integrate our hardware with android application through which our device becomes more user-friendly. This is the new effective approach to detect the food than the approaches we have used before. By using one hardware we can check our food which contain moisture, gas or ph. The result obtained through these sensors are then evaluated.

TABLE OF CONTENTS

DECLARATIONi		
APPROVAL FOR SUBMISSIONii		
ACKNOWLEDGMENTSv		
ABSTRACTv	'i	
TABLE OF CONTENTS	ii	
LIST OF FIGURESv	iii	
LIST TABLES	iv	
CHAPTERS		
CHAPTER 1: INTRODUCTION		
1.1 BackgroundI	5	
1.2 Method Previosly provided	16	
1.3 Problem Statements	17	
1.4 Objectives	17	
1.5 Scope of Project	18	
1.6 Project Methodology	18	
CHAPTER 2: LITERATURE REVIEW		
2.1 Introduction		
2.2 Literature Review		
2.2.1 Top Devices Related to our project		
2.2.2 Food Sniffer		
2.2.4 Food Poisning detector		
2.2.5 Scio		
2.2.5 Sete		
2.2.5.2 real time, precision grain analysis	23	
2.2.5.3 real time raw material inspection	23	
2.2.5.4 Food baverages quality control		
2.2.5.5 real time manufacturing quality control		
2.2.5.6 smart phone.		
2.2.5.7 smart kitchen appliances		
2.2.5.8 smart cups and bottle		
2.2.6 LinkSquare		
2.2.7 Metal Detector	.20	

2.2.8	Food Allergen Detector.	.27
2.2.9	FoodBorne	.29
2.2.10	Tomra	.33
	Laser	
	Xray inspection system	
2.2.13	FTIR system	.37
2.2.14	New Hnadheld device	.37
	Data Sensor	

CHAPTER 3: DESIGN AND METHODOLOGY

3.1	Work breakdown structure	
3.2	Assembling of hardware	
	3.2.1 Agile software development	
	3.2.2 Scrum Methodology	41
	3.2.3 Testing phase	41
	3.2.3.1 Unit Testing	42
	3.2.3.2 Intergration Testing	42
	3.2.3.3 System Testing	42
	3.2.3.4 Acceptance Testing	42
	3.2.4 Requirement gathering and analysis	43
3.3	GUI of the application	43
	3.3.1 Implementation	
	3.3.2 Integration and testing	45
	3.3.2.1 Regression testing	
	3.3.3 Deployement of system	45

CHAPTER 4: IMPLEMENTATION

4.1	Flow of the Project	
4.2	Step#1: Assembling	47
	4.2.1 Circuit Diagram	47
4.3	Environmental Box	47
	4.3.1 Environmental box Qualities	
	4.3.2 Environmental Box Purpose	48
4.4	Components use for Assembling the hardware	48
	4.4.1 System Design	48
	4.4.2 What is Raspberry Pi 3	49
	4.4.3 What is Raspberry Pi 3 cabale	49

4.4.4 How do I started with Raspberry Pi 3
4.4.5 How Raspberry Pi 3 different from its precedence50
4.4.6 Power Supply
4.4.7 SD card
4.4.8 Mouse and Keyboard
4.4.9 Computer Screen
4.4.10 VGA
4.4.11 HDMI to VGA adapter
4.4.12 IO Port Expander
4.5 Sensors Which used or The Device
4.5.1 Electrical Sensor
4.5.2 Moisture Sensor
4.5.2.1 How moisture sensor work
4.5.3 Gas Sensor
4.5 3.1 Gas sensor Construction
4.5.3.2 Gas sensor working
4.5.4 PH sensor
4.5.4.1 what is PH
4.5.4.2 Specification
4.6 Downloading Operating System
4.6.1 Format SD card
4.6.2 Extract Noobs
4.6.3 Copy the iles
4.6.4 Connecting Raspberry Pi60
4.6.5 Startup Raspberry pi62
4.7 Installation
4.8 Python Updation65
4.9 Commands and Libraries
4.9 Commands and Libraries65
4.9 Commands and Libraries
4.9 Commands and Libraries. 65 4.9.1 Commands detail. 65 4.9.2 Libraries detail 66
4.9 Commands and Libraries. .65 4.9.1 Commands detail. .65 4.9.2 Libraries detail .66 4.10 DataBase Step. .67

4.10.4	Creating a Database	68
4.10.5	Naming Database	68
4.10.6	Active user in Firebase	69
4.10.7	Database Types	69
4.10.8	Database Table	69

CHAPTER 5: RESULTS AND DISCUSION

5.1	Challenges faced	70
5.2 5.3	Why we use RaspberryPi instead of Arduino Why we use cloud database	
5.4	Why we use MCP3008	71
5.5	What is meant by MQ	72
5.6	Why we use MQ3	72
5.7	Why we use firebase as a cloud database	
5.8	Why we develop an Mobile Application	72
5.9	Why we use Android Studio	73

6.1	Introdcution7		
	6.2 Risk areas Identified	75	
6.3	Development Process	76	
	6.3.1 Informal development process	76	
	6.3.2 Not enough Paper	76	
	6.3.3 No written Requirement	76	
	6.3.4 Requiremment with poor measurability	76	
	6.3.5 Requirement Omit extra-unctional aspects	76	
	6.3.6 High requirement	76	
	6.3.7 No SQA function	77	
	6.3.8 No mechanism to capture	77	
6.4	Architecture	77	
	6.4.1 No defined software Architecture	77	
	6.4.2 No message Dictionary	77	
	6.4.3 Poor modularity of code	77	

6.5	Design	78
	6.5.1 Design after coding	78
	6.5.2 Statechart would be more appropriate	.78
	6.5.3 Analysing real time scheduling	78
	6.5.4 No systematic Approach for GUI	78
6.6	Implementation	78
	6.6.1 Coding Style is Inconsistence	78
	6.6.2 Too fill Resources	79
	6.6.3 Global variable is too many	79
	6.6.4 Ignoring compiler warning	79
	6.6.5 Inadequate Concurrency management	79
	6.6.6 Use o home made Realtime OS	79
6.7	Verification and Validation	79
	6.7.1 No peer reviews	80
	6.7.2 No test plans	80
	6.7.3 No deect tracking	80
	6.7.4 No Stress testing	80
6.8	Dependability	80
	6.8.1 Insuficient reliability consideration	80
	6.8.2 Insuficient Security Consideration	80
	6.8.3 Insuficient Safety Consideration	80
	6.8.4 Insuficient System reset approach Consideration	81
	6.8.5 Risk problem with external tools	81
	6.8.6 Disaster recovery not tested	81
6.9	People	81
	6.9.1 Many Developer and high turnover	81
	6.9.2 No training to managing outsource relationships	81
6.10	Risk Of Securities on Embeded System	81
6.11	Conclusion	82
6.12	Cost Estimation	82
DC		75

References	
APPENDICES	